The Scale Relevant to Life

Most cells are between 1 and $100 \mu \mathrm{~m}$. i.e. Three orders of magnitude difference in size.

Smallest bacterial cells are
mycoplasmas $=0.1-1.0 \mu \mathrm{~m}$
Bacteria = 1-10 $\mu \mathrm{m}$
Plant and animal cells $=10-100 \mu \mathrm{~m}$

TABLE 1.4

Relevant Length Scales in Biological Systems

Quantity	Length scale (m)
Proteins and nucleic acids	10^{-8}
Organelles	10^{-7}
Cells	10^{-6} to 10^{-6}
Capillary spacing	10^{-4}
Organs	10^{-1}
Whole body	10^{0}

How many orders of magnitude do living cells span?

The speed with which a molecule diffuses in a fluid depends upon: size, shape, temperature, viscosity and chemistry

TABLE 1.1

Range of Values for the Binary Diffusion Coefficient, $\boldsymbol{D}_{i j}$, at Room Temperature

Diffusing quantity	Diffusion coefficients $\left(\mathrm{cm}^{2} \mathrm{~s}^{-1}\right)$	
Gases in gases	0.1 to 0.5	
Gases in liquids	1×10^{-7} to 7×10^{-5}	
Small molecules in liquids	1×10^{-5}	Be able to estimate
Proteins in liquids	1×10^{-7} to 7×10^{-7}	These values
Proteins in tissues	1×10^{-7} to 7×10^{-10}	
Lipids in lipid membranes	1×10^{-9}	
Proteins in lipid membranes	1×10^{-10} to 1×10^{-12}	

In the $x-y$ plane:

$$
D_{i j}=\frac{\left\langle x^{2}\right\rangle+\left\langle y^{2}\right\rangle}{4 t} \text { i solute, } j \text { solvent } \underset{\substack{\text { What if it is 1-D? } \\ \text { What if it is 2-D? }}}{ }
$$

What if it is 3-D?

How does the equation change?

How do you calculate the root mean square versus the geometric mean? What happens to outliers in each case?

Diffusion / Convection

- A protein molecule of diffusion coefficient $10^{-7} \mathrm{~cm}^{2} / \mathrm{s}$ will diffuse from edge to center of a 20 um diameter cell in 2.5 s .
- A protein molecule of diffusion coefficient $10^{-7} \mathrm{~cm}^{2} / \mathrm{s}$ will diffuse through 2 mm thick tissue in 27.7 h .
- Diffusion - short distances
- How far from blood vessel can oxygen transport by diffusion
- Convection - long distances
- Do all bugs need a pumping heart?
- Are there bugs without hearts?
- What kind of hearts are there in bugs?

How do you calculate the distance something diffuses in 1D, 2D and 3D?

A protein molecules with a D of $1 \mathrm{e}-7 \mathrm{~cm}{ }^{\wedge} 2 / \mathrm{s}$ will diffuse from the edge to the center of a 20 um diameter cell in how many seconds?

How do you estimate the diameter of particles using nanoparticle tracking analysis
software?

Flux of i in the x-direction.

$$
J_{i}^{*}=J_{i}^{* D}+J_{i}^{*} e_{i}^{*} J_{i}^{*}+J_{i}^{*}
$$

These different fluxes can be used for separation purposes (i.e., ultracentrifugation, electrophoresis, isolectric focusing, the usage of membranes)...

TABLE 1.3

Relations between Fluxes and Gradients for Molecular Transport			
Molecular transport mechanism	Flux	Gradient	Coefficient of proportionality
Momentum Shear stress Velocity	Viscosity Mass Energy	Mass or molar flux	Concentration

${ }^{\text {a }}$ For charged molecules, transport is down an electrochemical gradient, defined as the sum of the concentration gradient plus the potential field gradient. This kind of transport is discussed in detail in Section 7.4.

8.28.18: Some of the arrows were shifted somehow on slide 10. I made sure the arrows were pointing to the correct word.

What is the i and what is the j ?

TABLE 1.5

Relative Importance of Diffusion and Convection

Molecule	$\mathrm{MW}\left(\mathrm{g} \mathrm{mol}^{-1}\right)$	$D_{i j}\left(\mathrm{~cm}^{2} \mathrm{~s}^{-1}\right)$	Diffusion time, $L^{2} / D_{i j}(\mathrm{~s})$	$\mathrm{Pe}=L \mathrm{~V} / D_{i j}$
Oxygen	32	2×10^{-5}	5	0.05
Glucose	180	2×10^{-6}	50	0.50
Insulin	6,000	1×10^{-6}	100	167
Antibody	150,000	6×10^{-7}		1.67
Particle	Diameter	$D_{i j}\left(\mathrm{~cm}^{2} \mathrm{~s}^{-1}\right)$	Diffusion time (s)	Pe
Virus	$0.1 \mu \mathrm{~m}$	5×10^{-8}	2,000	20
Bacterium	$1 \mu \mathrm{~m}$	5×10^{-9}	20,000	200
Cell	$10 \mu \mathrm{~m}$	5×10^{-10}	200,000	2,000

Note: For $L=100 \mu \mathrm{~m}$, and if $\mathrm{v}=1 \mu \mathrm{~m} \mathrm{~s}^{-1}$, the time for convection is always equal to $L / \mathrm{v}=100 \mathrm{~s}$ for all molecules and particles.

Reynold's \# = Re

- $R e=\frac{\text { inertial forces }}{\text { viscous forces }}=\frac{\mathrm{vL}}{\text { k.v. }}=\frac{\mathrm{vL} \rho}{\mu}$
- Units?
- $\mathrm{v}=$ object velocity relative to flow.

https://www.youtube.com/watch?v=p08_KITKP50
- k.v. = viscosity/density
- Why does Re exist? To predict flow patterns
- Laminar or turbulent
- If $\mathrm{Re}<2000=>$ laminar
- If $\mathrm{Re}>4000=>$ turbulent
- If Re is between 2000 and 4000
transitional flow

Examples:		
$\begin{array}{l}\text { viscosity } \\ \text { density }\end{array}$	$9.10 \mathrm{E}-03$ Poise	$\mathrm{g} / \mathrm{cm} / \mathrm{s}$
velocity	$1 \mathrm{~g} / \mathrm{cm}^{\wedge} 3$	

How do you calculate Reynold's numbers and why is it useful?

Peclet \# = Pe

- Time of diffusion $=\frac{L^{2}}{D_{i j}}$
- Time of convection $=\frac{L}{\text { velocity }}$
- $P e=\frac{\text { diffusion time }}{\text { convection time }}=\frac{\text { mass transport by convection }}{\text { mass transport by diffusion }}=\frac{\text { vel } * L}{D_{i j}}=\left(\frac{L^{2}}{D_{i j}}\right)\left(\frac{\mathrm{v}}{L}\right)$
- What is dominant - convection or diffusion?
- Over the dimensions of a cell, diffusion is sufficiently efficient (up to 100 um)
- Diffusion limited: event is limited by how many are arriving by diffusion

Biot \#

$B=$ Mass Transfer Across a Cell Layer/Mass Transfer by Diffusion Through Tissue $=\mathrm{k}^{*} \mathrm{~L} / \mathrm{D}$
Numerator is non-diffusive mass transfer (not specific) component
Example of k :
First order diff. eq.
$d C / d t=k C$

Flux and Fick's $1^{\text {st }}$ law

- Flux is proportional to the gradient
-What are the units of flux?
- (\#or mol)/area/time or mass/area/time...
$-J=-D \frac{d c}{d x}=-D / C$; what is the upside down triangle?
- Gradient
- what is the expansion of the equation?

$$
\cdot J=-D\left[\frac{d c}{d x}+\frac{d c}{d y}+\frac{d c}{d z}\right]
$$

Why are cells microscopic?

1. Diffusive transport over large distances may be inadequate.

For Constant Flux steady state diffusion in one direction -
Fick's First Law

$$
J=-D \frac{d \mathbf{C}}{d x}
$$

\boldsymbol{D} - diffusion coefficient ($\mathrm{m}^{2} / \mathrm{s}$); $\boldsymbol{C}-\mathrm{kg} / \mathrm{m}^{3}$ or $\mathrm{cm}^{2} / \mathrm{s}$ and moles $/ \mathrm{l}$

Diffusion Across Cell Membranes and within Cells

$$
J=-D \frac{d \mathbf{C}}{d x}=-D \frac{\Delta \mathbf{C}}{\Delta x}=-D \frac{\mathbf{C}_{\mathbf{A}}-\mathbf{C}_{\mathbf{B}}}{x_{\mathbf{A}}-x_{\mathbf{B}}}
$$

\boldsymbol{D} - diffusion coefficient ($\mathrm{m}^{2} / \mathrm{s}$)
$d c / d x$ - Driving force

$$
J=-D \frac{\mathrm{C}_{\mathrm{A}}-\mathrm{C}_{\mathrm{B}}}{x_{\mathrm{A}}-x_{\mathrm{B}}}
$$

$$
J=-\left(3 \times 10^{-11} \mathrm{~m}^{2} / \mathrm{s}\right) \frac{(1.2-0.8) \mathrm{kg} / \mathrm{m}^{3}}{\left(5 \times 10^{-3}-1 \times 10^{-2}\right) \mathrm{m}}
$$

$$
J=2.4 \times 10^{-9} \mathrm{~kg} / \mathrm{m}^{2}-\mathrm{s}
$$

What is Fick's second law

- $\frac{d C}{d t}=D \Delta C$; and what is the diff between Δ and ∇ ?
- Expand this...
- $\frac{d C}{d t}=D\left[\frac{d^{2} C}{d x^{2}}+\frac{d^{2} C}{d y^{2}}+\frac{d^{2} C}{d z^{2}}\right]$
6.4 Constitutive Relations: 6.4.1 Fick's First Law

$$
J_{i x}=-D_{i j} \frac{\partial C_{i}}{\partial x} \quad J_{i}=-D_{i j} \nabla C_{i}
$$

Dilute;
No reactions
Producting or
Consuming Constituents...
$J_{i X}=$ diffusive flux of a dissolved solute in dilute solution
$D_{i j}=$ binary diffusion coefficient of solute i in solvent j
$\mathrm{C}=$ concentration of reactant

$$
\mathrm{N}_{i}=\mathrm{J}_{i}+C_{i} \mathrm{v}_{s}
$$

Substituting into gives when convection is present...

$$
\mathrm{N}_{i}=-\mathrm{D}_{i j} \nabla \mathrm{C}_{i}+C_{i} \mathrm{v}_{s}
$$

Note, D can be a $f(C)$...

Non-Steady State Diffusion in the Solid State

(7) Most real diffusion is non-steady state

The concentration of diffusing species is a function of both time and position $C=C(x, t)$
i.e., flux and driving force both change with time

In this case Fick's Second Law is used

$$
\frac{\partial C}{\partial t}=D \frac{\partial^{2} C}{\partial x^{2}}
$$

- Solution requires specified boundary conditions

On board...

6.2.1 Dilute Solution Approximation

- Most biological solutions are dilute

- Concentration of the solvent must be large relative to the solute: $\mathrm{C}_{\text {solvent }} \gg \mathrm{C}_{\mathrm{i}}$ or $\mathrm{x}_{\mathrm{s}} \sim=1 \gg \mathrm{x}_{\mathrm{i}}=$ mole fraction
- The molar average velocity equals the mass average velocity i.e. $\mathrm{v}^{*} \approx \mathrm{v}_{\text {solvent }}$ and $\mathrm{v} \approx \mathrm{v}_{\text {solvent }}$ so that $\mathrm{v} \approx \mathrm{v}^{*}$ and J_{i} $=\mathrm{J}_{\mathrm{i}}$ *

$$
\mathrm{J}_{i}^{* *}=\mathrm{N}_{i}-C_{i} \mathrm{v}^{*} \quad \text { or } \quad \mathrm{N}_{i}=\mathrm{J}_{i}^{*}+C_{i} \mathrm{v}^{*} \quad \text { becomes } \quad \mathrm{N}_{i}=\mathrm{J}_{i}+C_{i} \mathbf{v}_{s}
$$

$$
\mathrm{N}_{1}=\frac{1}{\left(1-x_{1}\right)}\left(\mathrm{J}_{1}^{*}+x_{1} \mathrm{~N}_{2}\right) \Rightarrow \mathrm{N}_{i}=\mathrm{J}_{i}+C_{i} \mathrm{v}_{s}
$$

Justification of dilute -solution problems in biological contexts

- Water is $1 \mathrm{~g} / \mathrm{cm}^{3} .1$ mole of water is 18 g and is 55.56 M .
- Salt concentrations: 1 uM to 300 mM
- $1.8 \mathrm{e}-8$ to 0.0054 mole fractions
- Protein: 1 nM to 1 mM
- $1.8 \mathrm{e}-11$ and $1.8 \mathrm{e}-5$ mole fractions.
- Exceptions: gas diffusion in the lung, purification of biological molecules in high salt concentrations (1-5M), fermentation processes

Eive 2 justifications of why biological fluids are able to be considered dilute and give an example of a biological solution that is not dilute.

6.3.2 Boundary Conditions
 Useful for investigating conservation relations...

Concentrations are not necessarily constant or continuous across a fluid-fluid interface
At the gas (1) solution (2) interface, at equilibrium:

$$
\left.\mathrm{C}_{i}\right|_{1}=\left.\mathrm{H}_{i} \mathrm{C}_{i}\right|_{2}
$$

Where H_{i} is the Henry's Law Constant
At the liquid (1) immiscible liquid (2) interface, at equilibrium:

$$
\left.\mathrm{C}_{i}\right|_{1}=\left.\Phi_{i} \mathrm{C}_{i}\right|_{2}
$$

Where Φ_{i} is the Partition Coefficient
Since the discontinuity cannot be abrupt it establishes an interphase

While concentrations may not be equal, fluxes across a fluid-fluid or liquid-liquid interphase are always equal, thus:

$$
\left.\mathrm{N}_{i x}\right|_{1}=\left.\left.\mathrm{N}_{i x}\right|_{2} \quad \mathrm{~N}_{i x}\right|_{1}= \pm\left.\mathrm{R}_{i x}\right|_{2}
$$

Where R is the reaction rate
" + " if i is produced
"_" if i is consumed

Boundary Conditions

$$
\begin{array}{ll}
\Phi_{i}=\left.\mathrm{a}_{i}\right|_{2} /\left.\mathrm{a}_{i}\right|_{1}=\left.\gamma_{i} \mathrm{C}_{i}\right|_{2} /\left.\gamma_{i} \mathrm{C}_{i}\right|_{1} \quad \mathrm{a}=\text { solute activity coefficients } \\
\gamma_{i} \approx 1 & \text { Dilute Solution Approximation } \\
\Phi_{i}=\left.\mathrm{C}_{i}\right|_{2} /\left.\mathrm{C}_{i}\right|_{1} &
\end{array}
$$

If the surface, e.g. solid-liquid interface, is impermeable there is no flux across its surface
Then:

$$
\left.\mathrm{N}_{i x}\right|_{2}=0
$$

If the surface, e.g. solid-liquid interface, is permeable then the flux across its surface
$\left.\mathrm{N}_{i x}\right|_{1}=k\left(\left.\Phi_{i} \mathrm{C}_{i}\right|_{2}-\left.\mathrm{C}_{i}\right|_{1}\right)$
Where
k is the permeability
Φ_{i} is the Partition Coefficient

Random Walk

- $\langle x\rangle^{2}=2$ dimensions*Dt; i.e., $=4 D t$ in 2-D...

Imagine taking a vector with various values for randoms steps an entity can take in 1-D...
RandomNums = [-1 0011$]$; the value of kronecker for this is mean(RandomNums.^2)
The average distance the entity will go is directly proportional to the sqrt(number of steps taken)...
Theoretical distance $=\left(\right.$ kronecker $=$ mean(RandomNums. $\left.\left.{ }^{\wedge} 2\right)\right)^{*}$ sqrt(steps) $($ true for 1-D)

Also, the same kinetic energy will result in smaller displacement as the entity becomes larger...
How does time come into play $\mathrm{n}=$ steps $=\mathrm{t} / \mathrm{\tau}$ where $\mathrm{\tau}$ is the time to take a single step.

Show how to calculate what the kroneckers are if random values are able to be chosen of $[-11] \&[-1.01]$?
\square Respond at PollEv.com/coreybishop271
[] Text COREYBISHOP271 to 22333 once to join, then text your message

Random walk

The mean-square displacement in one direction:

$$
\left\langle x^{2}\right\rangle=\delta^{2} \mathfrak{t} / \tau
$$

If we define the one-dimensional binary diffusion coefficient as $D_{i j}=\delta^{2} / \tau$; then...

$$
\left\langle x^{2}\right\rangle=2 \mathrm{D}_{i j} \mathrm{t}
$$

The mean-square distance sampled by a molecule increases linearly with the V_{t}
For three dimensional random walk:

$$
\left\langle r^{2}\right\rangle=\left\langle x^{2}\right\rangle+\left\langle y^{2}\right\rangle+\left\langle z^{2}\right\rangle=3\left(2 D_{i j} \mathrm{t}\right)=6 D_{i j} \mathrm{t}
$$

-1 and 1 (replicating $=$ problem 6.3)

Problem 1: Objectives (1-D)

- In MatLab,
- Sub-figure 1: Observe in 1-D the distance traveled from the x axis after a certain number of steps. Have the distance chosen to step be a vector of choices [-1 -1 0 1], [-1, 1], [-1, 0, 1], etc.
- Sub-figure 2: Calculate the distance traveled from the x -axis after a certain number of steps; repeating this process.
- Sub-figure 3: Calculate the running average of figure 2 and watch the answer converge to the theoretical answer.
- Quantify the \% error as it steps through this process.

FYI: (not going to be tested on this but)
Extrapolation of principles:
https://en.wikipedia.org/wiki/Rotational_diffusion

Diffusivity or Diffusion Coefficient and Temperature

Temperature influences manifest in the diffusion coefficient.
Hence, diffusion coefficient, D, increases with increasing T.

$$
D=D_{o} \exp \left(-\frac{Q_{d}}{R T}\right)
$$

D = diffusion coefficient [$\mathrm{m}^{2} / \mathrm{s}$]
$D_{0}=$ temperature dependent pre-exponential $\left[\mathrm{m}^{2} / \mathrm{s}\right]$
$Q_{d}=$ the activation energy for diffusion [J/mol or eV/atom]
$R=$ the molar gas constant [8.314 J/mol-K]
$\mathrm{T}=$ absolute temperature, Kelvin [K]

Temperature	D
$500^{\circ} \mathrm{C}(773 \mathrm{~K})$	3.0×10^{-21}
$900^{\circ} \mathrm{C}(1173 \mathrm{~K})$	1.8×10^{-15}

Diffusivity or Diffusion Coefficient and Activation

Energy

$$
D=D_{O} \exp \left(-\frac{Q_{d}}{R T}\right)
$$

Taking logarithms:

$$
\begin{gathered}
\ln D=\ln D_{O}-\frac{Q_{d}}{R}\left(\frac{1}{T}\right) \log D=\log D_{O}-\frac{Q_{d}}{2.303 R}\left(\frac{1}{T}\right) \\
y=m x+c
\end{gathered}
$$

Where

$$
\text { Slope }=-Q_{d} / 2.303 R
$$

$$
\text { Intercept }=\log \boldsymbol{D}_{\boldsymbol{o}}
$$

Diffusivity or Diffusion Coefficient and Activation

Where

$$
\log D=\log D_{O}-\frac{\text { Eng }_{d}}{2.303 R}\left(\frac{1}{T}\right)
$$

Slope $=-Q_{d} / 2.303 R$
Intercept $=\log \boldsymbol{D}_{\boldsymbol{o}}$
Solve for Activation Energy:
$Q_{d}=-2.303 R\left(\frac{\Delta\left(\log D_{O}\right)}{\Delta\left(\frac{1}{T}\right)}\right)$
$Q_{d}=-2.303 R\left(\frac{\log D_{1}-\log D_{2}}{\frac{1}{T_{1}}-\frac{1}{T_{2}}}\right)$

Solve for D_{o}
$\log D_{O}=\log D+\frac{Q_{d}}{2.303 R}\left(\frac{1}{T}\right)$

Example: At $300^{\circ} \mathrm{C}$ the diffusion coefficient and activation energy for Cu in Si are

$$
\begin{aligned}
& \mathrm{D}\left(300^{\circ} \mathrm{C}\right)=7.8 \times 10^{-11} \mathrm{~m}^{2} / \mathrm{s} \\
& \mathrm{Q}_{\mathrm{d}}=41.5 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

What is the diffusion coefficient at $350^{\circ} \mathrm{C}$?

$$
\begin{aligned}
& \ln D_{2}=\ln D_{0}-\frac{Q_{d}}{R}\left(\frac{1}{T_{2}}\right) \quad \text { and } \ln D_{1}=\ln D_{0}-\frac{Q_{d}}{R}\left(\frac{1}{T_{1}}\right) \\
& \therefore \quad \ln D_{2}-\ln D_{1}=\ln \frac{D_{2}}{D_{1}}=-\frac{Q_{d}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)
\end{aligned}
$$

Example (cont.)

$$
\begin{gathered}
D_{2}=D_{1} \exp \left[-\frac{Q_{d}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)\right] \\
T_{1}=273+300=573 \mathrm{~K} \\
T_{2}=273+350=623 \mathrm{~K}
\end{gathered}
$$

$$
D_{2}=\left(7.8 \times 10^{-11} \mathrm{~m}^{2} / \mathrm{s}\right) \exp \left[\frac{-41,500 \mathrm{~J} / \mathrm{mol}}{8.314 \mathrm{~J} / \mathrm{mol}-\mathrm{K}}\left(\frac{1}{623 \mathrm{~K}}-\frac{1}{573 \mathrm{~K}}\right)\right]
$$

$$
\mathrm{D}_{2}=15.7 \times 10^{-11} \mathrm{~m}^{2} / \mathrm{s}
$$

Estimation of diffusion coefficients

- Protein diffusivity in plasma is about $1 \mathrm{e}-7 \mathrm{~cm}^{2} / \mathrm{s}$.
- From edge of cell to center: 2.5 seconds
- Through tissue that is 0.02 mm thick: 27.7 hours
- What is a binary diffusion coefficient?
- Characterizes diffusion of one molecule in a solvent
- What is Deffective?
- Incorporates: drag forces exerted by ECM and cells

A protein molecules with a D of $1 \mathrm{e}-7 \mathrm{~cm}{ }^{\wedge} 2 / \mathrm{s}$ will diffuse from the edge to the center of a 20 um diameter cell in how many seconds?

[^0]
6.6.5: The Wilkie-Chang

- See problem 6.1.

$$
D=7.4 e-10 \frac{T(\varphi M)^{0.5}}{\mu V_{o}^{0.6}} ; \varphi_{\text {water }}=2.26
$$

What is the name of the equation that you can calculate diffusivity based on molecular weight?
\square Respond at Pollev.com/coreybishop271
[] Text COREYBISHOP271 to 22333 once to join, then text your message

Stoke's-Einstein Equation:

$$
D=\frac{k T}{6 \pi \eta R}
$$

- Regarding calculating D2 at T2, knowing either D1 and T1, is there another way we can do this using the SE equation?

$f_{\text {bar }}=$ denominator

Values of the Mean Frictional Drag Coefficient for Different Shapes [9,10]

Shape	Frictional drag coefficient
Sphere of radius R	$f=6 \pi \mu R$
Prolate ellipsoid, $p=a / b>1$, where a is a major axis, b is a minor axis	$\bar{f}=\frac{6 \pi \mu b\left(p^{2}-1\right)^{1 / 2}}{p^{1 / 3} \ln \left[\mathrm{p}+\left(p^{2}-1\right)^{1 / 2}\right]}$
Oblate ellipsoid, $p=a / b<1$	$\bar{f}=\frac{6 \pi \mu b\left(1-p^{2}\right)^{1 / 2}}{\left.p^{1 / 3} \tan ^{-1}\left[1-p^{2}\right)^{1 / 2} p^{-1}\right]}$
Thin circular disk of radius a Cylinder of radius a and length L	$\bar{f}=16 \mu a$

[^1]
Estimation of frictional drag coefficients

- For low Reynold's \#s, the drag force is (K is translation tensor; $\mathrm{v}=$ velocity): K is a symmetric tensor and the components thereof are friction coefficients f_{ij}
$F_{D}=K * v \quad\left(\right.$ or $\left.v=K^{-}{ }^{1} * F D\right)=\frac{1}{2} * \rho *$ velocity $^{2} * D c * A ; D c=d r a g$ coefficient assume $\mathrm{f} 11=$ " f 1 " $=\mathrm{f} 22=" \mathrm{f} 2$ " $=\mathrm{f} 33=$ " f 3 "

By solving for the fs when $\operatorname{Det}(\mathbf{K}-\mathrm{fI})=\mathbf{0}\left(\mathrm{f}_{1}=\mathrm{f}_{2}=\mathrm{f}_{3 \text { etc }}\right.$ for an isotropic body) we obtain the non-zero values. The fs are eigenvalues.
fbar $=$ average $=$ the harmonic mean:
$1 / f_{\text {bar }}=1 / 3\left(1 / f_{1}+1 / f_{2}+1 / f_{3}+\ldots\right)$
Note that for a sphere $f=6 \pi \mu$ R... sound familiar?
Eigenvectors are scalable and translatable... $v(A-\lambda$? $)=0 . . . \mathrm{v}(\mathrm{A}-\lambda \mathrm{I})=0$ (these vectors (v) are not velocity vectors)
These are the eigenvalues and are the friction coefficients. The only non-zero solutions are calc. via the det.

- П vs Σ ?
- Harmonic mean =1/A
- Geometric mean $G=s q r t(A H)$
- Arithmetic mean =1/H

Skip this for this semester for the sake of time.

Instrumentation using diffusion principles

- Nanoparticle Tracking Analysis (NTA)
- Dynamic Light Scattering (DLS)

NTA

What happens if the paths cross during the video?

https://www.youtube.com/watch?v=65k3fX2X7pQ

Dynamic Light Scattering: Skipping DLS this semester

-Larger particles in which the correlation of the signal takes a long time to decay.

- Small particles move more rapidly so correlation decreases more quickly

Wikipedia.org

$\mathrm{G}(\tau)=\mathrm{A}[1+\mathrm{B} \exp (-2 \Gamma \tau)]$
$\Gamma=\mathrm{Dq} \mathrm{q}^{2} \quad$ refractive index of dispersant
$\mathrm{q}=\left(4 \pi \mathrm{n} / \lambda_{0}\right) \sin (\theta / 2)$

How do you get size out of this Information?
What is this size based on?
What limitations are there whencalculating diameters from intensities?
http://www.nano.wustl.edu/

What does the slope mean of a plot of the correlation function versus time, with respect to dynamic light scattering? Will the correlation value start to become more dissimilar first for larger or smaller particles?
\square Respond at Pollev.com/coreybishop271
\square Text COREYBISHOP271 to 22333 once to join, then text your message

How to calculate diameter of particles using data obtained from a video

Stokes-Einstein Equation

Raleigh Scattering

$$
\text { Root Mean Square? } \quad x_{r m s}=\sqrt{\frac{1}{n}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}+\cdots+x_{n}^{2}\right.}
$$

Geometric mean? $x_{G M}=\sqrt[n]{x_{1} x_{2} x_{3} \ldots x_{n}}$ What happens to the outliers?

Important rhetorical questions:
If the size of the particle were much smaller than the wavelength of the light being used to see it, what happens?
What is this phenomenon called? How can you estimate the diameter of it? What does this size mean?
What if the particle being measured were actually a rod?
What if the distribution of sizes were heterogeneous (i.e., limitations?) in the context of NTA vs DLS

How do you calculate the root mean square versus the geometric mean? What happens to outliers in each case?

Examples in book with more clarity

- FYI: examples given in slides that are not "Problems" at the back of the chapter are also fair game for exams.

Figure 6.6 Diffusion through a small rectangular volume of area A and thickness Δx.

Schematic of steady diffusion across a membrane of thickness L that separates two well-mixed solutions. For this situation $\Phi<1$.

$$
\frac{\partial C}{\partial t}=D \frac{\partial^{2} C}{\partial x^{2}} \longrightarrow
$$

Membrane of thickness L

Schematic of steady diffusion across a membrane of thickness L that separates two well-mixed solutions. For this situation $\Phi<1$.

Diffusion through a two-layer laminate. Each layer is described by a separate diffusion coefficient.

Diffusion through a two-layer laminate. Each layer is described by a separate diffusion coefficient.

solving for untionws yiulds

$$
\begin{aligned}
& \text { relecarial } \\
& \text { systems }
\end{aligned}
$$

$$
\begin{aligned}
& N_{i x}=\frac{\Phi_{\text {eff }} D_{\text {eff }}}{L}\left(C_{0}-C_{l}\right) \text { क } \frac{L}{\Phi_{i f} D_{\text {eff }}}=\frac{L_{1}}{\Phi_{1} D_{i 1}}+\frac{C_{2}}{\Phi_{2} D_{i, 2}} \\
& \longleftarrow \text { diffosine } \\
& \text { systems } \\
& \text { genenlising. } \\
& \frac{L}{\text { Iffe } D_{\text {off }}}=\sum_{j=1}^{N} \frac{L j}{\phi_{j} D_{j}^{j}} \text { \& } \& \begin{array}{l}
0<x<L: c_{1}=\text { ? } \\
b_{1} \times x<L_{2}: c_{2}=\text { ? }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d^{2} c_{c}}{d x^{2}}=\varnothing \\
& \iint d^{2} c_{i}=\iint 0 \cdot d x^{2} \\
& C_{i}=c_{1} x+c_{2} \Rightarrow C_{i}=A x+B \Rightarrow 2 \text { equatios } \\
& c_{1}=A_{1}+B_{1} x \\
& c_{2}=A_{2}+B_{2} x \\
& \text { ब } x=\varnothing \quad C_{1}=\Phi_{1} c_{0} \\
& \text { G } X=L=L_{1}+L_{2} \quad C_{2}=\Phi_{2} C_{L} \\
& G x=L_{1} \quad N_{1}=N_{2 x} \\
& \text { Q } x=L_{1} \quad \frac{C_{1}}{I_{1}}=\frac{C_{2}}{I_{2}} \\
& \text { B.C. \#1 } C_{1}=\Phi_{1} C_{0}=A_{1}+\beta_{1}(x=0) ; A_{1}=\Phi_{1} C_{0} \\
& \# 2 \quad C_{2}=F_{2} C_{L}=A_{2}+B_{2}(x=L) \\
& A_{2}=\Phi_{2} C_{L}-B_{2}\left(l_{1}+L_{2}\right) \\
& \# 3 \quad \frac{C_{1}}{\Phi_{1}}=\frac{A_{1}+B_{1} x}{\Phi_{1}}=\frac{\Phi_{1} C_{0}}{\Phi_{1}}+\frac{B_{1} x}{\Phi_{1}}=C_{0}+\frac{B_{1} x}{\Phi_{1}}=\frac{c_{1}+B_{1} L_{1}}{\Phi_{1}}=\frac{A_{2}+B_{2} x}{\Phi_{2}}=\frac{\left(\sigma_{2} C_{1} B_{2} L\right)+B_{2} L}{\Phi_{2}} \\
& \text { \#4 } \quad D_{i, 1} \frac{d c_{1}}{d x}=D_{i, 2} \frac{d c_{2}}{d x} \\
& D_{i, 1} \frac{d\left(A_{1}+B_{1} x\right)}{d x}=D_{i, 2} \frac{d\left(A_{2}+B_{2} x\right)}{d x}=D_{i, 1} B_{1}=D_{i, 2} B_{2}
\end{aligned}
$$

6.7.1: Diffusion in gases

Figure 6.10 Diffusion of two gases. The concentrations in each reservoir are kept constant such that at steady state, $C_{A}=C_{A O}$ and $C_{B}=$ $C_{B 0}$
$C_{B}=0$ at $x=0$ and $C_{\Delta}=0$ and at $x=L$.

Figure 6.10 Diffusion of two gases. The concentrations in each reservoir are kept constant such that at steady state, $C_{A}=C_{A O}$ and $C_{B}=$ $C_{B o}$ $C_{B}=0$ at $x=0$ and $C_{\Delta}=0$ and at $x=L$.

Dilute solution cannot be invoked.... Flux of one induced flux of another in the absence of bulk motion.

Figure 6.10 Diffusion of two gases. The concentrations in each reservoir are kept constant such that at steady state, $C_{A}=C_{A O}$ and $C_{B}=$ $C_{B o}$
$C_{B}=0$ at $x=0$ and $C_{\Delta}=0$ and at $x=L$.

Dilute solution cannot be invoked.... Flux of one induced flux of another in the absence of bulk motion.

Figure 6.10 Diffusion of two gases. The concentrations in each reservoir are kept constant such that at steady state, $C_{A}=C_{A O}$ and $C_{B}=$ $C_{B o}$
$C_{B}=0$ at $x=0$ and $C_{\Delta}=0$ and at $x=L$.

Dilute solution cannot be invoked.... Flux of one induced flux of another in the absence of bulk motion.

Figure 6.10 Diffusion of two gases. The concentrations in each reservoir are kept constant such that at steady state, $C_{A}=C_{A O}$ and $C_{B}=$ $C_{B o}$
$C_{B}=0$ at $x=0$ and $C_{\Delta}=0$ and at $x=L$.

Dilute solution cannot be invoked.... Flux of one induced flux of another in the absence of bulk motion.

Figure 6.10 Diffusion of two gases. The concentrations in each reservoir are kept constant such that at steady state, $C_{A}=C_{A O}$ and $C_{B}=$ $C_{B o}$
$C_{B}=0$ at $x=0$ and $C_{\Delta}=0$ and at $x=L$.

Dilute solution cannot be invoked.... Flux of one induced flux of another in the absence of bulk motion.

Figure 6.10 Diffusion of two gases. The concentrations in each reservoir are kept constant such that at steady state, $C_{A}=C_{A O}$ and $C_{B}=$ $C_{B o}$
$C_{B}=0$ at $x=0$ and $C_{\Delta}=0$ and at $x=L$.

Dilute solution cannot be invoked.... Flux of one induced flux of another in the absence of bulk motion.

Figure 6.10 Diffusion of two gases. The concentrations in each reservoir are kept constant such that at steady state, $C_{A}=C_{A O}$ and $C_{B}=$ $C_{B o}$
$C_{B}=0$ at $x=0$ and $C_{\Delta}=0$ and at $x=L$.

Dilute solution cannot be invoked.... Flux of one induced flux of another in the absence of bulk motion.

$$
N_{1}=-C D_{i j} \nabla x_{1}+x_{1}\left(N_{1}+N_{2}\right)
$$

$$
\frac{d N_{A x}}{d x}=0
$$

$$
\frac{d N_{B x}}{d x}=0
$$

What next?

$$
\begin{gathered}
1-\mathrm{D} \\
N_{1}
\end{gathered}=-C D_{i j} \nabla x_{1}+x_{1}\left(N_{1}+N_{2}\right)
$$

$$
\begin{aligned}
& N_{A x}=-C D_{A B} \frac{d x_{A}}{d x}+x_{A}\left(N_{A x}+N_{B x}\right) \\
& N_{B x}=-C D_{B A} \frac{d x_{B}}{d x}+x_{B}\left(N_{A x}+N_{B x}\right)
\end{aligned}
$$

$$
\text { Can assume } \mathrm{D}_{\mathrm{AB}}=\mathrm{D}_{\mathrm{BA}}
$$

$$
\begin{gathered}
1-\mathrm{D} \\
N_{1}
\end{gathered}=-C D_{i j} \nabla x_{1}+x_{1}\left(N_{1}+N_{2}\right)
$$

$$
\begin{aligned}
& N_{A x}=-C D_{A B} \frac{d x_{A}}{d x}+x_{A}\left(N_{A x}+N_{B x}\right) \\
& N_{B x}=-C D_{A B} \frac{d x_{B}}{d x}+x_{B}\left(N_{A x}+N_{B x}\right)
\end{aligned}
$$

$$
\text { Can assume } D_{A B}=D_{B A}
$$

Now what?

Now what? Pressure is the same everywhere so...

$$
N_{1}=-C D_{i j} \nabla x_{1}+x_{1}\left(N_{1}+N_{2}\right)
$$

$$
\frac{d N_{A x}}{d x}=0 \quad \frac{d N_{B x}}{d x}=0
$$

$$
\begin{array}{r}
1-\mathrm{D} \\
N_{1}
\end{array}=-C D_{i j} \nabla x_{1}+x_{1}\left(N_{1}+N_{2}\right)
$$

$$
\begin{aligned}
& N_{A x}=-C D_{A B} \frac{d x_{A}}{d x}+x_{A}\left(N_{A x}+N_{B x}\right) \\
& N_{B x}=-C D_{A B} \frac{d x_{B}}{d x}+x_{B}\left(N_{A x}+N_{B x}\right)
\end{aligned}
$$

Now what? Pressure is the same everywhere so...

$$
N_{B x}=-N_{A x}
$$

Equimolar counterdiffusion

Analogous to diffusion through membrane if $\phi=1$...

Example 6.6

Figure 6.11 Evaporation of liquid A and diffusion through a stagnant layer of gas B. Than the last?

Figure 6.11 Evaporation of liquid A and diffusion through a stagnant layer of gas B.
 Is this more complex

Than the last?
Yes...
Consider this to be s.s. evaporation
Of a liquid A into a stagnant layer of gas
B. If there is a stagnant layer that

Means there is no bulk flow of the gas... Not equimolar counterdiffusion.
 Not equimolar counterdifusion.

Figure 6.11 Evaporation of liquid A and diffusion through a stagnant layer of gas B.
 Is this more complex

Than the last?
Yes...
Consider this to be s.s. evaporation
Of a liquid A into a stagnant layer of gas
B. If there is a stagnant layer that

Means there is no bulk flow of the gas...
Not equimolar counterdiffusion because

Figure 6.11 Evaporation of liquid A and diffusion through a stagnant layer of gas B.
 Is this more complex
 Pretend therels a large

Than the last?
Yes...
Consider this to be s.s. evaporation $y=L$
Of a liquid A into a stagnant layer of gas
B. If there is a stagnant layer that

Means there is no bulk flow of the gas...
Not equimolar counterdiffusion because
B is insoluble in our fake situation...
Pressure is uniform

Reservoir supplying this Concentration such that It is constant.
$y=0$

Liquid A

Figure 6.11 Evaporation of liquid A and diffusion through a stagnant layer of gas B.
 Is this more complex
 Pretend therels a large

Than the last?
Yes...
Consider this to be s.s. evaporation
Of a liquid A into a stagnant layer of gas
B. If there is a stagnant layer that

Means there is no bulk flow of the gas...
Not equimolar counterdiffusion because B is hardly soluble in our fake situation... Pressure is uniform

Reservoir supplying this Concentration such that It is constant.

What next?
Fick's $2^{\text {nd }}$ law

$$
\frac{d N_{A y}}{d y}=0
$$

$$
\frac{d N_{B y}}{d y}=0
$$

At s.s.
Of note, gas is very slightly soluble and is much less than the flux due To evaporation of the liquid A. so
B.C. $N_{b y}{ }^{\sim}=0$ at $\mathrm{y}=0$... so...

$\begin{aligned} & \text { What next? } \\ & \text { Fick's 2 } 2 \text { law }\end{aligned} \quad \frac{d N_{A y}}{d y}=0 \quad \frac{d N_{B y}}{d y}=0$
At s.s.
Of note, gas is very slightly soluble and is much less than the flux due To evaporation of the liquid A. so

$$
\frac{d N_{A y}}{d y}=0 \quad \frac{d N_{B y}}{d y}=0
$$

At s.s.
Of note, gas is very slightly soluble and is much less than the flux due To evaporation of the liquid A. so

What next?
Fick's 2nd law

At s.s.
Of note, gas is very slightly soluble and is much less than the flux due To evaporation of the liquid A. so

$\begin{aligned} & \text { What next? } \\ & \text { Fick's 2 } \\ & \text { nd law }\end{aligned} \quad \frac{d N_{A y}}{d y}=0 \quad \frac{d N_{B y}}{d y}=0$
At s.s.
Of note, gas is very slightly soluble and is much less than the flux due To evaporation of the liquid A. so

Remember:

$$
N_{1}=-C D_{i j} \nabla x_{1}+x_{1}\left(N_{1}+N_{2}\right)
$$

$\begin{array}{ll}\text { What next? } & \frac{d N_{A y}}{d y}=0 \\ \text { Fick's 2 }{ }^{\text {nd }} \text { law } & \frac{d N_{B y}}{d y}=0\end{array}$
At s.s.
Of note, gas is very slightly soluble and is much less than the flux due To evaporation of the liquid A. so

Remember:

$$
\begin{gathered}
N_{1}=-C D_{i j} \nabla x_{1}+x_{1}\left(N_{1}+N_{2}\right) \\
N_{A y}=-C D_{A B} \frac{d x_{A}}{d y}+x_{A}\left(N_{A y}+N_{B y}\right)
\end{gathered}
$$

$\begin{aligned} & \text { What next? } \\ & \text { Fick's 2 } \\ & \text { nd law }\end{aligned} \quad \frac{d N_{A y}}{d y}=0 \quad \frac{d N_{B y}}{d y}=0$
At s.s.
Of note, gas is very slightly soluble and is much less than the flux due To evaporation of the liquid A. so

Remember:

$$
\begin{aligned}
N_{1} & =-C D_{i j} \nabla x_{1}+x_{1}\left(N_{1}+N_{2}\right) \\
N_{A y} & =-C D_{A B} \frac{d x_{A}}{d y}+x_{A}\left(N_{A y}+N_{B y}\right) \\
N_{A y} & =-C D_{A B} \frac{d x_{A}}{d y}+x_{A} N_{A y}
\end{aligned}
$$

What next?
Fick's $2^{\text {nd }}$ law

$$
\frac{d N_{A y}}{d y}=0 \quad \frac{d N_{B y}}{d y}=0
$$

At s.s.
Of note, gas is very slightly soluble and is much less than the flux due To evaporation of the liquid A. so

Remember:

$$
\begin{gathered}
N_{1}=-C D_{i j} \nabla x_{1}+x_{1}\left(N_{1}+N_{2}\right) \\
N_{A y}=-C D_{A B} \frac{d x_{A}}{d y}+x_{A}\left(N_{A y}+N_{B y}\right) \\
N_{A y}=-C D_{A B} \frac{d x_{A}}{d y}+x_{A} N_{A y}
\end{gathered}
$$

Now what?

What next?
Fick's $2^{\text {nd }}$ law

$$
\frac{d N_{A y}}{d y}=0 \quad \frac{d N_{B y}}{d y}=0
$$

At s.s.
Of note, gas is very slightly soluble and is much less than the flux due To evaporation of the liquid A. so

Remember:

$$
\begin{gathered}
N_{1}=-C D_{i j} \nabla x_{1}+x_{1}\left(N_{1}+N_{2}\right) \\
N_{A y}=-C D_{A B} \frac{d x_{A}}{d y}+x_{A}\left(N_{A y}+N_{B y}\right) \\
N_{A y}=-C D_{A B} \frac{d x_{A}}{d y}+x_{A} N_{A y}
\end{gathered}
$$

Now what? Solve for N_{Ay}
$N_{A y}-x_{A} N_{A y}=-C D_{A B} \frac{d x_{A}}{d y}=N_{A y}\left(1-x_{A}\right)$
$N_{A y}=-\frac{C D_{A B} \frac{d x_{A}}{d y}}{1-x_{A}}$

$$
\frac{d N_{A y}}{d y}=0 \quad \frac{d N_{B y}}{d y}=0
$$

At s.s.
Of note, gas is very slightly soluble and is much less than the flux due To evaporation of the liquid A. so

Remember:

$$
\begin{aligned}
N_{1} & =-C D_{i j} \nabla x_{1}+x_{1}\left(N_{1}+N_{2}\right) \\
N_{A y} & =-C D_{A B} \frac{d x_{A}}{d y}+x_{A}\left(N_{A y}+N_{B y}\right) \\
N_{A y} & =-C D_{A B} \frac{d x_{A}}{d y}+x_{A} N_{A y}
\end{aligned}
$$

Now what? Solve for N_{Ay}
$N_{A y}-x_{A} N_{A y}=-C D_{A B} \frac{d x_{A}}{d y}=N_{A y}\left(1-x_{A}\right)$
$N_{A y}=-\frac{C D_{A B} \frac{d x_{A}}{d y}}{1-x_{A}} \quad$ Now what?

$$
\frac{d N_{A y}}{d y}=0 \quad \frac{d N_{B y}}{d y}=0
$$

At s.s.
Of note, gas is very slightly soluble and is much less than the flux due To evaporation of the liquid A. so

Remember:

$$
N_{1}=-C D_{i j} \nabla x_{1}+x_{1}\left(N_{1}+N_{2}\right)
$$

$$
N_{A y}=-C D_{A B} \frac{d x_{A}}{d y}+x_{A}\left(N_{A y}+N_{B y}\right)
$$

$$
N_{A y}=-C D_{A B} \frac{d x_{A}}{d y}+x_{A} N_{A y}
$$

Now what? Solve for N_{Ay}
$N_{A y}-x_{A} N_{A y}=-C D_{A B} \frac{d x_{A}}{d y}=N_{A y}\left(1-x_{A}\right)$
$N_{A y}=-\frac{C D_{A B} \frac{d x_{A}}{d y}}{1-x_{A}} \quad$ Now what?

$$
\frac{d N_{A y}}{d y}=0 \quad \frac{d N_{B y}}{d y}=0
$$

Fick's $2^{\text {nd }}$ law
At s.s.
Of note, gas is very slightly soluble and is much less than the flux due To evaporation of the liquid A. so

$$
\begin{aligned}
& \frac{d N_{A y}}{d y}=-\frac{d\left(\frac{C D_{A B} \frac{d x_{A}}{d y}}{1-x_{A}}\right)}{d y}=0 \\
& \frac{d N_{A y}}{d y}=-\frac{d\left(\frac{C D_{A B} \frac{d x_{A}}{d y}}{1-x_{A}}\right)}{d y}=0 \\
& \frac{d\left(\frac{C D_{A B} \frac{d x_{A}}{d y}}{1-x_{A}}\right)}{d y}=0
\end{aligned}
$$

Remember:

$$
\begin{gathered}
N_{1}=-C D_{i j} \nabla x_{1}+x_{1}\left(N_{1}+N_{2}\right) \\
N_{A y}=-C D_{A B} \frac{d x_{A}}{d y}+x_{A}\left(N_{A y}+N_{B y}\right) \\
N_{A y}=-C D_{A B} \frac{d x_{A}}{d y}+x_{A} N_{A y}
\end{gathered}
$$

Now what? Solve for N_{Ay}
$N_{A y}-x_{A} N_{A y}=-C D_{A B} \frac{d x_{A}}{d y}=N_{A y}\left(1-x_{A}\right)$
$N_{A y}=-\frac{C D_{A B} \frac{d x_{A}}{d y}}{1-x_{A}}$
Now what?

$$
\frac{d N_{A y}}{d y}=0 \quad \frac{d N_{B y}}{d y}=0
$$

At s.s.
Of note, gas is very slightly soluble and is much less than the flux due To evaporation of the liquid A. so

$$
\frac{d\left(\frac{C D_{A B} \frac{d x_{A}}{d y}}{1-x_{A}}\right)}{d y}=0 \quad \text { Now what? }
$$

$$
\frac{d N_{A y}}{d y}=0 \quad \frac{d N_{B y}}{d y}=0
$$

At s.s.
Of note, gas is very slightly soluble and is much less than the flux due To evaporation of the liquid A. so

$$
\frac{d\left(\frac{C D_{A B} \frac{d x_{A}}{d y}}{1-x_{A}}\right)}{d y}=0 \quad \text { Now what? Apply B.C.s }
$$

$$
\frac{d N_{A y}}{d y}=0 \quad \frac{d N_{B y}}{d y}=0
$$

At s.s.
Of note, gas is very slightly soluble and is much less than the flux due To evaporation of the liquid A. so

$$
\frac{d\left(\frac{C D_{A B} \frac{d x_{A}}{d y}}{1-x_{A}}\right)}{d y}=0
$$

Now what? Apply B.C.s

1) $X_{A}=X_{A o}$ at $y=0$ and $X_{A}=0$ at $y=L$

$$
\frac{d N_{A y}}{d y}=0 \quad \frac{d N_{B y}}{d y}=0
$$

At s.s.
Of note, gas is very slightly soluble and is much less than the flux due To evaporation of the liquid A. so

$$
\frac{d\left(\frac{C D_{A B} \frac{d x_{A}}{d y}}{1-x_{A}}\right)}{d y}=0 \quad \begin{aligned}
& \text { Now what? Apply B.C.s } \\
& \text { 1) } \mathrm{X}_{\mathrm{A}}=\mathrm{X}_{\text {Ao }} \text { at } \mathrm{y}=0 \text { and } \mathrm{X}_{\mathrm{A}}=0 \text { at } \mathrm{y}=\mathrm{L}
\end{aligned}
$$

How?

Come to board... and try in groups...

Example 6.7.2: Radial diffusion in cylindrical coordinates
Figure 6.13 Radial diffusion through a cylindrical shell.

- Assume no reaction
- Assume steady state

- Assume no reaction
- Assume steady state

Now what?
Come to board and solve the rest
Without B.C.s (look in book for B.C.s;
Assuming you can do that...)

$$
\begin{aligned}
& \frac{0}{D_{i j}}=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial c_{i}}{\partial r}\right) \quad r \frac{1}{r} \frac{d}{d r} \\
& 0 \cdot r d r=d u \\
& 0 \cdot d r=d u \\
& \int 0 \cdot d r=\int d u \\
& C_{1}=u \\
& C_{1}=r \frac{d C_{i}}{d r} \\
& \perp C_{1} d r=d C_{i} \\
& r \\
& \int \frac{1}{r} C_{1} d r=\int d c_{i} \\
& C_{1} \int \frac{1}{r} d r=\int d C_{i}=C_{i} \\
& C_{i}=C_{1} \ln r+c_{2}
\end{aligned}
$$

Skipping erf this semester for the sake of time.
erf

- What is it equal to?
- What is it used for?
- What does this have to do with probability densit unctions.

$$
\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d x
$$

erf

- What is it equal to? $\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d x$
- What is it used for? Diff. Eq.s and diffusion
- What is erfc? erfc=1-erf

Case	Sample	Boundary conditions	Initial condition	Solution
1	Infinite	$\left.\frac{\partial c}{\partial x}\right\|_{x=-\infty, t}=0 ;\left.\quad \frac{\partial c}{\partial x}\right\|_{x=\infty, t}=0$	$c(x, 0)=q \delta(x)$	$c(x, t)=\frac{q}{2 \sqrt{\pi D t}} \mathrm{e}^{-x^{2} / 4 D t}$
2	Semi-infinite	$c(0, t)=c_{\mathrm{s}} ;\left.\quad \frac{\partial c}{\partial x}\right\|_{x=\infty, t}=0$	$c(x, 0)=0$	$c(x, t)=c_{\mathrm{s}} \operatorname{erf} c\left(\frac{x}{2 \sqrt{D t}}\right)$
3	Semi-infinite	$c(0, t)=0 ;\left.\quad \frac{\partial c}{\partial x}\right\|_{x=\infty, t}=0$	$c(x, 0)=c_{\mathrm{s}}$	$c(x, t)=c_{\mathrm{s}} \operatorname{erf}\left(\frac{x}{2 \sqrt{D t}}\right)$
4	Infinite	$\left.\frac{\partial c}{\partial x}\right\|_{x=-\infty, t}=0 ;\left.\quad \frac{\partial c}{\partial x}\right\|_{x=\infty, t}=0$	$c(x, 0)= \begin{cases}c_{\mathrm{s}} & \text { at } x \leq 0 \\ 0 & \text { at } x>0\end{cases}$	$c(x, t)=\frac{c_{\mathrm{s}}}{2} \operatorname{erf} c\left(\frac{x}{2 \sqrt{D t}}\right)$
5	Infinite	$\left.\frac{\partial c}{\partial x}\right\|_{x=-\infty, t}=0 ;\left.\quad \frac{\partial c}{\partial x}\right\|_{x=\infty, t}=0$	$c(x, 0)= \begin{cases}0 & \text { at } x<0 \\ c_{\mathrm{s}} & \text { at } x \geq 0\end{cases}$	$c(x, t)=\frac{c_{5}}{2}\left[1+\operatorname{erf}\left(\frac{x}{2 \sqrt{D t}}\right)\right]$
6	Infinite	$\left.\frac{\partial c}{\partial x}\right\|_{x=-\infty, t}=0 ;\left.\quad \frac{\partial c}{\partial x}\right\|_{x=\infty, t}=0$	$c(x, 0)= \begin{cases}0 & \text { at } x<-a \\ c_{\mathrm{s}} & \text { at }-a \leq x \leq a \\ 0 & \text { at } x>a\end{cases}$	$c(x, t)=\frac{c_{\mathrm{s}}}{2}\left[\operatorname{erf}\left(\frac{a+x}{2 \sqrt{D t}}\right)+\operatorname{erf}\left(\frac{a+x}{2 \sqrt{D t}}\right)\right]$
7	Plate	$\begin{aligned} & c(0, t)=c_{\mathrm{s}} \\ & c(L, t)=c_{\mathrm{s}} \end{aligned}$	$c(x, 0)=0$	$c(x, t)=c_{\mathrm{s}}\left\{1-\frac{4}{\pi} \sum_{n=0}^{\infty} \frac{\mathrm{e}^{-(2 n+1)^{2} \pi^{2} D t / L^{2}}}{2 n+1} \sin \frac{(2 n+1) \pi x}{L}\right\}$

MatLab Code

close all
$x=[0: 0.0000001: 1]$;
figure1 = figure;
hold on
\% Create axes
axes1 = axes('Parent',figure1);
hold(axes1,'on');
\% Create multiple lines using matrix input to plot \%plot(X1,YMatrix1,'Parent',axes1);
\% Create xlabel
xlabel('Distance (x)');
\% Create title
title('Error function usage');
\% Create ylabel
ylabel('Normalized Concentration');

\% Set the remaining axes properties

\%set(axes1,'FontSize',14,'FontWeight','bold');
for $\mathrm{i}=1: 2.5: 35$
plot(x,1-erf(x/(2*sqrt(i*10^-3))),'linewidth',3) end

```
x = [0:0.0000001:1];
figure2 = figure;
% Create axes
axes1 = axes('Parent',figure2);
hold(axes1,'on');
% Create multiple lines using matrix input to plot
%plot(X1,YMatrix1,'Parent',axes1);
% Create xlabel
xlabel('Distance (x)');
% Create title
title('Error function usage');
% Create ylabel
ylabel('Normalized Concentration');
% Set the remaining axes properties
%set(axes1,'FontSize',14,'FontWeight','bold');
for i = 1:2.5:35
    plot(x,erfc(x/(2*sqrt(i*10^-3))),'linewidth',3)
end
```


[^0]: Given you know diffusivity, D = D1 and you know temperature, T1 and T2, how do you calculate D2 which is at T2? Write out an equation for each of 2 methods to do so and state what each of the variables are.

[^1]: Source: From Refs $[9,10]$.

