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Interface: border between solid and void spaces

Total interface area

Units =

length

5 Fic S e
pecific Surface = s Total volume

Void volume

Porosity = € = € is dimensionless
Y Total volume

Void volume: total volume of void space in a porous medium

To give you an idea of values:

If total volume is based on interstitial space: € is generally > 0.9
If € is generally < 0.30, cells and vessels should be considered
Note: In some tumors, € is as high as 0.6



Void volume

POrOS|ty (8) POTOSlty = & =
* Context: porous medium

* Does not provide information on how pores are connected or number of
pores available for water and solute transport

Total volume

s M | Passing pores (1)
b penetrable pores | £ =g + gp + €,
' pOl'CS

\ nonpassing pores (2)
isolated pores (3)

Note: isolated pores are not accessible to external solvents and solutes: They can sometimes be considered part of the solid phase



Tortuosity (T)

* L., is the shortest path length
* Lis the straight-line distance between A and B

2

Lo
Tz(mm)
L

T is always greater than or equal to unity



Available Volume Fraction (K,y)

Available Volume: portion of accessible volume that can be occupied by the solute.
Not all penetrable pores are accessible to solutes

Available volume

KAV —

Total volume



_____________ __q__k____if‘_______q_, Available volume
K —_—

AV Total volume

K,y is molecule dependent and always smaller than porosity.

This can be caused by 3 scenarios:

1) Centers of the solute molecules cannot reach the solid surface in the void space
Difference between total void volume and the available volume can be estimated as
the product of the area of the surface and distance (A) between solute and surface

2) Some of the void space is smaller than the solute molecules
3) Inaccessibility of large penetrable pores surrounded by pores smaller than the solutes

Generally, K, decreases with size of solutes



 Partition Coefficient (D): ratio of available volume to void volume

* Measure of solute partitioning at equilibrium between external solutions and
void space in porous media
_ K
€

)



Exclusion Volume

* Some porous media are fiber matrices: space inside and near surface
of fibers not available to solutes

e Exclusion Volume: size of the space

2
Exclusion volume = n(rf + rS) L

re and r, are the radii of the fiber and solute
L is the length of the fiber
N is the number of the fibers

If minimum distance between fibers is larger than 2(ry + 75), such as when fiber density

is very low or when fibers are parallel: ,
w(rs +1.)°LN T
O+ 7N _ (—S + 1)

V T'f
0 is the volume fraction of fibers (e=1- 8 when 8 is much less than unity) <r 2
S
5 1)

Exclusion volume fraction =

K,y = 1 — exclusion volume fraction =1—6 ”
f
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When 6 (1 + :—S) is much less than unity, Ogston Equation (eq. 8.2.24 in book) reduces to previous equation.
f

Porosity can be derived from the Ogston Equation by letting r.=0

& = exp|—0]

When 0 is much less than unity:

c=1-6

Partition coefficient of solutes in liquid phase of fiber-matrix material:

exp|—60|(1+ (:—;)

2

b =

1-6



Darcy’s Law



Darcy’s Law

* Flow rate is proportional to pressure gradient so rate = constant *grad(p)

* Valid in many porous media
* NOT valid for:

* Non-Newtonian fluids (what is a Newtonian fluid?)
* Newtonian liquids at high velocities
* Gasses at very low and high velocities



Darcy’s Law

Describing fluid flow in porous media
* Two Ways:

* Numerically solve governing equations for fluid flow in individual pores if
structure is known

e Assume porous medium is a uniform material (Continuum Approach)



Three Length Scales

1. 6 = average size of pores

2. L =distance which macroscopic changes of physical quantities must
be considered (ie. Fluid velocity and pressure)

3. | = a small volume with dimension [3 J
Continuum Approach Requires: %

e d<<ly<<lL




Darcy’s Law

* [, = Representative Elementary Volume from [,*> (REV)
e [,<<L

* Total volume of REV can give the averaging over a volume value

* V; = fluid velocity of each fluid particle averaged in the volume of the
fluid phase

* V = velocity of each fluid particle averaged in the REV
* V=gV,



Darcy’s Law

e Law of Mass Conservation
* No Fluid Production = “Source”
* Fluid Consumption = “Sink”

Mass Balance with velocities
*V xv= ¢g-¢,

* V x&vi= ¢g-9,

e Determined by Starling’s Law (more in chapter 9)
* ¢pg = volumetric flow from sources (units?)
* ¢, = volumetric flow from sinks (L=lymphatic drainage)

. Ifhvoléjme of the system is not changing or if the flow in and flow out are balanced
then:



Darcy’s Law

* Momentum Balance in Porous Media
e v=-KIp

* Vp = gradient of hydrostatic pressure
e K = hydraulic conductivity constant
* p = average quantity within the fluid phase in the REV



Darcy’s Law

 Substituting the Equations to form:
*V x(-KVp) = ¢g-9,

* Steady State:
e /2*p=0



Brinkman Equation



Brinkman Equation

ok = Ku
o k is the specific hydraulic permeability (usually units of nm?)
o Darcy’s law is used when k is low: when k is much smaller than the square of L
o When k is not low: Brinkman Equation

oBrinkman Equation:
O UV — =V — Vp=0

o Darcy’s Law is a special case of this equation when the first term =0 (V =
— KVp)



The beginning of example 8.7






Flow is unidirectional in the channel and is governed by:
Mass balance
Brinkman equations

V2V — =V = Vp=0; k = Ky



Flow is unidirectional in the channel and is governed by:
Mass balance
Brinkman equations

V2V — =V = Vp=0; k = Ky
uvzy — %V — Vp=0



Flow is unidirectional in the channel and is governed by:
Mass balance
Brinkman equations

V2V — =V = Vp=0; k = Ky
UV — =V — Vp=0
uv? U Vp 0

— V=V —-——==
[0 ku nooou



Flow is unidirectional in the channel and is governed by:
Mass balance
Brinkman equations

V2V — =V = Vp=0; k = Ky
UV — =V — Vp=0

2 /p 0

W oyt _P_7
[0 ku nooou
gy L _ P

ku



Flow is unidirectional in the channel and is governed by:
Mass balance
Brinkman equations

V2V — =V = Vp=0; k = Ky
UV — =V — Vp=0

wer, om0 _0
[0 k# Vu [0
4
V2 —— = —
k u
V., Vp
2 __x=_= n X
VAV - . V-



Flow is unidirectional in the channel and is governed by:
Mass balance
Brinkman equations

Vp Vi
— =y =
U k
V2V — =V = Vp=0; k = Ky
2y _ KRy —
”‘72 k/ Vp=0 How?
0
wer om0
u k# VM u
p
V2 ——=—
k u
V., Vp <
Vz __x=_= n X



Solving for Example 8.7




Consider using

* Laplace
e Undetermined coefficients



Laplace Transformation
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Laplace gives you both the homog. and particular solns.



TABLE 3.4.1 Trial Particular Solutions

L e sl AR R

Undetermined Coefficients

50 ASShye %/m—n’c,[‘q

This method is only for calculating the particular solution



This is the end of example 8.7



Squeeze Flow

o Squeeze flow is the fluid flow caused by the relative movement of
solid boundaries towards each other

o Tissue deformation causes change in volume fraction of the
interstitial space

o Leads to fluid flow



Squeeze Flow
A

Cell membrane

A A e A A e

Vi

Vi

0

LA A TSR LTS PSP LT AT AT IS ISP P A TS

Cell membrane

Vh is the velocity of cell membrane

movement

oThese equations will be

discussions The derivation of

I o more useful and will make
more sense in later
> (] .
R themisin 8.3.3

R is the radius of the plate

z and r are cylindrical coordinates

Vr is velocity in the r direction

Vz is velocity in the z direction

Vi [cosh(z/\//;)/cosh(h/\/lz)—l] |

" 2Ve [anh(WVR)~(wVR)]

Vz

oVelocity profiles:

Vi

sinh( z/ \/E)/cosh(w \/E)— (Z/\/l:

%
[canh(bVR)~(bVE)] "



8.4 Solute Transport in

Porous Media
8.4.1-8.4.2



8.4.1 General Considerations

* Solute Transport in Porous Media

1, o

0 Z

o O
._>




8.4.1 General Considerations

* There are 4 general problems using the continuum approach(Darcy’s
Law) for analyzing transport of solutes through porous media

2) Solute velocity

4) Boundary
Conditions

3) Dispersion




 Diffusion of solutes is characterized by the effective diffusion
coefficient: Ders

* Dgsrin porous media < Dy¢f in solutions  Why?...



1) Des s cont.

* Factor effecting Diffusion in Porous Media:
e Connectedness of Pores

Layer 100

A

Layer 1

1 100
Layer #

As we near layer 100, available space for diffusion and D, decrease exponentially



2) Solute Velocity

e Convective velocities # Solvent velocities

e Solutes are hindered by porous
structures

* Ex: filtering coffee grounds

f vs _ solute velocity

Vf  solvent velocity

f is retardation coefficient




2) Solvent Velocity cont.

* 0 =1 — f :reflection coefficient

 Characterizes the hindrance of convective
transport across a membrane

* f is dependent on:

* Fluid velocity
e Solute size
* Pore Structure

* Flux of Convective transport across tissue:

Ns = vsC = fveC

Where v,is solute velocity and C is local concentration of solutes



3) Dispersion of Solutes

D =2 DQCCDJ

(a) Velocity vanation inside pore (b) Vanation of pore diameter (c) Vanation of direction of pore




4) Boundary Conditions

 Concentrations of solutes can be discontinuous at interfases between
solutions and porous media
* Thus, for two regions, 1 and 2

N1 — Nz N = flux
and
C1 — C2 K44 = area fraction available
Kaa1 Kaaz at interphase for solute

transport



When all 4 are considered...

Governing Equation for Transport of neutral molecule through
porous media:

—+ V(ffo) = DeffV C+ ¢p— ¢, +0Q

Y

Flux of |
sotropic, uniform ;
_ Solute vel.  Reaction
Convective and dispersion
Transport coefficient is

- If we do consider dispersion coefficient:
negllglble Deff = Deff + Disp. Coeff.



Governing Equation cont.

aC 2
— 4 V(ffo) = DeffV C+ ¢pp— ¢, +0

ot
C.d by, 0 avg.quantity
P PE LY unit tissue volume
avg.quantity
f, Uf, Deff:

unit volume of fluid phase



8.4.2 Effective Diffusion Coefficient in
Hydrogels

* 3 Factors effecting D, ¢¢ of uncharged solutes in hydrogels:

* 1) Diffusion coefficient of solutes in WATER (D)
 2) Hydrodynamic Interactions between solute and surrounding solvent

molecules, F
 3) Tortuosity of diffusion pathways due to the steric exclusion of solutes in

the matrix, S
Deff — DOFS

So, how do we solve for F and S?



Hydrodynamic Interactions, F

FIs a ratio:
friction coeff.of solute in porous media

friction coeff.of solute in water

—Friction coeff. in water = 6mrury

U = viscocity
. = radius of molecule

F measures the enhancement of drag on solute molecule due to presence
of polymeric fibers in water



Hydrodynamic Interactions, F cont.

Two approaches to determining F:

1) Effective- 2) 3-D space with

medium or cylindrical fibers
Brinkman-medium model




1) Effective-Medium or Brinkman-Medium

* Assumptions:
* Hydrogel is a uniform medium
* Spherical solute molecule
* Constant velocity

* Movement governed by
Brinkman Equation

1+’"_s+1(r_s)2
Vi 9\Vk

where ¢pg = ¢p; =0

-1
F =




2) 3-D space with cylindrical fibers model

* Assumptions:

* Hydrogel is modeled as 3-D
spaces filled with water and
randomly placed cylindrical
fibers

 Movement of spherical particles
is determined by Stokes-Einstein
Equation

F(a,0) = exp(—a,0%) pg. 426

—done after normalization of 6mrur;



2) 3-D space with cylindrical fibers model

cont.

F(a,0) = exp(—a,0%2)

Depends on:
fiber radii

solute radii

fiber volume

hydrogel volume

Where: a; = 3.272 — 2.460a + 0.822a*
a, = 0.358 + 0.366a — 0.0939a?



Tortuosity Factor, S

* Depends on f,
1
fa= (142

* f, is the excluded volume fraction of solute in hydrogel if:
* Low fiber density

* Fibers arranged in parallel manner

« If f, < 0.7
S(a,0) = exp[—0.84fa1'09]



Effective Diffusion Coefficient: In
Liguid-Filled Pore and Biological
Tissue

Chapter 8: Section 4.3-4.4



Effective Diffusion Coefficient in a Liquid-
Filled Pore

* Depends on diffusion coefficient D, of solutes in water, hydrodynamic

interactions between solute and solvent molecules, and steric
exclusion of solutes near the walls of pores

* Assume entrance effect is negligible:

v, is the axial fluid velocity
r v_ is the mean velocity in the pore
— _ _\2 m
vz = 2vm(1 R) r is the radial coordinate
R is the radii of the cylinder

@ -




. . . 22\
* Assume the volume fraction of spherical solutes is less than ey

A = a is the radii of the solute
R R is the radii of the cylinder

* Solute-Solute interactions become negligible
 When A ->0, solute-pore interactions are negligible

N, =—-Dy—+ Cv, N, is the flux

D, is the diffusion coefficient
C is the solute concentration
z is the axial coordinate

C = C(z) 0<r<R-a
0 R—a<r<R



When A does not approach O:

N Dot | 6c
= ——— v
> K dz z

K is the enhanced friction coefficient
G is the lag coefficient
K and G are functions of A and r/R
Flux averaged over the entire cross-sectional area:
_ 2 (R
NS ﬁ ) NSTdT'

Integrating the top flux equation:

dC
Ny = —HDo— + WCu,



H and W are called hydrodynamic resistance coefficients

2 (R-aq
—rdr

H=—
R2J), K

Deff — HDO

Centerline approximation: assume all spheres are distributed on the centerline position in the pore

ForA < 0.4:
K 1(A,0) =1 — 2.1044A + 2.089A3 — 0.948A°

2
G(A,0)=1-— 57\2 — 0.163A3



HA) = &(1 — 2.1044X + 2.0892A3 — 0.9481°)

2
WQ) = &2 — ) (1 —ZA2 - 0.1637\3>

3
Partition coefficient of solute in the pore: d = (1 —2)*?
1.0 —
For A > 0.4:
g
8
7 W)
& E 0.6
- B
§ % 0.4 H(A)
59 0
2
> 02
0.0 | | | |
0.00 0.10 0.20 0.30 0.40



Diffusion of spherical molecules between parallel plates:

dC
Ny = —HDo— + WCvy,

_ 1 rh
NS:EJ Nsdy
0

|
H=- —d
hjo K

3 h—a y 2
h is the half-width of the slit W =— G|1—(>=) |d
is the half-width of the sli T [ (h)]y
Deff — HDO
K and G depend on A and y/h
H(A) = ®[1 — 1.004A + 0.418A3 + 0.21A* — 0.169)A° + 0A°]

D 1
WO\) =§(3 - CDZ) 1 —g}\z + 0}\3



Effective Diffusion Coefficient in Biological
Tissues

Defs = by (M;)™"2

M, is the molecular weight of the solutes
b, and b, are functions of charge and shape of solutes, and structures of tissues

The effects of tissue structures on D increases with the size of solutes



Fluid Transport in Poroelastic
Materials

Section 8.5



Biological Tissues:

e Deformable
* Deformation can be linear or nonlinear

"Extreme softness of brain

n»n

matter in simple shear

65



Poroelastic Response

Porosity, €

Pore Fluid Pressure, p

Total Stress = Effective Stress + Pore Pressure

o= T+pl



Understanding the linear function of Stress

If,

o O -
iy )
_o O
—_——

then,

Txx Txy Txz
o= |Tyx Tyy Tyz
Tzx Tzy Tzz

p 00
+|0 p O =2ucE + wel + pl
0 0p

Must be describing stresses that are NOT pore
pressure related



Understanding the linear Function of Stress

o= 2ucE + mel + pl
We know this is pore pressure,

and this is the only force
happening INTERNALLY, right?

Then, these two terms must be
describing the forces
EXTERNALLY. How many external
forces are there? Shear and
Normal. Which term is which?

We must look at the Lamé
constants...



LamE Constants

* Named after French Mathematician, Gabriel Lamé

* Two conlstants which relate stress to strain in isotropic, elastic
materia

 Depend on the material and its temperature
Hp =K — 2/ 3 MG

W, : first parameter (related to bulk modulus)
W - second parameter (related to shear modulus)

>

F
A
AL
L

Ue =

<1



Understanding the linear Function of Stress

Describes
EXTERNAL SHEAR
FORCES

o= 2uczE+ el +pl

Now we need to understand E
and e...

Describes
INTERNAL FORCES

Describes
EXTERNAL BULK
FORCES



Understanding the linear Function of Stress

1
* E =strain tensor (vector gradient) £ =3[Vu+ (Vu)’]

o, [ 2% du,, N ou, Ju, N
0. . B Ox d0x dy dx 0z
Vu = ( ux’ uy, uZ) (Vu)T=| du,, - 1|ou, N du, ) du,, ou, N
dx ~ 0y 0z dy - 2lox oy dy 0z
Ou, ou, Ou, OJu, OJu ou
y 4 VA
0z | 0x * dz 0dy * 0z 0z
e = volume dilation (scalar divergence) e=Tr(E)=V-u

du, Ou, Ju,




Understanding the linear Function of Stress

e So now we understand this:

o =2UzE+ wel +pl
A scalar quantity
that’s multiplied by
the identify matrix
A tensor that’s in to make a tensor in
units of stress units of pressure

A scalar quantity
that’s multiplied by
the identify matrix
to make a tensor in

Now we can reduce mass units of stress

conservation equations to get an
equation we can use to solve
problems like these! ©



Deriving mass and Momentum equations

mass conservation in the fluid phase is this:

d
(gis) + V- (preve) = pr(dp — 1)

mass conservation in the solid phase is this:

a[ps(l_g)] du .
5 +\7-<ps(1—e)a>—0



Deriving mass and Momentum equations

Summing the two equations together:

0 d[ps(1 — 0
(g]tcg) +V- (,Ofevf) — Pf(¢B —¢) = L (at 2 e <p5(1 B E)G_Itl>
0 0 dlps(1 =

('gf) + V- (prevy) — V- (ps(l — 8)6_?> = lp (at 2l + pr(Pp — P1)

d
V. ((evf) - ((1 - S)a—ltl )) = (¢5 — @)




Biot Law

e According to a paper written in 1984 (that | do not have access too):

e Zienkiewicz, O. C., and T. Shiomi. "Dynamic behaviour of saturated porous media; the generalized Biot
formulation and its numerical solution." International journal for numerical and analytical methods in
geomechanics 8.1 (1984): 71-96.



Using BIOTS law to substitute...

V-o=uVu+ (ug + 1;)Ve+Vp =0

(Rug + m)V?e =V?p




d
a_i=K‘72P+(¢B — ¢r)

If volume dilation
and hydraulic
conductivity are
homogenous

ot

€= KQug + m)V?e + (¢pp — ¢1)

Coefficient of consolidation
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