[ 10m g
The Scale Relevant to Life 5
By Human height
Most cells are between 1 and 100 pm. tm B
i.e. Three orders of magnitude e i m
difference in size. 01m b 3
—— Chicken egg 2
B =
-
Smallest bacterial cells are s
mycoplasmas =0.1-1.0 ym b B y N @
Bacteria=1-10 ym S ¥
Plant and animal cells =10 - 100 Um i
100 pm - ug'_. #
Plant and animal [\, ‘ g
Plant N g
10|.me Nucleus -ED_
TABLE 1'4 i Most bacteria -
——J,_ Mitochondrion
Relevant Length Scales in Biological Systems T 2
Quantity Length scale (m) LS S 2
100 nm 3 > - £
Proteins and nucleic acids 107% g}v“uses £
Organelles 1077 L Ribosomes @@-eg =
—b o i 10 nm | s
Cells 107 to 107° | | protens
Capillary spacing 1074 L Lipids
Ol‘gﬂﬂs l 0_1 i i} Small molecules qﬁ
Whole bodyv 10° : s \)
e

Source: From Ref. [4]. 0.1nm



How many orders of magnitude do living cells span?
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The speed with which a molecule diffuses in a fluid depends
upon: size, shape, temperature, viscosity and chemistry

TABLE 1.1

Range of Values for the Binary Diffusion
Coefficient, D;, at Room Temperature

Diffusing quantity Diffusion coefficients (cm?” s~ )

Gases 1n gases 0.1to0 0.5

Gases in liquids 13107 to 7% 107°

Small molecules in liquids 1% 107 Be able to estimate
Proteins in liquids 1% 10" toTx 107 These values
Proteins in tissues 1 %107 to 7 x 1071°

Lipids in lipid membranes 11077

Proteins in lipid membranes 1 %107 to 1% 10712

In the x-y plane: 5 5
<x >+<y > i solute, j solvent
Dij = A7 What if it is 1-D?
What if it is 2-D?
What if it is 3-D?
How does the equation change?




How do you calculate the root mean square versus the geometric mean? What

happens to outliers in each case?
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Diffusion / Convection

* A protein molecule of diffusion coefficient 107 cm? /s will
diffuse from edge to center of a 20 um diameter cell in 2.5 s.

* A protein molecule of diffusion coefficient 107 cm? /s will
diffuse through 2mm thick tissue in 27.7 h.

* Diffusion — short distances
* How far from blood vessel can oxygen transport by diffusion

* Convection — long distances
* Do all bugs need a pumping heart?
* Are there bugs without hearts?
* What kind of hearts are there in bugs?



How do you calculate the distance something diffuses in 1D, 2D and 3D?

oll Everywhere



A protein molecules with a D of 1e-7 cm”2/s will diffuse from the edge to the center

of a 20 um diameter cell in how many seconds?

oll Everywhere



How do you estimate the diameter of particles using nanoparticle tracking analysis

software?

oll Everywhere



Flux of 7 in the x-direction.

dA

D = Ordinary diffusion
e = Electrical field

P = Pressure

T = Temperature

J =P+ + TP +JT

These different fluxes can be used for separation purposes (i.e., ultracentrifugation, electrophoresis,
isolectric focusing, the usage of membranes)...



TABLE 1.3

Relations between Fluxes and Gradients for Molecular Transport

Molecular transport Flux Gradient Coefficient of
mechanism proportionality
Momentum Shear stress Velocity Viscosity

Mass Mass or molar flux Concentration® Diffusion coefficient
Energy Energy Temperature Thermal conductivity

“For charged molecules, transport is down an electrochemical gradient, defined as the sum of the
concentration gradient plus the potential field gradient. This kind of transport is discussed in detail
in Section 7.4,

d (velocity or concentration or J‘emp)

Flux (shear stress, molar,Energy) = —(viscosity or Dif fusivity or Thermal ax

momentum

mass Energy

8.28.18: Some of the arrows were shifted somehow on slide 10. | made sure the arrows were pointing to the correct word.



What is the i and what is the j?

TABLE 1.5

Relative Importance of Diffusion and Convection

Molecule MW (g mol ™) D; (cm?s ) Diffusion time, LE;’D,-I- (s) Pe=Lv/D;
Oxvygen 32 2 % 107 5 0.05
Glucose 180 2 X 10_(_" 50 0.50
Insulin 6,000 1 x 10°° 100 1.0
Antibody 150,000 6 > 1077 167 1.67
Particle Diameter D; (cm? s Diffusion time (s) Pe
Virus 0.1 pm 5 x 1078 2,000 20
Bacterium I pm 5 x 107 20,000 200
Cell 10 pm 5 x 10710 200,000 2,000

Note: For L = 100 pm, and if v = 1 pm s~ !, the time for convection is always equal to L/v = 100 s for
all molecules and particles.



Reynold’s # = Re

inertial forces _ vL _ vLp

* Re =

* Units?
* v = object velocity relative to flow.
* k.v. = viscosity/density

* Why does Re exist? To predict flow patterns

e Laminar or turbulent
e |f Re <2000 => laminar

viscous forces k.. L

https://www.youtube.com/watch?v=p08_KITKP50

_ Examples:
* If Re > 4000 => turbUIent viscosity  9.10E-03 Poise g/cm/s
* If Re is between 2000 and 4000 density 1g/c;n“3
.. velocity lcm/s
transitional flow L 50cm

Re 5494.51 turbulent
Cell 10um
cell 1.00E-03cm

Re 0.11 laminar



How do you calculate Reynold's numbers and why is it useful?
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Peclet # = Pe

 Time of dif fusion = L—

tj
L

velocity

* Time of convection =

2
e Po = dif fusiontime __ mass transport by convection __ velxL _ [ L ]( \%
B B B I

convection time mass transport by dif fusion Di;

* What is dominant — convection or diffusion?
* Over the dimensions of a cell, diffusion is sufficiently efficient (up to 100 um)
 Diffusion limited: event is limited by how many are arriving by diffusion



How do you calculate the Peclet number and why is it useful?
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Biot #

B=Mass Transfer Across a Cell Layer/Mass Transfer by Diffusion Through Tissue = k*L/D
Numerator is non-diffusive mass transfer (not specific) component
Example of k:

First order diff. eq.
dC/dt = kC



How do you calculate the Biot # and why is it useful?
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Flux and Fick’s 15t law

* Flux is proportional to the gradient

* What are the units of flux?
* (#or mol)/area/time or mass/area/time...

e[ =-D % = -DVC; what is the upside down triangle?
* Gradient

e what is the expansion of the equation?

dc dc dc
/= _D[dx+dy+E]




Why are cells microscopic?
1. Diffusive transport over large distances may be
inadequate.

. w
— - . »:"_:,_:;:H:: —
e S S
rd A—an_ AN ,\\\\
!‘ 8 - — il ‘____'-- Y] \ \
e 4 F 5 "
5 - - P — \ \\
' = 2 ‘ 2 3 — \,k“
o Nl Gl D
i A 4 PG.-e. e S8 \
4 i ~g----meeeee t_lL’ k" ONAN_ / /{\.
‘ \,13-.1 M2RTM Ti //, /,
N ///
€ /
- E, ]
b R == k‘. 3 cYTOSOL it
Sy, g M e __-H//
“\_;‘:k_____f:;’/ —___‘:_——_ i—‘-/

For Constant Flux steady state diffusion in one direction -
Fick’s First Law

J--p*
- dx

D - diffusion coefficient (m?/s); C - kg/m?3 or cm? /s and moles/|




Diffusion Across Cell Membranes and within Cells

dC AC Cr-Cp
JZ —D_I —D—: —D
dx Ax XA — XB
D - diffusion coefficient (m?/s)
dc/dx - Driving force

DCA-CB

XA — XB

J=-

11

J=-(3x10 m?/s)

(1.2-0.8) kg/ m?

J=24x10 "kg/m?-s

(5x107°-1x10" )m

Concentration (M)

Region of the slope or driving force

Position, ®



What is Fick's first law?
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What is Fick’s second law

. % = DAC; and what is the diff between A andv.?
* Expand this...
,dc _ d*c d?c d*C

dt [dx2+ dy? dzz]



What is Fick's 2nd law?
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6.4 Constitutive Relations: 6.4.1 Fick’s First Law

A R
Dilute;

No reactions

8 Producting or
Jl — ij Ji — _Dz]vcz Consuming
8x Constituents...

J,, = diffusive flux of a dissolved solute /n dilute solution
= binary diffusion coefficient of solute /in solvent j

C = concentration of reactant

N=J +Cv,
Substituting into gives when convection is present...

N;=-D,VC, +Cv,

Note, D can be a f(C)...



Non-Steady State Diffusion in the Solid State

® Most real diffusion is non-steady state

® The concentration of diffusing species is a function of both
time and position C = C(x,t)

i.e., flux and driving force both change with time
% |n this case Fick’s Second Law is used

2
oC_ o
Ot OX

* Solution requires specified boundary conditions



On board...



6.2.1 Dilute Solution Approximation

* Most biological solutions are dilute

* Concentration of the solvent must be large relative to the
solute: C >> C. or X, ~= 1 >> x, = mole fraction

solvent

* The molar average velocity equals the mass average
velocity 1.e. v¥ = v ..and v= v, .. so that v=v* and J.
=] *

solven solven

J;‘f: N, — CiV* or N = Jj n Civ* becomes N=J + CiVS

1

(l—xl)

When N2 is solvent Can study dilute solutions as if they were binary

N,= (77 +xN,) = N,=J, +Cyv,




Justification of dilute —solution problems in
biological contexts

* Water is 1 g/cm3. 1 mole of water is 18g and is 55.56 M.

e Salt concentrations: 1 uM to 300 mM
e 1.8e-8 to 0.0054 mole fractions

* Protein: 1 nMtol mM
e 1.8e-11 and 1.8e-5 mole fractions.

* Exceptions: gas diffusion in the lung, purification of biological
molecules in high salt concentrations (1-5M), fermentation processes



Jive 2 justifications of why biological fluids are able to be considered dilute and give

an example of a biological solution that is not dilute.
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6.3.2 Boundary Conditions

Useful for investigating conservation relations...

Concentrations are not necessarily constant or continuous across a fluid-fluid interface

At the gas (1) solution (2) interface, at equilibrium:
Cili=H,Cl,
Where H; is the Henrys Law Constant
At the liquid (1) immiscible liquid (2) interface, at equilibrium:

Cl=o,Cl,

Where @, 1s the Partition Coefficient

Since the discontinuity cannot be abrupt it establishes an interphase

While concentrations may not be equal, fluxes across a fluid-fluid or liquid-liquid
interphase are always equal, thus:

N :Nix|2 N |1: i}{ix|2

Ix |1 Ix

Where R is the reaction rate
“+”if i is produced
““ifiis consumed




Boundary Conditions
(Di: al.|2 /al.|1 = 7/1'Ci|2 /ini|1 a = solute activity coefficients

7/1' ~1 Dilute Solution Approximation

O.=C,,/C,

If the surface, e.g. solid-liquid interface, is impermeable there is no flux across its surface

Then:

Nix|2: O

If the surface, e.g. solid-liquid interface, is permeable then the flux across its surface

N, |1: k(cDiCi|2 _Ci|l)

X

Where

k 1s the permeability
®. 1s the Partition Coefficient



What is Henry's law and why is it useful?
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What is a partition coefficient and why is it useful?
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Random Walk

o <x>2=2*dimensions*Dt; i.e., = 4Dt in 2-D...

Imagine taking a vector with various values for randoms steps an entity can take
in 1-D...

RandomNums = [-1 0 1]; the value of kronecker for this is
mean(RandomNums."2)

The average distance the entity will go is directly proportional to the sqrt(number
of steps taken)...

Theoretical distance = (kronecker=mean(RandomNums.*2))*sqgrt(steps) (true for 1-D)

Also, the same kinetic energy will result in smaller displacement as the entity becomes larger...

How does time come into play? n = steps = t/t where Tt is the time to take a single step.



Show how to calculate what the kroneckers are if random values are able to be

chosenof[-11]&[-101]?
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rfow do you calculate the theoretical distance to be traveled using kronecker values:

LI Respond at PollEv.com/coreybishop271
D Text COREYBISHOP271 to 22333 once to join, then text your message
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Random walk

The mean-square displacement in one direction:

(x*V=St/T
If we define the one-dimensional binary diffusion coefficient as D;; = 6%/t; then. ..

(x*)= 2D, t

The mean-square distance sampled by a molecule increases linearly with the Vi

For three dimensional random walk:

(r)=(x*)+(y*) +(z") =3(2D,t) = 6D,




-1 and 1 (replicating = problem 6.3

Distance

distance from x-axis

-..__.1Mean distance from x-axis
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# of Ilterations(Mean:18.2 Theoretical:22.3607 %error:18.8071%)



Problem 1: Objectives (1-D)

* In MatLab,

e Sub-figure 1: Observe in 1-D
the distance traveled from the x-
axis after a certain number of
steps. Have the distance chosen
to step be a vector of choices [-1
-101], [-1, 1], [-1, O, 1], etc.

e Sub-figure 2: Calculate the
distance traveled from the x-axis
after a certain number of steps;
repeating this process.

e Sub-figure 3: Calculate the
running average of figure 2 and
watch the answer converge to
the theoretical answer.

* Quantify the % error as it steps
through this process.



FYI: (not going to be tested on this but)
Extrapolation of principles:
https://en.wikipedia.org/wiki/Rotational diffusion




Diffusivity or Diffusion Coefficient and Temperature

Temperature influences manifest in the diffusion coefficient.
Hence, diffusion coefficient, D, increases with increasing T.

Qs
D =D,exp _E

D = diffusion coefficient [m?/s]

D, = temperature dependent pre-exponential [m?/s]

Q4 = the activation energy for diffusion [J/mol or eV/atom]
R = the molar gas constant [8.314 J/mol-K]

T = absolute temperature, Kelvin [K]

Temperature D
500°C (773K) 3.0x 107!
900°C (1173K) 1.8 x 1075




Diffusivity or Diffusion Coefficient and Activation
Energy

D =D, exp (—%}

Taking logarithms:

Qd(l) Qd (1)
_ _&al 2] logD=logD, -
D =Dy =\ 7 P8 = 0850 T H303R\ T

y=mx+c

Where
Slope = - 0,/ 2.303R
Intercept = log D,



Diffusivity or Diffusion Coefficient and Activation

Energb
logD =log D, ( j
Where 2.303R

Slope = - 0,/ 2.303R

Intercept =log D, : I
|_|:|=|J.: oo i —
Solve for Activation Energy: ) i
i e | =
= |
Allog D oo |
0,=-2303R ( = o) g s —
on I
T ; ™15 | — I —
il .
log D,- LogD Lol e 2 # =
0,=-2303R| =52 | |
_—— |_|:|-.-.|Ji' | | | |
Tl T2 0.7 0.8 0.9 L.o 1.1 1.2
Fe=ciprocal bempearaturs (LOOOVED
Solve for D,

0, (1j
log D, = log D
08 F0= 0BT 5 303R\ T



Example: At 300°C the diffusion coefficient and activation energy for Cu in
Si are

D(300°C) = 7.8 x 10" m2/s
Q, = 41.5 kJ/mol

What is the diffusion coefficient at 350°C?

D transform _InD
data
Temp=T 1T
InD2 = |nD0 — Qd 1 and InD1 — |nD0 _& 1
R\ T, R\T,
InD, —InDy =In22 = _Ya 1 _1
D, R\T, T

44



Example (cont.)

Q, (1 1
D, =D, exp| — Rd(T _Tj
2 1

T,= 273 + 300 = 573K
T,= 273 + 350 = 623K

D, = (7.8x 101 m2s) exp{ — 41500 J/mol ( 1 1 ﬂ

8.314 J/mol -K | 623K 573K

D,=15.7x 10" m?/s

45



Estimation of diffusion coefficients

* Protein diffusivity in plasma is * What is a binary diffusion
about 1e-7 cm?/s. coefficient?
* From edge of cell to center: 2.5 * Characterizes diffusion of one

molecule in a solvent

o i ive?
* Through tissue that is 0.02 mm What is Deffective:
thick: 27.7 hours * Incorporates: drag forces exerted

by ECM and cells

seconds

1-D, 2-D, 3-D differences?



A protein molecules with a D of 1e-7 cm”2/s will diffuse from the edge to the center

of a 20 um diameter cell in how many seconds?

oll Everywhere



Diffusivity, D, is commonly written as Dij. What is the i and what is the j?

oll Everywhere



Given you know diffusivity, D = D1 and you know temperature, T1 and T2, how do

you calculate D2 which is at T2? Write out an equation for each of 2 methods to do so
and state what each of the variables are.

oll Everywhere



6.6.5: The Wilkie-Chang

* See problem 6.1.




What is the name of the equation that you can calculate diffusivity based on

molecular weight?

l—T—l Respond at PollEv.com/coreybishop271
D Text COREYBISHOP271 to 22333 once to join, then text your message
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Stoke’s-Einstein Equation:

kT

/) =
6711R

* Regarding calculating D2 at T2,
knowing either D1 and T1, is there
another way we can do this using the
SE equation?



f.__ =denominator

bar TABLE 6.3

Values of the Mean Frictional Drag Coefficient for
Different Shapes [9,10]

Shape Frictional drag coefficient

Sphere of radius R f= 6muR

Pr';tul:are ellipsoid,.p = :fff:r > 'I., Whﬁl‘ﬂ. . 6rub(p* — 1)1/?

a 1s a major axis, b is a minor axis =5 PR

pIn[p + (p7 = 1)7"]

Oblate ellipsoid, p = a/b < 1 o 6mub(1 — pH)\/?
p'ranl[1 — p*)13p7!

Thin circular disk of radius a f = 16pa

Cylinder of radius @ and length L ;. 4l

" In(L/a) + 0.193

Source: From Refs [9,10].



8.30.18: Skip this slide for now. We will go over eigenvectors more in a future chapter.

Estimation of frictional drag coefficients

* For low Reynold’s #s, the drag force is (K is translation tensor; v =

velocity): K'is a symmetric tensor and the components thereof are friction coefficients f;

Fp =K *v (orv=K 1xFD)= l * p * velocity? « Dc x A; Dc = drag coef ficient
2
assume f11="f1"=f22="f2"=f33="3”

By solving for the fs when Det(K - fl) = 0 (f, =f, =f;, ., for an isotropic body) we obtain the non-zero values.
The fs are eigenvalues.

fbar = average = the harmonic mean:

1/f,,, = 1/3(1/f, + 1/f, + 1/f, +...)

Note that for a sphere f = 6apR... sound familiar?

Eigenvectors are scalable and translatable... v(A- A?)=0... v(A- Al)=0 (these vectors (v) are not velocity vectors)
These are the eigenvalues and are the friction coefficients. The only non-zero solutions are calc. via the det.

a b ¢
d e f

g h i

det(4) =

=alei—hf y—d(bi—he)+ g(bf —ec)



*Mvs2?

* Harmonic mean = 1/A

e Geometric mean G=sqrt(AH)
e Arithmetic mean = 1/H

Skip this for this semester for the sake of
time.



What does the fbar assume for the Stoke's-Einstein equation?
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Instrumentation using diffusion principles

* Nanoparticle Tracking Analysis (NTA)
* Dynamic Light Scattering (DLS)



NTA

What happens if the paths cross during the video?

25

201

y

10 —

' : ' J https://www.youtube.com/watch?v=65k3fX2X7pQ

500-step random walk.
The walk begins at coordinates x = 0, y = 0 denoted by the “@” and ends in the upper right
hand quadrant denoted by “X”. The arrow represents the net displacement.



Dynamic Light Scattering: Skipping DLS this semester

Y-axis ranges from 0 to 1 (meaning of 0 and 17?)

— | | <— > | <—
{
O i f- B
\, " "l
© o o 1 =Larger particles in which the correlation of the signal takes a long time to decay.
o E * Small particles move more rapidly so correlation decreases more quickly
"
Emaor Partichs ﬁ: i_ NNIN
- =

«w\NANO RESEARCH FACILITY ¥ iahnonUniestiniiog

Wikipedia.org

Correlation Function

« Correlation function:

G(1) = <I(t).I(t+1)>

* Monodisperse particles: cumulants analysis

G(t) = A[1 + B exp(-2T1)]

. . . = qu refractive index of dispersant
How do you get size out of this Information? q= (@ nn o) sin (672)

What is this size based on?
What limitations are there whencalculating diameters from intensities?  http://www.nano.wustl.edu/



What does the slope mean of a plot of the correlation function versus time, with
respect to dynamic light scattering? Will the correlation value start to become more

dissimilar first for larger or smaller particles?

LI Respond at PollEv.com/coreybishop271
D Text COREYBISHOP271 to 22333 once to join, then text your message

oll Everywhere



How to calculate diameter of particles using data obtained from a video

Stokes-Einstein Equation
Raleigh Scattering

L o2 2. .2 .2 2
Root Mean Square?  X,;,s = E(x1 + x5 + x5 + x5+ + x5

Geometric mean? Xgy = V/X1X2X3 ... X, What happens to the outliers?

Important rhetorical guestions:
If the size of the particle were much smaller than the wavelength of the light being used to see it, what happens?

What is this phenomenon called? How can you estimate the diameter of it? What does this size mean?

What if the particle being measured were actually a rod?
What if the distribution of sizes were heterogeneous (i.e., limitations?) in the context of NTA vs DLS




How do you calculate the root mean square versus the geometric mean? What

happens to outliers in each case?
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Examples in book with more clarity

* FYI: examples given in slides that are not “Problems” at the back of
the chapter are also fair game for exams.



6.7: Steady-state diffusion in one dimension Rectangular coordinates

Figure 6.6 Diffusion through a small rectangular
volume of area A and thickness Ax.




Schematic of steady diffusion across a membrane of thickness L that
separates two well-mixed solutions. For this situation ® < 1.

Co oC_p0C | mup

Membrane of thickness L



Schematic of steady diffusion across a membrane of thickness L that
separates two well-mixed solutions. For this situation ® < 1.

2
ic_pic
Ot ox

Membrane of thickness L




Example 6.5

Diffusion through a two-layer laminate. Each layer
s described by a separate diffusion coefficient.

protein
Co
_____ Di,l Di,2 Determine C(X)
e Determine N(x)
\\\ Cellular
— Smooth muscle
C(x=0)=®Co . cell
AN
Acellular \\ Cheti=0a
N

Elastic artery

N
W
N
* V;
AN
AN protein
— \\ e
X S Oy

A

A A
Y
Y Y




Diffusion through a two-laye
s described by a separate diff

protein

Acellular
Elastic artery

D;,

Cellular

Smooth muscle

cell

A

A A

Y

Y

Y

Determine C(x)
Determine N(x)

iC_p0C
Ot ox’

protein

—_— =

N
%, CL

r [aminate. Each layer
usion coef

‘icient.






6.7.1: Diffusion in gases



Figure 6.10 Diffusion of two gases. The concentrations in each
reservoir are kept constant such that at steady state, C,=C,, and C; =
CBo

Cs,=0atx=0and C,=0and atx = L.

Gas A Gas B
C Ay CBO
Volume Volume
Va Vg
L
- v o
x=10 x=1L

Dilute solution?



Figure 6.10 Diffusion of two gases. The concentrations in each
reservoir are kept constant such that at steady state, C,=C,, and C; =
CBo

Cs,=0atx=0and C,=0and atx = L.

Gas A Gas B
C Ay CBO
Volume Volume
Va Vg
L
- v o
x=10 x=1L

Dilute solution cannot be invoked.... Flux of one induced flux of another in the absence of bulk motion.



Figure 6.10 Diffusion of two gases. The concentrations in each
reservoir are kept constant such that at steady state, C,=C,, and C; =
CBo

Cs,=0atx=0and C,=0and atx = L.

Gas A N; = —CD;;Vx; + x1(Ny + Ny) Gas B
CAO CBO
Volume Volume
Va Vg
L
- v o
x=10 x=1L

Dilute solution cannot be invoked.... Flux of one induced flux of another in the absence of bulk motion.



Figure 6.10 Diffusion of two gases. The concentrations in each
reservoir are kept constant such that at steady state, C,=C,, and C; =
CBo

Cs,=0atx=0and C,=0and atx = L.

Gas A N, = —=CDy;Vx; + x,(N; + Ny) Gas B
CAo CBO
Note: no chemical rxns
Volume Volume
Va4 |%:
L
- v o
x=10 x=1L

Dilute solution cannot be invoked.... Flux of one induced flux of another in the absence of bulk motion.



Figure 6.10 Diffusion of two gases. The concentrations in each
reservoir are kept constant such that at steady state, C,=C,, and C; =
CBo

Cs,=0atx=0and C,=0and atx = L.

Gas A Ny = —CD;;Vxy + x1(Ny + Ny) Gas B
CA() CBO
Note: no chemical rxns
Valitie [Gas]res.=constant Volimie
Va Vg
L.
€ >
x=0 x =1L

Dilute solution cannot be invoked.... Flux of one induced flux of another in the absence of bulk motion.



Figure 6.10 Diffusion of two gases. The concentrations in each
reservoir are kept constant such that at steady state, C,=C,, and C; =
CBo

Cs,=0atx=0and C,=0and atx = L.

Gas A N; = —CD;;Vx; + x1(Ny + Ny) Gas B
CAo CBO
Note: no chemical rxns
Valitie [Gas]res.=constant Volimie
Va Constant pressure maintained throughout Vg
L
- >
x=0 x =1L

Dilute solution cannot be invoked.... Flux of one induced flux of another in the absence of bulk motion.



Figure 6.10 Diffusion of two gases. The concentrations in each
reservoir are kept constant such that at steady state, C,=C,, and C; =
CBo

Cs,=0atx=0and C,=0and atx = L.

Gas A N, = —=CDy;Vx; + x,(N; + Ny) Gas B
CAO CBO
Note: no chemical rxns
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Fick’s 2"d Law applied:
AN, B dNpg, B
dx dx
xr=0 What next? x =L

Dilute solution cannot be invoked.... Flux of one induced flux of another in the absence of bulk motion.
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GgiA ngnﬁ Nl = —CDijV.X'l + xl(Nl + NZ)

Volume Volume

Va Vg dNAx dNBx

dx dx

r=0 x=1 What next?



Ggi:l GSZUB Nl = —CDijV.X'l + xl(Nl + NZ)

Vo{;;mc L VOLL,TC d NAx B d NBx B
dx dx
dxA
1-D Nax = —CDyp dx + X4 (Ngx + Npy)

Ny = —CDy;Vx; + %, (Ny + N,) )
de
Npy = —CDgy I + xg(Nax + Npy)

Can assume D,z=Dg,



Ggi:l GSZUB Nl = —CDijV.X'l + xl(Nl + NZ)

Vo{;;mc L VOLL,TC d NAx B d NBx B
dx dx
dxA
1-D Nax = —CDyp dx + X4 (Ngx + Npy)

Ny = —CDy;Vx; + %, (Ny + N,) )
dXB
Ny = —CDyp dx + xg(Nax + Npy)

Can assume D,z=Dg,



Ggi:l GSZUB Nl = —CDijV.X'l + xl(Nl + NZ)

Vo{;;mc L VOLL,TC d NAx B d NBx B
dx dx
dxA
1-D Nax = —CDyp dx + X4 (Ngx + Npy)

Ny = —CDy;Vx; + %, (Ny + N,) )
dXB
Ny = —CDyp dx + xg(Nax + Npy)

Now what?



To (Y N1 = =CD;jVxy + x1 (N1 + N3)

Volume Volume

Va . Ve dNAx . dNBx _
dx dx
dxA
1-D Nyy = —CDyp——+ x4(Nyyx + Npy)

Ny = —CD;;Vx; + x; (N + N,) ) dx
dXB
Ny = —CDyp dx + xg(Ngx + Npyx)

Now what? Pressure is the same everywhere so...



To (Y N1 = =CD;jVxy + x1 (N1 + N3)

Volume Volume

L " dNAx — dNBx —
dx - dx B
dxA
1-D Nyy = —CDyp——+ x4(Nyyx + Npy)

Ny = —CD;;Vx; + x; (N + N,) ) dx
dXB
Ny = —CDyp dx + xg(Ngx + Npyx)

: Npyxy = —Nyy
Now what? Pressure is the same everywhere so...

Equimolar counterdiffusion
Analogous to diffusion through membrane if ¢p=1...
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Figure 6.11 Evaporation of liquid A and
diffusion through a stagnant layer of gas B.
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Figure 6.11 Evaporation of liquid A and
diffusion through a stagnant layer of gas B.

Is this more complex Pretend theres a large
Than the last? Reservoir supplying this

Yes... Concentration such that
Consider this to be s.s. evaporation It is constant.

Of a liquid A into a stagnant layer of gas
B. If there is a stagnant layer that

Means there is no bulk flow of the gas...
Not equimolar counterdiffusion because

y=L

B is hardly soluble in our fake situation... What next?
Pressure is uniform Fick’s 2" |]aw
Cay At s.s.
y=0




y=0

Ca,

0

What next? dNAy _

) dNgy _

0

Fick’s 24 law dy dy

At s.s.

Liquid A

Of note, gas is very slightly soluble and is much less than the flux due
To evaporation of the liquid A. so
B.C. N, ~=0 at y=0... so...



Ca,

0

What next? dNAy 0 dNBy
Fick’s 2"d law dy dy
At s.s.

=0

Of note, gas is very slightly soluble and is much less than the flux due

To evaporation of the liquid A. so




y=L & What next? dNAy -0 dNBy —0
Fick’s 2"d law dy dy
At s.s.
Chy Of note, gas is very slightly soluble and is much less than the flux due

To evaporation of the liquid A. so
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To evaporation of the liquid A. so
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Fick’s 2"d law dy dy
At s.s.
Chy Of note, gas is very slightly soluble and is much less than the flux due

To evaporation of the liquid A. so

Remember:
N]_ = —CDUV.X']_ + xl(Nl + Nz)




y=L & What next? dNAy -0 dNBy —0
Fick’s 2"d law dy dy
At s.s.
Chy Of note, gas is very slightly soluble and is much less than the flux due

To evaporation of the liquid A. so

Remember:
N]_ = —CDUV.X']_ + xl(Nl + Nz)
dxA
NAy = _CDAB — + xA(NAy + NBy)

dy




y=L & What next? dNAy -0 dNBy —0
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At s.s.
Chy Of note, gas is very slightly soluble and is much less than the flux due

To evaporation of the liquid A. so

Remember:
N]_ = —CDUV.X']_ + xl(Nl + Nz)

dxA
NAy = _CDAB d_y + xA(NAy + NBy)

N Dy EA 4 N
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y=L & What next? dNAy -0 dNBy —0
Fick’s 2"d law dy dy
At s.s.
Chy Of note, gas is very slightly soluble and is much less than the flux due

To evaporation of the liquid A. so

Remember:
N]_ = —CDUV.X']_ + xl(Nl + Nz)

dxA
NAy = _CDABd_y + xA(NAy + NBy)

N Dy EA 4 N
Ay AB dy XalNay

Now what?




=1L 1 What next? dNAy 0 dNBy —0
Fick’s 2"d law dy dy
At s.s.
Chy Of note, gas is very slightly soluble and is much less than the flux due

To evaporation of the liquid A. so

Remember:
N]_ = —CDUV.X']_ + xl(Nl + Nz)

dxA
NAy = _CDABd_y + xA(NAy + NBy)

N Dy EA 4 N
Ay AB dy XalNay

Now what? Solve for N,

d
Ny — xqNgy = —CDyp di;l = Npy(1 —x4)

dxA
CDABd_y

NAy - 1-x4




=1L 1 What next? dNAy 0 dNBy —0
Fick’s 2"d law dy dy
At s.s.
Chy Of note, gas is very slightly soluble and is much less than the flux due

To evaporation of the liquid A. so

Remember:
N]_ = —CDUV.X']_ + xl(Nl + Nz)

dxA
NAy = _CDABd_y + xA(NAy + NBy)

N Dy EA 4 N
Ay AB dy XalNay

Now what? Solve for N,

d
Ny — xqNgy = —CDyp di;l = Npy(1 —x4)

CD dxA
AB
Ny, =——= Now what?
y 1-x4




vy What next? dNgy —0 dNpy —0
Fick’s 2"d law dy dy
At s.s.
Chy Of note, gas is very slightly soluble and is much less than the flux due

To evaporation of the ligquid A. so

Remember:
N]_ = —CDUV.X']_ + xl(Nl + Nz)

dxA
NAy = _CDABd_y + xA(NAy + NBy)

N Dy EA 4 N
Ay AB dy XalNay

Now what? Solve for N,

d
Ny — xqNgy = —CDyp di;l = Npy (1 —/x4)

CD dxA
AB
Ny, =——= Now what?
y 1-x4




el | What next? ANy, 0 dNgy —0
Fick’s 24 law dy dy
At s.s.
Cag Of note, gas is very slightly soluble and is much less than the flux due
ol To evaporation of the liquid A. so
Liquid A <CDABdC.lx—JI/4>
dNay N1, ) _ 0
dy B dy B
cD dxA
Remember: AN d( ABd_y)
A 1—x
Nl = —CDUV.X']_ +x1(N1+N2) dyyz— dyA =0
dxA
Nyy = _CDABd_'I'xA(NAy'I'NBy) CDAB%
y dy
dXA d 1-— Xq
NAy = —CDABd_y‘l‘xANAy dy =0

Now what? Solve for N,,

dx
Nyy —x4Nyy = —CDyp d_; = NAy(1 —/X4)

dx
CDABd__;;l
Now what?

NAy - 1-x4

Now what?



el | What next? ANy, 0 dNgy —0
Fick’s 24 law dy dy
At s.s.
Cag Of note, gas is very slightly soluble and is much less than the flux due
ol To evaporation of the liquid A. so
Liquid A
dx
CDyp d—;
d Now what?
1-— X 0




y=0

Liquid A

CDyp

]

1—XA

dy

What next? ANy, 0 dNgy —0
Fick’s 24 law dy dy
At s.s.
Cag Of note, gas is very slightly soluble and is much less than the flux due
To evaporation of the liquid A. so
dxy
dy Now what? Apply B.C.s
=0



gy 1 What next? AN,y 0 dNpy, —0
Fick’s 24 law dy dy
At s.s.
Cag Of note, gas is very slightly soluble and is much less than the flux due
r To evaporation of the liquid A. so
Liquid A
dx
CDAB d_;
d T Now what? Apply B.C.s
4 7 -0 1) X,=X,, at y=0 and X,=0 at y=L

dy



) What next? dNgy 0 dNpy —0
Fick’s 24 law dy dy
At s.s.
Cag Of note, gas is very slightly soluble and is much less than the flux due
r To evaporation of the liquid A. so
Liquid A
CDyp ‘ilﬂ
d T Y Now what? Apply B.C.s
4 7 = 1) X,=X,, at y=0 and X,=0 at y=L
dy
How?

Come to board...



) What next? dNgy 0 dNpy —0
Fick’s 24 law dy dy
At s.s.
Cag Of note, gas is very slightly soluble and is much less than the flux due
r To evaporation of the liquid A. so
Liquid A
CDyp ‘ilﬂ
d T Y Now what? Apply B.C.s
4 7 = 1) X,=X,, at y=0 and X,=0 at y=L
dy
How?

Come to board... and try in groups...






iIf you assigned equimolar counterdiffusion a partition coefficient, what would it be:

oll Everywhere



Example 6.7.2: Radial diffusion in cylindrical coordinates

Figure 6.13 Radial diffusion through a
cylindrical shell.

C

~J

|

Nir|(r+Ar)

@0



l

N irl (r+Ar)

\\

* Assume no reaction

* Assume steady state




C

o

\\

* Assume no reaction

|
|
.
} Nidgr+an
|
|
|
|
|
|
|
|

* Assume steady state

Now what?

Come to board and solve the rest
Without B.C.s (look in book for B.C.s;
Assuming you can do that...)






Skipping ert this semester for the sake of
time.



erf

* What is it equal to?
e What is it used for?

 What does this have to

do with probability densit -e
unctions.

2.00
0.75
0.50
0.25

™)

o 0,00

|
o]

—0.27

—0.7h

—1.00

erf (x) = %jzetz dx

-3

http://www.bishopkingdom.com/aichatbox/id/368/
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erf

2 x
nat is it equal to? erf(X)=—IOe dx

7T
Diff. Eg.s and diffusion

nat is it used for?

nat is erfc? erfc=1-erf

Case Sample Boundary conditions Initial condition Solution
e e | g
1 Infinite - il =0 cfx,0)=gd( ) = ——g ¥ Y
ini axl._ o f?x!l:t, clx, 0) = gb(x) elx, 1) Wy
2 Semi-infindte ¢(0,4) = cs; a—d =1 elx, ) =0 clx.f) =c trft( a )
x|, _ 2v' Dt
o T (x,0) (1) crf( = )
emi-infinite ¢(0, {) = 0; clx,0)=g¢, elx, ) =r¢
r'lx|L e 2v' Dt
. | éic at <0 s x
4 Infinite — =0 — =0 { — elx,t) =—erfe —
-2 ] (RN, i at x>0 2 2Dy
. de| die | atx <0 € x
5 Infinite f =0 | =10 (x ) ==|14erl
o ] IO - . A { . atx >0 o) 2 [ E (Ev'f):)]
0 atx<—a
de| die | ; € a+x g+ x
6 Infinite — =0 — =0 {Lk at—a<x<a elx,fl=— [crf(—) +e 1‘( ):|
ax|,_ .. -r':i'x|t_?_, S 2 1Dt 2
el0, 1) = e e—{(20+1)'% De/L* . (2n+ 1mx
7 Plate ; {x,0)=0 {x,t sin
o(L, 1) s i) { ,_ZU mt+1 L

100
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a
2
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—0.50

—1.00




MatLab Code

close all
x =[0:0.0000001:1];

figurel = figure;

hold on

% Create axes

axesl = axes('Parent’ figurel);
hold(axes1,'on');

% Create multiple lines using matrix input to plot
%plot(X1,YMatrix1,'Parent',axes1);

% Create xlabel
xlabel('Distance (x)');

% Create title
title('Error function usage');

% Create ylabel
ylabel('Normalized Concentration');

% Set the remaining axes properties
%set(axesl,'FontSize',14,'FontWeight','bold');
fori=1:2.5:35

plot(x,1-erf(x/(2*sqrt(i*107-3))),'linewidth',3)
end

Mormalized Concentration

=
~

=
o

=
&

=
.

=
L

=
ha

0.1

0.8 [ |

Error function usage

04 05 06
Distance (x)
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x = [0:0.0000001:17];

figure2 = figure;
% Create axes
axesl = axes ('Parent', figure2);

hold(axesl, 'on'");
Create multiple lines using matrix input to plot
plot (X1,YMatrixl, 'Parent', axesl); |

Error function usage

% Create xlabel
xlabel ('Distance (x)");

=
-]

=
o

% Create title
title('Error function usage');

=
B

Mormalized Concentration
= =
(%] o

o

s Create ylabel

=
P

ylabel ('"Normalized Concentration'); 01}
ﬂ = ——
o . . . 0 01 02 0.3 04 05 06 o.F 0.8 09 1
s Set the remalning axes properties Distance (x)
o

%set (axesl, 'FontSize', 14, 'FontWeight', 'bold"');
for 1 = 1:2.5:35

plot (x,erfc(x/ (2*sqrt (i*107-3))), 'linewidth', 3)
end



