
The Scale Relevant to Life

Most cells are between 1 and 100 μm. 
i.e. Three orders of magnitude 
difference in size.

Smallest bacterial cells are

mycoplasmas = 0.1 - 1.0 µm
Bacteria = 1 - 10 µm
Plant and animal cells = 10 - 100 µm





The speed with which a molecule diffuses in a fluid depends 
upon: size, shape, temperature, viscosity and chemistry

i solute, j solvent
2 2

4
ij

x y
D

t




In the x-y plane:

What if it is 1-D?
What if it is 2-D?
What if it is 3-D?
How does the equation change?

Be able to estimate
These values





Diffusion / Convection

• A protein molecule of diffusion coefficient 10-7 cm2 /s will 
diffuse from edge to center of a 20 um diameter cell in 2.5 s.

• A protein molecule of diffusion coefficient 10-7 cm2 /s will 
diffuse through 2mm thick tissue in 27.7 h.

• Diffusion – short distances
• How far from blood vessel can oxygen transport by diffusion

• Convection – long distances
• Do all bugs need a pumping heart?

• Are there bugs without hearts?

• What kind of hearts are there in bugs?









* * * * *D e p T

i i i i iJ J J J J   

D ≡ Ordinary diffusion
e ≡ Electrical field
P ≡ Pressure
T ≡ Temperature

Flux of i in the x-direction.

These different fluxes can be used for separation purposes (i.e., ultracentrifugation, electrophoresis, 
isolectric focusing, the usage of membranes)…



𝑭𝒍𝒖𝒙 (𝒔𝒉𝒆𝒂𝒓 𝒔𝒕𝒓𝒆𝒔𝒔,𝒎𝒐𝒍𝒂𝒓, 𝑬𝒏𝒆𝒓𝒈𝒚) = −(𝒗𝒊𝒔𝒄𝒐𝒔𝒊𝒕𝒚 𝒐𝒓 𝑫𝒊𝒇𝒇𝒖𝒔𝒊𝒗𝒊𝒕𝒚 𝒐𝒓 𝑻𝒉𝒆𝒓𝒎𝒂𝒍 𝑪𝒐𝒏𝒅. )
𝒅 (𝒗𝒆𝒍𝒐𝒄𝒊𝒕𝒚 𝒐𝒓 𝒄𝒐𝒏𝒄𝒆𝒏𝒕𝒓𝒂𝒕𝒊𝒐𝒏 𝒐𝒓 𝑻𝒆𝒎𝒑)

𝒅𝒙

momentum
mass Energy

8.28.18: Some of the arrows were shifted somehow on slide 10. I made sure the arrows were pointing to the correct word.



What is the i and what is the j?



Reynold’s # = Re

• 𝑅𝑒 =
𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙 𝑓𝑜𝑟𝑐𝑒𝑠

𝑣𝑖𝑠𝑐𝑜𝑢𝑠 𝑓𝑜𝑟𝑐𝑒𝑠
=

vL

k.v.
=

vLρ

μ

• Units?

• v = object velocity relative to flow.

• k.v. = viscosity/density

• Why does Re exist? To predict flow patterns
• Laminar or turbulent
• If Re < 2000 => laminar
• If Re > 4000 => turbulent
• If Re is between 2000 and 4000

transitional flow

viscosity 9.10E-03 Poise g/cm/s

density 1 g/cm^3

velocity 1 cm/s

L 50 cm

Re 5494.51 turbulent

Cell 10 um

cell 1.00E-03 cm

Re 0.11 laminar

https://www.youtube.com/watch?v=p08_KlTKP50

Examples:





Peclet # = Pe
• 𝑇𝑖𝑚𝑒 𝑜𝑓 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 =

𝐿2

𝐷𝑖𝑗

• 𝑇𝑖𝑚𝑒 𝑜𝑓 𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛 =
𝐿

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦

• 𝑃𝑒 =
𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 𝑡𝑖𝑚𝑒

𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒
=

𝑚𝑎𝑠𝑠 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 𝑏𝑦 𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛

𝑚𝑎𝑠𝑠 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 𝑏𝑦 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛
=

𝑣𝑒𝑙∗𝐿

𝐷𝑖𝑗

• What is dominant – convection or diffusion?

• Over the dimensions of a cell, diffusion is sufficiently efficient (up to 100 um)

• Diffusion limited: event is limited by how many are arriving by diffusion

2 v

ij

L

D L

  
      





Biot #

B=Mass Transfer Across a Cell Layer/Mass Transfer by Diffusion Through Tissue = k*L/D

Numerator is non-diffusive mass transfer (not specific) component

Example of k:
First order diff. eq.
dC/dt = kC





Flux and Fick’s 1st law

• Flux is proportional to the gradient

• What are the units of flux?    
• (#or mol)/area/time or mass/area/time…

• 𝐽 = −𝐷
𝑑𝑐

𝑑𝑥
= -D   C; what is the upside down triangle? 

• Gradient

• what is the expansion of the equation?

• 𝐽 = −𝐷[
𝑑𝑐

𝑑𝑥
+

𝑑𝑐

𝑑𝑦
+

𝑑𝑐

𝑑𝑧
]



Why are cells microscopic?

1. Diffusive transport over large distances may be 
inadequate.

For Constant Flux steady state diffusion in one direction -
Fick’s First Law

J D
d

dx
 

C

D - diffusion coefficient (m2/s); C - kg/m3 or cm2 /s and moles/l



Diffusion Across Cell Membranes and within Cells
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What is Fick’s second law

•
𝑑𝐶

𝑑𝑡
= 𝐷Δ𝐶; and what is the diff between Δ and    ? Δ 2 = Δ

• Expand this…

•
𝑑𝐶

𝑑𝑡
= 𝐷[

𝑑2𝐶

𝑑𝑥2
+

𝑑2𝐶

𝑑𝑦2
+ 
𝑑2𝐶

𝑑𝑧2
]





x

C
DJ i

ijix





Jix = diffusive flux of a dissolved solute in dilute solution

Dij = binary diffusion coefficient of solute i in solvent j

C = concentration of reactant

6.4 Constitutive Relations: 6.4.1 Fick’s First Law

iiji CDJ 

N = J vi i i sC

N = -D C vi ij i i sC 

Substituting into gives when convection is present… 

Dilute;
No reactions
Producting or 
Consuming 
Constituents…

Note, D can be a f(C)…



Non-Steady State Diffusion in the Solid State

• Solution requires specified boundary conditions

Most real diffusion is non-steady state
 The concentration of diffusing species is a function of both 

time and position C = C(x,t)

i.e., flux and driving force both change with time
 In this case Fick’s Second Law is used

2

2

x

C
D

t

C












On board…



6.2.1 Dilute Solution Approximation

• Most biological solutions are dilute

• Concentration of the solvent must be large relative to the 
solute: Csolvent >> Ci or xs ~= 1 >> xi = mole fraction

• The molar average velocity equals the mass average 
velocity i.e. v* ≈ vsolvent and v ≈ vsolvent so that v ≈v* and Ji

=Ji* 

* *J = N vi i iC * *N = J vi i iC N = J vi i i sCor becomes

 
 *

1 1 1 2

1

1
N = J  + N

1- 
x

x
N = J vi i i sC=>

When N2 is solvent Can study dilute solutions as if they were binary



Justification of dilute –solution problems in 
biological contexts
• Water is 1 g/cm3. 1 mole of water is 18g and is 55.56 M. 

• Salt concentrations: 1 uM to 300 mM
• 1.8e-8 to 0.0054 mole fractions

• Protein: 1 nM to 1 mM
• 1.8e-11 and 1.8e-5 mole fractions.

• Exceptions: gas diffusion in the lung, purification of biological 
molecules in high salt concentrations (1-5M), fermentation processes





6.3.2 Boundary Conditions

1 2C | = H C |i i i

At the gas (1) solution (2) interface, at equilibrium:

1 2C | = C |i i i
At the liquid (1) immiscible liquid (2) interface, at equilibrium:

Where Φi is the Partition Coefficient

Where Hi is the Henry’s Law Constant

Concentrations are not necessarily constant or continuous across a fluid-fluid interface

Since the discontinuity cannot be abrupt it establishes an interphase

1 2N | = N |ix ix

While concentrations may not be equal, fluxes across a fluid-fluid or liquid-liquid 
interphase are always equal, thus:

1 2N | = R |ix ix

Where R is the reaction rate
“+” if i is produced
“-” if i is consumed

Useful for investigating conservation relations…



2N | = 0ix

Then:

 1 2 1N | = C | C |ix i i ik  

Where
k is the permeability

Φi is the Partition Coefficient

If the surface , e.g. solid-liquid interface, is impermeable  there is no flux across its surface

If the surface , e.g. solid-liquid interface, is permeable  then the flux across its surface

Boundary Conditions

2 1 2 1

2 1

= a | / a | C | / C |

1

= C | / C |

i i i i i i i

i

i i i

 



 





Dilute Solution Approximation

a = solute activity coefficients







Random Walk
• <x>2 = 2*dimensions*Dt; i.e., = 4Dt in 2-D…

Imagine taking a vector with various values for randoms steps an entity can take 
in 1-D…

RandomNums = [-1 0 1]; the value of kronecker for this is 
mean(RandomNums.^2)

The average distance the entity will go is directly proportional to the sqrt(number 
of steps taken)…

Theoretical distance = (kronecker=mean(RandomNums.^2))*sqrt(steps) (true for 1-D)

Also, the same kinetic energy will result in smaller displacement as the entity becomes larger…

How does time come into play? n = steps = t/τ where τ is the time to take a single step.







2 2= t/x   

The mean-square displacement in one direction:

The mean-square distance sampled by a molecule increases linearly with the  √t

If we define the one-dimensional binary diffusion coefficient as Dij = δ2/τ; then…

2 = 2D tijx 

 2 2 2 2= 3 2 t 6 tij ijr x y z D D           

For three dimensional random walk:

Random walk



-1 and 1 (replicating = problem 6.3)



Problem 1: Objectives (1-D)

• In MatLab,

• Sub-figure 1: Observe in 1-D 
the distance traveled from the x-
axis after a certain number of 
steps. Have the distance chosen 
to step be a vector of choices [-1 
-1 0 1], [-1, 1], [-1, 0, 1], etc.

• Sub-figure 2: Calculate the 
distance traveled from the x-axis 
after a certain number of steps;  
repeating this process.

• Sub-figure 3: Calculate the 
running average of figure 2 and 
watch the answer converge to 
the theoretical answer.

• Quantify the % error as it steps 
through this process.



FYI: (not going to be tested on this but) 
Extrapolation of principles:
https://en.wikipedia.org/wiki/Rotational_diffusion



Diffusivity or Diffusion Coefficient and Temperature

Temperature influences manifest in the diffusion coefficient.

Hence, diffusion coefficient, D, increases with increasing T.

D  Do exp










Qd

RT

= temperature dependent pre-exponential [m2/s]

= diffusion coefficient [m2/s]

= the activation energy for diffusion [J/mol or eV/atom] 

= the molar gas constant [8.314 J/mol-K]

= absolute temperature, Kelvin [K]

D

Do

Qd

R

T

 Temperature D 

500C (773K) 3.0 x 10-21 

900C (1173K) 1.8 x 10-15 
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d
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
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1
log log

.
D Do

Q

R T

d
 











2 303

1

Taking logarithms:

Where

Slope  =  - Qd / 2.303R

Intercept = log Do

y mx c 

Diffusivity or Diffusion Coefficient and Activation 
Energy



log log
.

D Do
Q

R T

d
 











2 303

1

Where

Slope  =  - Qd / 2.303R

Intercept = log Do

log log
.

Do D
Q

R T

d
 
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
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
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1
Solve for Do

Solve for Activation Energy:
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Diffusivity or Diffusion Coefficient and Activation 
Energy
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












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


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1
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1
lnln

TR

Q
DD

TR

Q
DD dd











121

2
12

11
lnlnln    

TTR

Q

D

D
DD d

transform 

data
D

Temp = T

ln D

1/T

Example: At 300ºC the diffusion coefficient and activation energy for Cu in 

Si are 

D(300ºC) = 7.8 x 10-11 m2/s

Qd = 41.5 kJ/mol

What is the diffusion coefficient at 350ºC?



45

Example (cont.)




















 

K 573

1

K 623

1

K-J/mol 314.8

J/mol 500,41
exp /s)m 10 x 8.7( 211

2D




















12

12

11
exp 

TTR

Q
DD d

T1 = 273 + 300 = 573K

T2 = 273 + 350 = 623K

D2 = 15.7 x 10-11 m2/s



Estimation of diffusion coefficients

• Protein diffusivity in plasma is 
about 1e-7 cm2/s. 

• From edge of cell to center: 2.5 
seconds

• Through tissue that is 0.02 mm 
thick: 27.7 hours

• What is a binary diffusion 
coefficient?
• Characterizes diffusion of one 

molecule in a solvent

• What is Deffective?
• Incorporates: drag forces exerted 

by ECM and cells

1-D, 2-D, 3-D differences?









6.6.5: The Wilkie-Chang

• See problem 6.1.

𝐷 = 7.4𝑒 − 10
𝑇 φ𝑀 0.5

μ𝑉𝑜
0.6

; φ𝑤𝑎𝑡𝑒𝑟 = 2.26





Stoke’s-Einstein Equation:

• Regarding calculating D2 at T2, 
knowing either D1 and T1, is there 
another way we can do this using the 
SE equation?



fbar = denominator



Estimation of frictional drag coefficients

• For low Reynold‘s #s, the drag force is (K is translation tensor; v = 
velocity):

𝐹𝐷 = 𝐾 ∗ 𝑣 𝑜𝑟 𝑣 = 𝐾
− 1 ∗ 𝐹𝐷 =

1

2
∗ ρ ∗ 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦2 ∗ 𝐷𝑐 ∗ 𝐴; 𝐷𝑐 = 𝑑𝑟𝑎𝑔 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡

assume f11=“f1”=f22=“f2”=f33=“f3”

K is a symmetric tensor and the components thereof are friction coefficients fij

By solving for the fs when Det(K – fI) = 0 (f1 =f2 =f3 etc for an isotropic body) we obtain the non-zero values.
The fs are eigenvalues.

fbar = average = the harmonic mean:
1/fbar = 1/3(1/f1 + 1/f2 + 1/f3 +…)
Note that for a sphere f = 6ᴫμR… sound familiar?
Eigenvectors are scalable and translatable… v(A- λ?)=0…  v(A- λI)=0 (these vectors (v) are not velocity vectors)
These are the eigenvalues and are the friction coefficients. The only non-zero solutions are calc. via the det.

8.30.18: Skip this slide for now. We will go over eigenvectors more in a future chapter.



Skip this for this semester for the sake of 
time.

• Π vs Σ? 

• Harmonic mean = 1/A

• Geometric mean   G=sqrt(AH) 

• Arithmetic mean = 1/H





Instrumentation using diffusion principles

• Nanoparticle Tracking Analysis (NTA)

• Dynamic Light Scattering (DLS)



NTA

500-step random walk.
The walk begins at coordinates x = 0, y = 0 denoted by the “●” and ends in the upper right 
hand quadrant denoted by “X”. The arrow represents the net displacement.

https://www.youtube.com/watch?v=65k3fX2X7pQ

What happens if the paths cross during the video?



Dynamic Light Scattering: Skipping DLS this semester

Wikipedia.org

http://www.nano.wustl.edu/

How do you get size out of this Information? 
What is this size based on?
What limitations are there whencalculating diameters from intensities?

Y-axis ranges from 0 to 1 (meaning of 0 and 1?)





Important rhetorical questions:
If the size of the particle were much smaller than the wavelength of the light being used to see it, what happens? 
What is this phenomenon called? How can you estimate the diameter of it? What does this size mean? 
What if the particle being measured were actually a rod? 
What if the distribution of sizes were heterogeneous (i.e., limitations?) in the context of NTA vs DLS

How to calculate diameter of particles using data obtained from a video
Stokes-Einstein Equation
Raleigh Scattering

Root Mean Square?

Geometric mean? 𝑥𝐺𝑀 = 𝑛 𝑥1𝑥2𝑥3…𝑥𝑛 What happens to the outliers?

𝑥𝑟𝑚𝑠 =
1

𝑛
(𝑥1

2 + 𝑥2
2 + 𝑥3

2 + 𝑥4
2 +⋯+ 𝑥𝑛

2





Examples in book with more clarity

• FYI: examples given in slides that are not “Problems” at the back of 
the chapter are also fair game for exams.



Figure 6.6 Diffusion through a small rectangular 
volume of area A and thickness ∆x.

6.7: Steady-state diffusion in one dimension                                                 Rectangular coordinates



Schematic of steady diffusion across a membrane of thickness L that 
separates two well-mixed solutions. For this situation  < 1.
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Schematic of steady diffusion across a membrane of thickness L that 
separates two well-mixed solutions. For this situation  < 1.
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Diffusion through a two-layer laminate. Each layer 
is described by a separate diffusion coefficient.

Acellular
Elastic artery

Cellular
Smooth muscle
cell

protein

protein

Determine C(x)
Determine N(x)

Vf

C(x=0)=ΦCo

C(x=L)=ΦCL

Example 6.5



Diffusion through a two-layer laminate. Each layer 
is described by a separate diffusion coefficient.

Acellular
Elastic artery

Cellular
Smooth muscle
cell

protein

protein

Determine C(x)
Determine N(x)

2

2

x

C
D

t

C














6.7.1: Diffusion in gases



Figure 6.10 Diffusion of two gases. The concentrations in each 
reservoir are kept constant such that at steady state, CA = CAo0

and CB = 
CBo
CB = 0 at x = 0 and CA = 0 and 

0
at x = L.

Dilute solution?



Figure 6.10 Diffusion of two gases. The concentrations in each 
reservoir are kept constant such that at steady state, CA = CAo0

and CB = 
CBo
CB = 0 at x = 0 and CA = 0 and 

0
at x = L.

Dilute solution cannot be invoked…. Flux of one induced flux of another in the absence of bulk motion.
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𝑁1 = −𝐶𝐷𝑖𝑗𝛻𝑥1 + 𝑥1(𝑁1 + 𝑁2)



Figure 6.10 Diffusion of two gases. The concentrations in each 
reservoir are kept constant such that at steady state, CA = CAo0

and CB = 
CBo
CB = 0 at x = 0 and CA = 0 and 

0
at x = L.

Dilute solution cannot be invoked…. Flux of one induced flux of another in the absence of bulk motion.

𝑁1 = −𝐶𝐷𝑖𝑗𝛻𝑥1 + 𝑥1(𝑁1 + 𝑁2)

Note: no chemical rxns



Figure 6.10 Diffusion of two gases. The concentrations in each 
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Now what? Apply B.C.s
1) XA=XAo at y=0 and XA=0 at y=L

𝑑
𝐶𝐷𝐴𝐵

𝑑𝑥𝐴
𝑑𝑦

1 − 𝑥𝐴
𝑑𝑦

= 0

How?
Come to board…



What next?
Fick’s 2nd law
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𝑑𝑁𝐵𝑦
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Of note, gas is very slightly soluble and is much less than the flux due
To evaporation of the liquid A. so

Now what? Apply B.C.s
1) XA=XAo at y=0 and XA=0 at y=L

𝑑
𝐶𝐷𝐴𝐵

𝑑𝑥𝐴
𝑑𝑦

1 − 𝑥𝐴
𝑑𝑦

= 0

How?
Come to board… and try in groups…







Figure 6.13 Radial diffusion through a 
cylindrical shell.

Example 6.7.2: Radial diffusion in cylindrical coordinates



• Assume no reaction

• Assume steady state



• Assume no reaction

• Assume steady state

Now what?
Come to board and solve the rest
Without B.C.s (look in book for B.C.s;
Assuming you can do that…)





Skipping erf this semester for the sake of 
time.



erf

• What is it equal to?

• What is it used for?

• What does this have to

do with probability density

unctions. 
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 
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erf

• What is it equal to?

• What is it used for?     Diff. Eq.s and diffusion

• What is erfc? erfc=1-erf
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MatLab Code

close all
x = [0:0.0000001:1];

figure1 = figure;
hold on
% Create axes
axes1 = axes('Parent',figure1);
hold(axes1,'on');

% Create multiple lines using matrix input to plot
%plot(X1,YMatrix1,'Parent',axes1);

% Create xlabel
xlabel('Distance (x)');

% Create title
title('Error function usage');

% Create ylabel
ylabel('Normalized Concentration');

% Set the remaining axes properties
%set(axes1,'FontSize',14,'FontWeight','bold');
for i = 1:2.5:35

plot(x,1-erf(x/(2*sqrt(i*10^-3))),'linewidth',3)
end  



x = [0:0.0000001:1];

figure2 = figure;

% Create axes

axes1 = axes('Parent',figure2);

hold(axes1,'on');

% Create multiple lines using matrix input to plot

%plot(X1,YMatrix1,'Parent',axes1);

% Create xlabel

xlabel('Distance (x)');

% Create title

title('Error function usage');

% Create ylabel

ylabel('Normalized Concentration');

% Set the remaining axes properties

%set(axes1,'FontSize',14,'FontWeight','bold');

for i = 1:2.5:35

plot(x,erfc(x/(2*sqrt(i*10^-3))),'linewidth',3)

end


