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Focus on what is presented in class and problems…
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Describing Porosity, Tortuosity, 
and Available Volume Fraction 

to Characterize Porous Materials
Chapter 8, Section 2
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𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 = 𝑠 =
𝑇𝑜𝑡𝑎𝑙 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎

𝑇𝑜𝑡𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒

𝑃𝑜𝑟𝑜𝑠𝑖𝑡𝑦 = 휀 =
𝑉𝑜𝑖𝑑 𝑣𝑜𝑙𝑢𝑚𝑒

𝑇𝑜𝑡𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒

Units = 
1

𝑙𝑒𝑛𝑔𝑡ℎ

휀 is dimensionless 

Void volume: total volume of void space in a porous medium

Interface: border between solid and void spaces

If total volume is based on interstitial space: 휀 is generally > 0.9
If 휀 is generally < 0.30, cells and vessels should be considered
Note: In some tumors, 휀 is as high as 0.6 3

To give you an idea of values:



Porosity (휀)
• Context: porous medium

• Does not provide information on how pores are connected or number of 
pores available for water and solute transport 

휀 = 휀𝑖 + 휀𝑝 + 휀𝑛

Note: isolated pores are not accessible to external solvents and solutes: They can sometimes be considered part of the solid phase.
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𝑃𝑜𝑟𝑜𝑠𝑖𝑡𝑦 = 휀 =
𝑉𝑜𝑖𝑑 𝑣𝑜𝑙𝑢𝑚𝑒

𝑇𝑜𝑡𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒



Tortuosity (T)
• Lmin is the shortest path length

• L is the straight-line distance between A and B

𝑇 =
𝐿𝑚𝑖𝑛

𝐿

2

T is always greater than or equal to unity
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Available Volume Fraction (𝐾𝐴𝑉)

𝐾𝐴𝑉 =
𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑣𝑜𝑙𝑢𝑚𝑒

𝑇𝑜𝑡𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒
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Available Volume: portion of accessible volume that can be occupied by the solute.
Not all penetrable pores are accessible to solutes



𝐾𝐴𝑉 is molecule dependent and always smaller than porosity. 

This can be caused by 3 scenarios:
1) Centers of the solute molecules cannot reach the solid surface in the void space

Difference between total void volume and the available volume can be estimated as 
the product of the area of the surface and distance (∆) between solute and surface

2) Some of the void space is smaller than the solute molecules
3) Inaccessibility of large penetrable pores surrounded by pores smaller than the solutes

Generally, 𝐾𝐴𝑉 decreases with size of solutes
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𝐾𝐴𝑉 =
𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑣𝑜𝑙𝑢𝑚𝑒

𝑇𝑜𝑡𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒



• Partition Coefficient (Φ): ratio of available volume to void volume
• Measure of solute partitioning at equilibrium between external solutions and 

void space in porous media

Φ =
𝐾𝐴𝑉
휀
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Exclusion Volume
• Some porous media are fiber matrices: space inside and near surface 

of fibers not available to solutes

• Exclusion Volume: size of the space

𝐸𝑥𝑐𝑙𝑢𝑠𝑖𝑜𝑛 𝑣𝑜𝑙𝑢𝑚𝑒 = 𝜋 𝑟𝑓 + 𝑟𝑠
2
𝐿

rf and rs are the radii of the fiber and solute
L is the length of the fiber
N is the number of the fibers

If minimum distance between fibers is larger than 2(𝑟𝑓 + 𝑟𝑠), such as when fiber density

is very low or when fibers are parallel: 

𝐸𝑥𝑐𝑙𝑢𝑠𝑖𝑜𝑛 𝑣𝑜𝑙𝑢𝑚𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 =
𝜋(𝑟𝑓 + 𝑟𝑠)

2𝐿𝑁

𝑉
= 𝜃

𝑟𝑠
𝑟𝑓
+ 1

2

θ is the volume fraction of fibers (휀=1- θ when θ is much less than unity)

𝐾𝐴𝑉 = 1 − 𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑜𝑛 𝑣𝑜𝑙𝑢𝑚𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = 1 − 𝜃
𝑟𝑠
𝑟𝑓
+ 1

2
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When 𝜃 1 +
𝑟𝑠

𝑟𝑓

2

is much less than unity, Ogston Equation (eq. 8.2.24 in book) reduces to previous equation. 

Porosity can be derived from the Ogston Equation by letting rs=0

휀 = exp[−𝜃]

When θ is much less than unity:

휀 = 1 − 𝜃

Partition coefficient of solutes in liquid phase of fiber-matrix material:

Φ =

exp −𝜃 1 +
𝑟𝑠
𝑟𝑓

2

1 − 𝜃
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Darcy’s Law



Darcy’s Law

• Flow rate is proportional to pressure gradient so rate = constant *grad(p)

• Valid in many porous media

• NOT valid for:
• Non-Newtonian fluids (what is a Newtonian fluid?)

• Newtonian liquids at high velocities

• Gasses at very low and high velocities



Darcy’s Law

Describing fluid flow in porous media

• Two Ways:
• Numerically solve governing equations for fluid flow in individual pores if 

structure is known

• Assume porous medium is a uniform material (Continuum Approach)



Three Length Scales

1. 𝛿 = average size of pores

2. L = distance which macroscopic changes of physical quantities must 
be considered (ie. Fluid velocity and pressure)

3. 𝑙 ⇒ a small volume with dimension 𝑙3

Continuum Approach Requires:

• 𝛿 << 𝑙0 << L



Darcy’s Law

• 𝑙0 = Representative Elementary Volume from 𝑙0
3 (REV)

• 𝑙0 << L

• Total volume of REV can give the averaging over a volume value

• Vf = fluid velocity of each fluid particle averaged in the volume of the 
fluid phase 

• V = velocity of each fluid particle averaged in the REV

• V = 휀Vf



Darcy’s Law

• Law of Mass Conservation
• No Fluid Production = “Source”
• Fluid Consumption = “Sink”

Mass Balance with velocities
• 𝛻 ∗ v = 𝜙B - 𝜙L

• 𝛻 ∗ ℰvf = 𝜙B - 𝜙L

• Determined by Starling’s Law (more in chapter 9)
• 𝜙B = volumetric flow from sources (units?)
• 𝜙L = volumetric flow from sinks (L=lymphatic drainage)

• If volume of the system is not changing or if the flow in and flow out are balanced 
then?



Darcy’s Law

• Momentum Balance in Porous Media
• v = -K 𝛻p

• 𝛻p = gradient of hydrostatic pressure

• K = hydraulic conductivity constant

• p = average quantity within the fluid phase in the REV



Darcy’s Law

• Substituting the Equations to form:
• 𝛻 ∗ (−K 𝛻p) = 𝜙B - 𝜙L

• Steady State:
• 𝛻2 * p = 0



Brinkman Equation



Brinkman Equation

o𝑘 = 𝐾𝜇
o k is the specific hydraulic permeability (usually units of nm2)

oDarcy’s law is used when k is low: when k is much smaller than the square of L

oWhen k is not low: Brinkman Equation

o𝐵𝑟𝑖𝑛𝑘𝑚𝑎𝑛 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛:

o𝜇𝛻2𝑉 −
1

𝐾
𝑉 − 𝛻𝑝=0

oDarcy’s Law is a special case of this equation when the first term = 0 (𝑉 =
− 𝐾𝛻𝑝)



The beginning of example 8.7



Ex 8.7



Ex 8.7
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Mass balance
Brinkman equations
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Solving for Example 8.7 



Consider using

• Laplace

• Undetermined coefficients



Laplace Transformation



http://tutorial.math.lamar.edu/Classes/DE/Laplace_Table.aspx



Laplace gives you both the homog. and particular solns.



Undetermined Coefficients

This method is only for calculating the particular solution



This is the end of example 8.7



Squeeze Flow 

o Squeeze flow is the fluid flow caused by the relative movement of 
solid boundaries towards each other

o Tissue deformation causes change in volume fraction of the 
interstitial space
o Leads to fluid flow



Squeeze Flow

oThese equations will be 
more useful and will make 
more sense in later 
discussions The derivation of 
them is in 8.3.3

oVelocity profiles:oVh is the velocity of cell membrane 
movement

oR is the radius of the plate

oz and r are cylindrical coordinates

oVr is velocity in the r direction

oVz is velocity in the z direction



8.4 Solute Transport in 
Porous Media

8.4.1-8.4.2



8.4.1 General Considerations

• Solute Transport in Porous Media 



8.4.1 General Considerations

1)𝐷𝑒𝑓𝑓 2) Solute velocity 

3) Dispersion
4) Boundary 
Conditions

• There are 4 general problems using the continuum approach(Darcy’s 
Law) for analyzing transport of solutes through porous media



1) 𝐷𝑒𝑓𝑓

• Diffusion of solutes is characterized by the effective diffusion 
coefficient: 𝐷𝑒𝑓𝑓

• 𝐷𝑒𝑓𝑓 in porous media < 𝐷𝑒𝑓𝑓 in solutions Why?...



1) 𝐷𝑒𝑓𝑓 cont. 

• Factor effecting Diffusion in Porous Media:
• Connectedness of Pores

1 100
Layer #

𝐷𝑒𝑓𝑓
Layer 100 

Layer 1

As we near layer 100, available space for diffusion and 𝐷𝑒𝑓𝑓 decrease exponentially 



2) Solute Velocity 

• Convective velocities ≠ Solvent velocities 

• Solutes are hindered by porous 
structures
• Ex: filtering coffee grounds 

𝑓 =
𝑣𝑠

𝑣𝑓
= 

𝑠𝑜𝑙𝑢𝑡𝑒 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦

𝑠𝑜𝑙𝑣𝑒𝑛𝑡 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦

𝑓 is retardation coefficient 



2) Solvent Velocity cont. 

• 𝜎 = 1 − 𝑓 : reflection coefficient 
• Characterizes the hindrance of convective 

transport across a membrane

• 𝑓 is dependent on:
• Fluid velocity 
• Solute size
• Pore Structure

• Flux of Convective transport across tissue:

𝑁𝑠 = 𝑣𝑠𝐶 = 𝑓𝑣𝑓𝐶

Where 𝑣𝑠is solute velocity and 𝐶 is local concentration of solutes



3) Dispersion of Solutes 



4) Boundary Conditions  

• Concentrations of solutes can be discontinuous at interfases between 
solutions and porous media
• Thus, for two regions, 1 and 2 

𝑁1 = 𝑁2

and

𝐶1

𝐾𝐴𝐴1
=

𝐶2

𝐾𝐴𝐴2

N = flux

𝐾𝐴𝐴 = area fraction available 
at interphase for solute 
transport 



When all 4 are considered… 

Governing Equation for Transport of neutral molecule through 
porous media:

𝜕𝐶

𝜕𝑡
+ 𝛻 𝑓𝑣𝑓𝐶 = 𝐷𝑒𝑓𝑓𝛻

2𝐶 + 𝜙𝐵 − 𝜙𝐿 + 𝑄

Flux of 
Convective 
Transport

Isotropic, uniform 
and dispersion 
coefficient is 

negligible 

Solute vel. Reaction

If we do consider dispersion coefficient: 
Deff = Deff + Disp. Coeff. 



Governing Equation cont.

𝜕𝐶

𝜕𝑡
+ 𝛻 𝑓𝑣𝑓𝐶 = 𝐷𝑒𝑓𝑓𝛻

2𝐶 + 𝜙𝐵 − 𝜙𝐿 + 𝑄

𝐶, 𝜙𝐵 , 𝜙𝐿 , 𝑄:
𝑎𝑣𝑔. 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦

𝑢𝑛𝑖𝑡 𝑡𝑖𝑠𝑠𝑢𝑒 𝑣𝑜𝑙𝑢𝑚𝑒

𝑓, 𝑣𝑓 , 𝐷𝑒𝑓𝑓:
𝑎𝑣𝑔. 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦

𝑢𝑛𝑖𝑡 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑓𝑙𝑢𝑖𝑑 𝑝ℎ𝑎𝑠𝑒



8.4.2 Effective Diffusion Coefficient in 
Hydrogels
• 3 Factors effecting 𝐷𝑒𝑓𝑓 of uncharged solutes in hydrogels:

• 1) Diffusion coefficient of solutes in WATER (𝐷0)

• 2) Hydrodynamic Interactions between solute and surrounding solvent 
molecules, F

• 3) Tortuosity of diffusion pathways due to the steric exclusion of solutes in 
the matrix, S

𝐷𝑒𝑓𝑓 = 𝐷0𝐹𝑆

So, how do we solve for F and S?



Hydrodynamic Interactions, F

F is a ratio:

𝐹 =
𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓. 𝑜𝑓 𝑠𝑜𝑙𝑢𝑡𝑒 𝑖𝑛 𝑝𝑜𝑟𝑜𝑢𝑠 𝑚𝑒𝑑𝑖𝑎

𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓. 𝑜𝑓 𝑠𝑜𝑙𝑢𝑡𝑒 𝑖𝑛 𝑤𝑎𝑡𝑒𝑟

F measures the enhancement of drag on solute molecule due to presence 
of polymeric fibers in water

→Friction coeff. in water = 6𝜋𝜇𝑟𝑠

𝜇 = 𝑣𝑖𝑠𝑐𝑜𝑐𝑖𝑡𝑦
𝑟𝑠 = 𝑟𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒



Hydrodynamic Interactions, F cont. 

1) Effective-
medium or 

Brinkman-medium

2) 3-D space with 
cylindrical fibers 

model

Two approaches to determining F:



1) Effective-Medium or Brinkman-Medium

• Assumptions: 
• Hydrogel is a uniform medium 

• Spherical solute molecule 

• Constant velocity

• Movement governed by 
Brinkman Equation

𝐹 = 1 +
𝑟𝑠

𝑘
+
1

9

𝑟𝑠

𝑘

2 −1

where 𝜙𝐵 = 𝜙𝐿 = 0



2) 3-D space with cylindrical fibers model

• Assumptions: 
• Hydrogel is modeled as 3-D 

spaces filled with water and 
randomly placed cylindrical 
fibers

• Movement of spherical particles 
is determined by Stokes-Einstein 
Equation

𝐹 𝛼, 𝜃 = exp(−𝑎1𝜃
𝑎2) pg. 426

→done after normalization of 6𝜋𝜇𝑟𝑠



2) 3-D space with cylindrical fibers model 
cont. 

𝐹 𝛼, 𝜃 = exp(−𝑎1𝜃
𝑎2)

Depends on: 

𝛼 =
𝑓𝑖𝑏𝑒𝑟 𝑟𝑎𝑑𝑖𝑖

𝑠𝑜𝑙𝑢𝑡𝑒 𝑟𝑎𝑑𝑖𝑖

𝜃 =
𝑓𝑖𝑏𝑒𝑟 𝑣𝑜𝑙𝑢𝑚𝑒

ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑙 𝑣𝑜𝑙𝑢𝑚𝑒

Where: 𝑎1 = 3.272 − 2.460𝛼 + 0.822𝛼2

𝑎2 = 0.358 + 0.366𝛼 − 0.0939𝛼2



Tortuosity Factor, S

• Depends on 𝑓𝑎

𝑓𝑎 = (1 +
1

𝛼
)2

• 𝑓𝑎 is the excluded volume fraction of solute in hydrogel if:  
• Low fiber density 

• Fibers arranged in parallel manner

• If 𝑓𝑎 < 0.7
𝑆 𝛼, 𝜃 = 𝑒𝑥𝑝 −0.84𝑓𝑎

1.09



Effective Diffusion Coefficient: In 
Liquid-Filled Pore and Biological 

Tissue
Chapter 8: Section 4.3-4.4
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Effective Diffusion Coefficient in a Liquid-
Filled Pore
• Depends on diffusion coefficient D0 of solutes in water, hydrodynamic 

interactions between solute and solvent molecules, and steric 
exclusion of solutes near the walls of pores

• Assume entrance effect is negligible: 

𝑣𝑧 = 2𝑣𝑚(1 −
𝑟

𝑅
)2

vz is the axial fluid velocity
vm is the mean velocity in the pore
r is the radial coordinate 
R is the radii of the cylinder
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• Assume the volume fraction of spherical solutes is less than 
2λ

3

• Solute-Solute interactions become negligible

• When λ ->0, solute-pore interactions are negligible 

λ =
𝑎

𝑅
a is the radii of the solute
R is the radii of the cylinder 

𝑁𝑧 = −𝐷0
𝜕𝐶

𝜕𝑧
+ 𝐶𝑣𝑧 Nz is the flux

D0 is the diffusion coefficient
C is the solute concentration 
z is the axial coordinate 

𝐶 = ቊ
𝐶 𝑧 0 ≤ 𝑟 ≤ 𝑅 − 𝑎
0 𝑅 − 𝑎 < 𝑟 ≤ 𝑅

58



When λ does not approach 0:

𝑁𝑠 = −
𝐷0
𝐾

𝑑𝐶

𝑑𝑧
+ 𝐺𝐶𝑣𝑧

K is the enhanced friction coefficient
G is the lag coefficient
K and G are functions of λ and r/R 

Flux averaged over the entire cross-sectional area: 

ഥ𝑁𝑠 =
2

𝑅2
න
0

𝑅

𝑁𝑠𝑟𝑑𝑟

Integrating the top flux equation: 

ഥ𝑁𝑠 = −𝐻𝐷0
𝑑𝐶

𝑑𝑧
+𝑊𝐶𝑣𝑚
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H and W are called hydrodynamic resistance coefficients

𝐻 =
2

𝑅2
න
0

𝑅−𝑎 1

𝐾
𝑟𝑑𝑟

𝑊 =
4

𝑅2
න
0

𝑅−𝑎

𝐺 1 −
𝑟

𝑅

2

𝑟𝑑𝑟
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𝐷𝑒𝑓𝑓 = 𝐻𝐷0

Centerline approximation: assume all spheres are distributed on the centerline position in the pore
For λ < 0.4:

𝐾−1 λ, 0 = 1 − 2.1044λ + 2.089λ3 − 0.948λ5

𝐺 λ, 0 = 1 −
2

3
λ2 − 0.163λ3
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𝐻 λ = Φ 1 − 2.1044λ + 2.089λ3 − 0.948λ5

𝑊 λ = Φ 2 −Φ 1 −
2

3
λ2 − 0.163λ3

Φ = 1 − λ 2Partition coefficient of solute in the pore: 

For λ > 0.4:



Diffusion of spherical molecules between parallel plates:
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ഥ𝑁𝑠 = −𝐻𝐷0
𝑑𝐶

𝑑𝑧
+𝑊𝐶𝑣𝑚

ഥ𝑁𝑠 =
1

ℎ
න
0

ℎ

𝑁𝑠𝑑𝑦

𝐻 =
1

ℎ
න
0

ℎ−𝑎 1

𝐾
𝑑𝑦

𝑊 =
3

2ℎ
න
0

ℎ−𝑎

𝐺 1 −
𝑦

ℎ

2

𝑑𝑦h is the half-width of the slit

𝐷𝑒𝑓𝑓 = 𝐻𝐷0

K and G depend on λ and y/h 

𝐻 λ = Φ 1 − 1.004λ + 0.418λ3 + 0.21λ4 − 0.169λ5 + 𝑂λ6

𝑊 λ =
Φ

2
3 − Φ2 1 −

1

3
λ2 + 𝑂λ3

Φ = 1 − λ



Effective Diffusion Coefficient in Biological 
Tissues

𝐷𝑒𝑓𝑓 = 𝑏1 𝑀𝑟
−𝑏2

Mr is the molecular weight of the solutes
b1 and b2 are functions of charge and shape of solutes, and structures of tissues 

The effects of tissue structures on Deff increases with the size of solutes 
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Fluid Transport in Poroelastic 
Materials

Section 8.5
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Biological Tissues:

• Deformable

• Deformation can be linear or nonlinear 
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"Extreme softness of brain 
matter in simple shear"”



Poroelastic Response
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𝜎𝑥𝑥𝜎𝑥𝑥

𝜎𝑦𝑦

𝜎𝑦𝑦

𝑥

𝑦

𝜎𝑥𝑦

Total Stress = Effective Stress + Pore Pressure

𝝈 = 𝝉 + 𝑝𝑰

Pore Fluid Pressure, 𝑝

Porosity, ε
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𝝈 =

𝜏𝑥𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧
𝜏𝑦𝑥 𝜏𝑦𝑦 𝜏𝑦𝑧
𝜏𝑧𝑥 𝜏𝑧𝑦 𝜏𝑧𝑧

+

𝑝 0 0
0 𝑝 0
0 0 𝑝

= 2𝜇𝐺𝑬 + 𝜇λ𝑒𝑰 + 𝑝𝑰

𝑰 =
1 0 0
0 1 0
0 0 1

Must be describing stresses that are NOT pore 
pressure related

If,

then,

Understanding the linear function of Stress



Understanding the linear Function of Stress
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𝝈 = 2𝜇𝐺𝑬 + 𝜇λ𝑒𝑰 + 𝑝𝑰

We know this is pore pressure, 
and this is the only force 

happening INTERNALLY, right?

Then, these two terms must be 
describing the forces 

EXTERNALLY. How many external 
forces are there? Shear and 

Normal. Which term is which?

We must look at the Lamé
constants…



LamÉ Constants

• Named after French Mathematician, Gabriel Lamé
• Two constants which relate stress to strain in isotropic, elastic 

material
• Depend on the material and its temperature
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𝝁𝝀 : first parameter (related to bulk modulus)
𝝁𝑮 : second parameter (related to shear modulus)

𝜇𝜆 = 𝐾 − ൗ2 3 𝜇𝐺

𝜇𝐺 =
𝜏

𝛾
=

∆𝐹
𝐴
∆𝐿
𝐿



Understanding the linear Function of Stress
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𝝈 = 2𝜇𝐺𝑬 + 𝜇λ𝑒𝑰 + 𝑝𝑰

Describes 
INTERNAL FORCES

Describes 
EXTERNAL BULK 

FORCES

Describes 
EXTERNAL SHEAR 

FORCES

Now we need to understand E 
and e…



• E = strain tensor (vector gradient)
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Understanding the linear Function of Stress
𝐸 =

1

2
[𝛻𝑢 + 𝛻𝑢 𝑇]

𝐸 =
1

2

2
𝜕𝑢𝑥
𝜕𝑥

𝜕𝑢𝑦

𝜕𝑦
+
𝜕𝑢𝑥
𝜕𝑥

𝜕𝑢𝑧
𝜕𝑧

+
𝜕𝑢𝑥
𝜕𝑥

𝜕𝑢𝑥
𝜕𝑥

+
𝜕𝑢𝑦

𝜕𝑦
2
𝜕𝑢𝑦

𝜕𝑦

𝜕𝑢𝑧
𝜕𝑧

+
𝜕𝑢𝑦

𝜕𝑦

𝜕𝑢𝑥
𝜕𝑥

+
𝜕𝑢𝑧
𝜕𝑧

𝜕𝑢𝑦

𝜕𝑦
+
𝜕𝑢𝑧
𝜕𝑧

2
𝜕𝑢𝑧
𝜕𝑧

𝛻𝑢 =
𝜕𝑢𝑥
𝜕𝑥

,
𝜕𝑢𝑦

𝜕𝑦
,
𝜕𝑢𝑧
𝜕𝑧

(𝛻𝑢)𝑇=

𝜕𝑢𝑥
𝜕𝑥
𝜕𝑢𝑦
𝜕𝑦
𝜕𝑢𝑧
𝜕𝑧

• e = volume dilation (scalar divergence) 𝑒 = 𝑇𝑟 𝐸 = 𝛻 ∙ 𝑢

𝑒 = 𝛻 ∙ 𝑢 =
𝜕𝑢𝑥
𝜕𝑥

+
𝜕𝑢𝑦

𝜕𝑦
+
𝜕𝑢𝑧
𝜕𝑧
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Understanding the linear Function of Stress
• So now we understand this:

𝝈 = 2𝜇𝐺𝑬 + 𝜇λ𝑒𝑰 + 𝑝𝑰
A scalar quantity 

that’s multiplied by 
the identify matrix 
to make a tensor in 

units of pressure

A scalar quantity 
that’s multiplied by 
the identify matrix 
to make a tensor in 

units of stress

A tensor that’s in 
units of stress

Now we can reduce mass 
conservation equations to get an 

equation we can use to solve 
problems like these! 



Deriving mass and Momentum equations
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𝜕(𝜌𝑓휀)

𝜕𝑡
+ 𝛻 ∙ 𝜌𝑓휀𝑣𝑓 = 𝜌𝑓(𝜙𝐵 − 𝜙𝐿)

mass conservation in the fluid phase is this:

mass conservation in the solid phase is this:

𝜕[𝜌𝑠 1 − 휀 ]

𝜕𝑡
+ 𝛻 ∙ 𝜌𝑠(1 − 휀)

𝜕𝒖

𝜕𝑡
= 0



Deriving mass and Momentum equations

74

𝜕(𝜌𝑓휀)

𝜕𝑡
+ 𝛻 ∙ 𝜌𝑓휀𝑣𝑓 − 𝜌𝑓 𝜙𝐵 − 𝜙𝐿 =

𝜕[𝜌𝑠 1 − 휀 ]

𝜕𝑡
+ 𝛻 ∙ 𝜌𝑠(1 − 휀)

𝜕𝒖

𝜕𝑡

Summing the two equations together:

𝜕(𝜌𝑓휀)

𝜕𝑡
+ 𝛻 ∙ 𝜌𝑓휀𝑣𝑓 − 𝛻 ∙ 𝜌𝑠 1 − 휀

𝜕𝒖

𝜕𝑡
=
𝜕 𝜌𝑠 1 − 휀

𝜕𝑡
+ 𝜌𝑓 𝜙𝐵 − 𝜙𝐿

𝛻 ∙ 휀𝑣𝑓 − 1 − 휀
𝜕𝒖

𝜕𝑡
= 𝜙𝐵 − 𝜙𝐿



Biot Law

• According to a paper written in 1984 (that I do not have access too):

• Zienkiewicz, O. C., and T. Shiomi. "Dynamic behaviour of saturated porous media; the generalized Biot
formulation and its numerical solution." International journal for numerical and analytical methods in 
geomechanics 8.1 (1984): 71-96.
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휀 𝑣𝑓 −
𝜕𝒖

𝜕𝑡
= −𝐾𝛻𝑝

𝛻 ∙ 𝝈 = 0



Using BIOTS law to substitute…
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𝛁 ∙ 𝝈 = 𝜇𝐺𝛻
2𝒖 + (𝜇𝐺 + 𝜇λ)𝛻𝑒 + 𝛻𝑝 = 𝟎

(2𝜇𝐺 + 𝜇λ)𝛻
2𝑒 = 𝛻2𝑝
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𝜕𝒆

𝜕𝑡
= 𝐾𝛻2𝑝 + 𝜙𝐵 − 𝜙𝐿

휀 𝛻 ∙ 𝑣𝑓 −
𝜕𝒆

𝜕𝑡
= −𝐾𝛻2𝑝

If volume dilation 
and hydraulic 

conductivity are 
homogenous

𝜕𝒆

𝜕𝑡
= 𝐾(2𝜇𝐺 + 𝜇λ)𝛻

2𝑒 + 𝜙𝐵 − 𝜙𝐿

Coefficient of consolidation


