BMOLE 452-689 - Transport Chapter 6. Mass Transport in Biological Systems

Text Book: Transport Phenomena in Biological Systems
Authors: Truskey, Yuan, Katz
Focus on what is presented in class and problems...

Dr. Corey J. Bishop

Assistant Professor of Biomedical Engineering
Principal Investigator of the Pharmacoengineering Laboratory:
pharmacoengineering.com
Dwight Look College of Engineering
Texas A\&M University
Emerging Technologies Building Room 5016
College Station, TX 77843
cbishop@tamu.edu

Non-steady State Diffusion

- Sample Problem: An FCC iron-carbon alloy initially containing $0.20 \mathrm{wt} \% \mathrm{C}$ is carburized at an elevated temperature and in an atmosphere that gives a surface carbon concentration constant at $1.0 \mathrm{wt} \%$. If after 49.5 h the concentration of carbon is $0.35 \mathrm{wt} \%$ at a position 4.0 mm below the surface, determine the temperature at which the treatment was carried out.
- Solution: use Eqn.

$$
\frac{C(x, t)-C_{o}}{C_{s}-C_{o}}=1-\operatorname{erf}\left(\frac{x}{2 \sqrt{D t}}\right)
$$

$$
\frac{C(x, t)-C_{o}}{C_{s}-C_{o}}=1-\operatorname{erf}\left(\frac{x}{2 \sqrt{D t}}\right)
$$

- $t=49.5 \mathrm{~h} \quad x=4 \times 10^{-3} \mathrm{~m}$
- $C_{x}=0.35 \mathrm{wt} \% \quad C_{s}=1.0 \mathrm{wt} \%$
- $C_{o}=0.20 \mathrm{wt} \%$

$$
\begin{gathered}
\frac{C(x, t)-C_{0}}{C_{s}-C_{o}}=\frac{0.35-0.20}{1.0-0.20}=1-\operatorname{erf}\left(\frac{x}{2 \sqrt{D t}}\right)=1-\operatorname{erf}(z) \\
\therefore \operatorname{erf}(z)=0.8125
\end{gathered}
$$

Problem 6.1

- Compare Ds... where $T=298 K$, Diameter $=0.3467$ nm; For oxygen the partial molar volume is $25.6 \mathrm{~cm}^{\wedge} 3 / \mathrm{mol}$.
- S.E. $\Rightarrow D=\frac{K_{B} T}{6 л \mu R}$
- Wilkie-Change (semi-empirical) \Rightarrow

$$
D=7.4 e-10 \frac{T(\varphi M)^{0.5}}{\mu V_{o}^{0.6}} ; \varphi_{\text {water }}=2.26
$$

Problem 6.1

- Compare Ds... where $T=298 K$, Diameter $=0.3467$ nm; For oxygen the partial molar volume is $25.6 \mathrm{~cm}^{\wedge} 3 / \mathrm{mol}$. Ans is $2.1 \mathrm{e}-5 \mathrm{~cm}^{\wedge} 2 / \mathrm{s}$
- S.E. $\Rightarrow D=\frac{K_{B} T}{6 л \mu R}=$
$\frac{1.38 e-23 \frac{\mathrm{~J}}{\mathrm{~K}} * 298 \mathrm{~K}}{6 л * 0.00089 \mathrm{~Pa} * S * 1.7335 e-10 \mathrm{~m}} * 100^{2} \mathrm{~cm}^{2} / \mathrm{m}^{2}=1.41 e-5 \frac{\mathrm{~cm}^{2}}{\text { Abs(ans-guess) }}$ 100/ans $=32.6 \%$ error
- Wilkie-Change (semi-empirical; cP and $\left.\mathrm{cm}^{3} / \mathrm{mol}\right) \Rightarrow$

$$
\begin{aligned}
& D=7.4 e-10 \frac{\mathrm{~cm}^{2}}{s} \frac{T(\varphi M)^{0.5}}{\mu V_{o}^{0.6}}=; \varphi_{\text {water }}=2.26 \\
& D=7.4 e-10 \frac{\mathrm{~cm}^{2}}{s} \frac{298 K\left(2.26 * \frac{18.015 \mathrm{~g}}{\mathrm{~mol}}\right)^{0.5}}{0.0089 c P *\left(\frac{25.6 \mathrm{~cm}^{3}}{s}\right)}=2.21 e-5 \frac{\mathrm{~cm}^{2}}{s} \\
& 5.22 \% \mathrm{error}
\end{aligned}
$$

Problem 6.2

- They want to know what D_{2} is of a protein at $25^{\circ} \mathrm{C}$. They know D_{1} ($6.8 \mathrm{e}-7 \mathrm{~cm}^{2} / \mathrm{s}$) and $\mathrm{R}_{1}(3 \mathrm{~nm})$
- $D=\frac{K_{B} T}{6 \pi \mu R}$
- $\frac{D_{1}}{D_{2}}=\frac{\left[\frac{K_{B} T}{6 \pi \mu R_{1}}\right]}{\left[\frac{K_{B} T}{6 \pi \mu R_{2}}\right]}$ so $\mathrm{D}_{2}=1.7 \mathrm{e}-7 \mathrm{~cm}^{2} / \mathrm{s}$

Problem 6.3

- MatLab:
- Using recursion relations:

$$
\begin{gathered}
\left\langle\mathrm{x}^{2}\right\rangle^{1 / 2}=\left[\left\langle\mathrm{x}_{\mathrm{n}-1}^{2}\right\rangle^{1 / 2}+\frac{1}{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{n}} \delta_{\mathrm{i}}^{2}\right]^{1 / 2} \\
r_{i}=r_{i-1}+\delta
\end{gathered}
$$

(The cross term $\sum_{i=1}^{n} \mathrm{X}_{\mathrm{n}-1} \delta_{i}$ is zero because the mean of δ_{i} is still zero. Substituting for $\mathrm{x}_{\mathrm{n}-1}$, the root mean square displacement can be written in terms of $\mathrm{x}_{\mathrm{n}-1}$:

$$
\left\langle x^{2}\right\rangle^{1 / 2}=\left[\left\langle x_{n-2}^{2}\right\rangle^{1 / 2}+\frac{2}{n} \sum_{i=1}^{n} \delta_{i}^{2}\right]^{1 / 12}
$$

Repeating this procedure until the first term on the right hand side is $\mathrm{x}_{1}=0$, the root mean square displacement becomes.

$$
\left\langle x^{2}\right\rangle^{1 / 2}=\left[\frac{n}{n} \sum_{i=1}^{n} \delta_{i}^{2}\right]^{1 / 2}=n^{1 / 2}\left\langle\delta^{2}\right\rangle^{1 / 2}
$$

Matlab "RandomWalk.m"

- Create a program that you can input either [-1 01 1] or [-1 1] with any number of steps and have it calculate the error\% for each run up to a specified value...

Problem 6.4

- Fibrinogen

- Estimate D if
- A) a prolate ellipsoid
-B) a cylindrical rod

TABLE 6.3

Values of the Mean Frictional Drag Coefficient for Different Shapes [9,10]

Shape	Frictional drag coefficient
Sphere of radius R Prolate ellipsoid, $p=a / b>1$, where a is a major axis, b is a minor axis	$\bar{f}=\frac{6 \pi \mu R}{p^{1 / 3} \ln \left[\mathrm{p}+\left(p^{2}-1\right)^{1 / 2}\right]}$
Oblate ellipsoid, $p=a / b<1$	$\bar{f}=\frac{6 \pi \mu b\left(1-p^{2}\right)^{1 / 2}}{\left.p^{1 / 3} \tan ^{-1}\left[1-p^{2}\right)^{1 / 2} p^{-1}\right]}$
Thin circular disk of radius a	
Cylinder of radius a and length L	$\bar{f}=16 \mu a$

Source: From Refs [9,10].

Note: $\mathrm{p}^{\wedge} 0.333$ is close to 1 when a and b are similar. Can remove in some cases.

Problem 6.4 (compare to table 6.4)

Note that Table 6.4 should he $7 \times 1 n^{-7} \mathrm{rm}^{2} / \mathrm{s}$ not positive $7 . .$.

- Fibrinogen
- Estimate D if
-A) a prolate ellipsoid
-B) a cylindrical roc ${ }^{\text {For a prolate ellipsoid }(p=a / b>1) \bar{f}=\frac{6 \pi \mu b\left(p^{2}-1\right)^{1 / 2}}{\ln \left[p+\left(p^{2}-1\right)^{1 / 2}\right]}}$

$$
\text { For a prolate ellipsoid }(\mathrm{p}=\mathrm{a} / \mathrm{b}>1) \overline{\mathrm{f}}=\frac{6 \pi \mu \mathrm{~b}\left(\mathrm{p}^{2}-1\right)^{1 / 2}}{\ln \left[\mathrm{p}+\left(\mathrm{p}^{2}-1\right)^{1 / 2}\right]}
$$

$$
D_{i j}=\frac{\mathrm{k}_{\mathrm{B}} T}{\bar{f}}
$$

$$
\overline{\mathrm{f}} \approx \frac{8 \pi \mu \mathrm{~L}}{3 \ln (\mathrm{~L} / \mathrm{a})-0.94}
$$

For a cylinder of radius a and length L

$$
\text { S.E. } \Rightarrow D=\frac{K_{B} T}{f_{b a r}} ; f_{b a r} \text { based on geometry }
$$

Problem 6.4

Problem 6.6

- NO = potent vasodilator for treating newborns who have pulmonary hypertension
- Examine transport of gas through an aveolus and into the capillaries.
- Gas is added at a [] < 100 ppm.
- Alveolus is modeled as a sphere of radius R_{a}

6.6

- $100 \mathrm{ppm}=>$ mole fraction of 0.001 . The maximum level of error in the flux is also on this level.
- $1-\mathrm{x}_{\mathrm{i}}=0.9999$.
- So..
- Time to reach steady state is $\mathrm{R}^{2} / \mathrm{D}_{\mathrm{ij}}$.
- Radius of alveolus $=50 \mathrm{um}=1 \mathrm{e}-2 \mathrm{~cm}$; Diffusivity $=0.2 \mathrm{~cm}^{2} / \mathrm{s}$. so Time $_{\mathrm{ss}}=1.25 \mathrm{e}-4 \mathrm{~s}$
- Gas concentration in blood is $=0$.
- Average breath is 5 seconds.

Problem 6.6
6.6 Nitric oxide (NO) is an extremely potent vasodilator that is used to treat newborns who have pulmonary hypertension and adults who have undergone certain operative procedures. We want to examine the transport of the gas through an alveolus and into the capillaries. The gas is added at a concentration of less than 100 parts per million (ppm). The alveolus is modeled as a sphere of radius R_{a} (see Figure 6.29).

Mole fraction: ?

(a) Determine the mole fraction of the gas and assess the maximum error in the flux, assuming that the gas is a dilute solution of NO.
(b) In each inspiration, the concentration of NO in each alveolus is 30 ppm and the gas is initially uniformly mixed. Is the gas completely removed between breaths? Use the following data:
alveolus radius $=50 \mu \mathrm{~m} \quad D_{\mathrm{NO}}=0.2 \mathrm{~cm}^{2} \mathrm{~s}^{-1}$ gas concentration in blood $=0$

Problem 6.6
6.6 Nitric oxide (NO) is an extremely potent vasodilator that is used to treat newborns who have pulmonary hypertension and adults who have undergone certain operative procedures. We want to examine the transport of the gas through an alveolus and into the capillaries. The gas is added at a concentration of less than 100 parts per million (ppm). The alveolus is modeled as a sphere of radius R_{a} (see Figure 6.29).

Mole fraction: 100 parts/million $=100 \mathrm{e}-6=1 \mathrm{e}-4$ The error is thus?

(a) Determine the mole fraction of the gas and assess the maximum error in the flux, assuming that the gas is a dilute solution of NO.
(b) In each inspiration, the concentration of NO in each alveolus is 30 ppm and the gas is initially uniformly mixed. Is the gas completely removed between breaths? Use the following data:
alveolus radius $=50 \mu \mathrm{~m} \quad D_{\mathrm{NO}}=0.2 \mathrm{~cm}^{2} \mathrm{~s}^{-1}$ gas concentration in blood $=0$

Problem 6.6
6.6 Nitric oxide (NO) is an extremely potent vasodilator that is used to treat newborns who have pulmonary hypertension and adults who have undergone certain operative procedures. We want to examine the transport of the gas through an alveolus and into the capillaries. The gas is added at a concentration of less than 100 parts per million (ppm). The alveolus is modeled as a sphere of radius R_{a} (see Figure 6.29).

Mole fraction: 100 parts/million $=100 \mathrm{e}-6=1 \mathrm{e}-4$ The error is thus? On this level as well....

(a) Determine the mole fraction of the gas and assess the maximum error in the flux, assuming that the gas is a dilute solution of NO.
(b) In each inspiration, the concentration of NO in each alveolus is 30 ppm and the gas is initially uniformly mixed. Is the gas completely removed between breaths? Use the following data:
alveolus radius $=50 \mu \mathrm{~m} \quad D_{\mathrm{NO}}=0.2 \mathrm{~cm}^{2} \mathrm{~s}^{-1}$ gas concentration in blood $=0$

Problem 6.6
6.6 Nitric oxide (NO) is an extremely potent vasodilator that is used to treat newborns who have pulmonary hypertension and adults who have undergone certain operative procedures. We want to examine the transport of the gas through an alveolus and into the capillaries. The gas is added at a concentration of less than 100 parts per million (ppm). The alveolus is modeled as a sphere of radius R_{a} (see Figure 6.29).

Mole fraction: 100 parts/million $=100 \mathrm{e}-6=1 \mathrm{e}-4$
The error is thus? On this level as well....
Since it is dilute we can assume what?
And flux is what?

$$
N_{1}=-C D_{i j} \nabla x_{1}+x_{1}\left(N_{1}+N_{2}\right)
$$

FIGURE 6.29 Diffusion in an alveolus.

(a) Determine the mole fraction of the gas and assess the maximum error in the flux, assuming that the gas is a dilute solution of NO.
(b) In each inspiration, the concentration of NO in each alveolus is 30 ppm and the gas is initially uniformly mixed. Is the gas completely removed between breaths? Use the following data:
alveolus radius $=50 \mu \mathrm{~m} \quad D_{\mathrm{NO}}=0.2 \mathrm{~cm}^{2} \mathrm{~s}^{-1}$ gas concentration in blood $=0$

Problem 6.6
6.6 Nitric oxide (NO) is an extremely potent vasodilator that is used to treat newborns who have pulmonary hypertension and adults who have undergone certain operative procedures. We want to examine the transport of the gas through an alveolus and into the capillaries. The gas is added at a concentration of less than 100 parts per million (ppm). The alveolus is modeled as a sphere of radius R_{a} (see Figure 6.29).

Mole fraction: 100 parts/million $=100 \mathrm{e}-6=1 \mathrm{e}-4$
The error is thus? On this level as well....
Since it is dilute we can assume what?
And flux is what?

$$
N_{1}=-C D_{i j} \nabla x_{1}+x_{1}\left(N_{1}+N_{2}\right) \quad N_{i}=-\frac{C D_{i j}}{1-x_{i}} \frac{d x_{i}}{d r} \approx C D_{i j} \frac{d x_{i}}{d r}
$$

FIGURE 6.29 Diffusion in an alveolus.

(a) Determine the mole fraction of the gas and assess the maximum error in the flux, assuming that the gas is a dilute solution of NO.
(b) In each inspiration, the concentration of NO in each alveolus is 30 ppm and the gas is initially uniformly mixed. Is the gas completely removed between breaths? Use the following data:
alveolus radius $=50 \mu \mathrm{~m} \quad D_{\mathrm{NO}}=0.2 \mathrm{~cm}^{2} \mathrm{~s}^{-1}$ gas concentration in blood $=0$

Problem 6.6
6.6 Nitric oxide (NO) is an extremely potent vasodilator that is used to treat newborns who have pulmonary hypertension and adults who have undergone certain operative procedures. We want to examine the transport of the gas through an alveolus and into the capillaries. The gas is added at a concentration of less than 100 parts per million (ppm). The alveolus is modeled as a sphere of radius R_{a} (see Figure 6.29).

Mole fraction: 100 parts/million $=100 \mathrm{e}-6=1 \mathrm{e}-4$ The error is thus? On this level as well....
Since it is dilute we can assume what?
And flux is what?

$$
N_{i}=-\frac{C D_{i j}}{l-x_{i}} \frac{d x_{i}}{d r} \approx C D_{i j} \frac{d x_{i}}{d r}
$$

\uparrow
=?

(a) Determine the mole fraction of the gas and assess the maximum error in the flux, assuming that the gas is a dilute solution of NO.
(b) In each inspiration, the concentration of NO in each alveolus is 30 ppm and the gas is initially uniformly mixed. Is the gas completely removed between breaths? Use the following data:
alveolus radius $=50 \mu \mathrm{~m} \quad D_{\mathrm{NO}}=0.2 \mathrm{~cm}^{2} \mathrm{~s}^{-1}$ gas concentration in blood $=0$

Problem 6.6

6.6 Nitric oxide (NO) is an extremely potent vasodilator that is used to treat newborns who have pulmonary hypertension and adults who have undergone certain operative procedures. We want to examine the transport of the gas through an alveolus and into the capillaries. The gas is added at a concentration of less than 100 parts per million (ppm). The alveolus is modeled as a sphere of radius R_{a} (see Figure 6.29).

Mole fraction: 100 parts $/$ million $=100 \mathrm{e}-6=1 \mathrm{e}-4$ The error is thus? On this level as well.... Since it is dilute we can assume what? And flux is what?

$$
N_{i}=-\frac{C D_{i j}}{1-x_{i}} \frac{d x_{i}}{d r}
$$

(a) Determine the mole fraction of the gas and assess the maximum error in the flux, assuming that the gas is a dilute solution of NO.
(b) In each inspiration, the concentration of NO in each alveolus is 30 ppm and the gas is initially uniformly mixed. Is the gas completely removed between breaths? Use the following data:
alveolus radius $=50 \mu \mathrm{~m} \quad D_{\mathrm{NO}}=0.2 \mathrm{~cm}^{2} \mathrm{~s}^{-1}$ gas concentration in blood $=0$
$=0.9999$ initially and grows because 0.0001 gets smaller(t)...
So...

$$
\approx C D_{i j} \frac{d x_{i}}{d r}
$$

Problem 6.6

6.6 Nitric oxide (NO) is an extremely potent vasodilator that is used to treat newborns who have pulmonary hypertension and adults who have undergone certain operative procedures. We want to examine the transport of the gas through an alveolus and into the capillaries. The gas is added at a concentration of less than 100 parts per million (ppm). The alveolus is modeled as a sphere of radius R_{a} (see Figure 6.29).

Mole fraction: 100 parts $/$ million $=100 \mathrm{e}-6=1 \mathrm{e}-4$ The error is thus? On this level as well.... Since it is dilute we can assume what? And flux is what?

$$
N_{i}=-\frac{C D_{i j}}{l-x_{i}} \frac{d x_{i}}{d r}
$$

(a) Determine the mole fraction of the gas and assess the maximum error in the flux, assuming that the gas is a dilute solution of NO.
(b) In each inspiration, the concentration of NO in each alveolus is 30 ppm and the gas is initially uniformly mixed. Is the gas completely removed between breaths? Use the following data:
alveolus radius $=50 \mu \mathrm{~m} \quad D_{\mathrm{NO}}=0.2 \mathrm{~cm}^{2} \mathrm{~s}^{-1}$ gas concentration in blood $=0$
$=0.9999$ initially and grows because 0.0001 gets smaller(t)...
So...

$$
\approx C D_{i j} \frac{d x_{i}}{d r}
$$

Problem 6.6

6.6 Nitric oxide (NO) is an extremely potent vasodilator that is used to treat newborns who have pulmonary hypertension and adults who have undergone certain operative procedures. We want to examine the transport of the gas through an alveolus and into the capillaries. The gas is added at a concentration of less than 100 parts per million (ppm). The alveolus is modeled as a sphere of radius R_{a} (see Figure 6.29).

Mole fraction: 100 parts $/$ million $=100 \mathrm{e}-6=1 \mathrm{e}-4$ The error is thus? On this level as well.... Since it is dilute we can assume what? And flux is what?

$$
N_{i}=-\frac{C D_{i j}}{1-x_{i}} \frac{d x_{i}}{d r}
$$

\uparrow
FIGURE 6.29 Diffusion in an alveolus.
(a) Determine the mole fraction of the gas and assess the maximum error in the flux, assuming that the gas is a dilute solution of NO.
(b) In each inspiration, the concentration of NO in each alveolus is 30 ppm and the gas is initially uniformly mixed. Is the gas completely removed between breaths? Use the following data:
alveolus radius $=50 \mu \mathrm{~m} \quad D_{\mathrm{NO}}=0.2 \mathrm{~cm}^{2} \mathrm{~s}^{-1}$ gas concentration in blood $=0$
$=0.9999$ initially and grows because 0.0001 gets smaller(t)...
So...

$$
\approx C D_{i j} \frac{d x_{i}}{d r}
$$

Problem 6.6

> 6.6 Nitric oxide (NO) is an extremely potent vasodilator that is used to treat newborns who have pulmonary hypertension and adults who have undergone certain operative procedures. We want to examine the transport of the gas through an alveolus and into the capillaries. The gas is added at a concentration of less than 100 parts per million (ppm). The alveolus is modeled as a sphere of radius R_{a} (see Figure 6.29).

Mole fraction: 100 parts $/$ million $=100 \mathrm{e}-6=1 \mathrm{e}-4$ The error is thus? On this level as well.... Since it is dilute we can assume what? And flux is what?

$$
N_{i}=-\frac{C D_{i j}}{1-x_{i}} \frac{d x_{i}}{d r}
$$

FIGURE 6.29 Diffusion in an alveolus.
(a) Determine the mole fraction of the gas and assess the maximum error in the flux, assuming that the gas is a dilute solution of NO.
(b) In each inspiration, the concentration of NO in each alveolus is 30 ppm and the gas is initially uniformly mixed. Is the gas completely removed between breaths? Use the following data:
alveolus radius $=50 \mu \mathrm{~m} \quad D_{\mathrm{NO}}=0.2 \mathrm{~cm}^{2} \mathrm{~s}^{-1}$ gas concentration in blood $=0$

Part b.
How long to reach steady state? $\mathrm{R}^{2} / \mathrm{D}_{\mathrm{ij}}=1.25 \mathrm{e}-4 \mathrm{~s}$ and is much shorter 5 seconds so yes, the gas is completely Removed between breaths...

Problem 6.7

6.7 An uncharged membrane separates two aqueous salt solutions that contain a protein at concentrations of C_{L} and C_{R}, with $C_{L}>C_{R}$ (see Figure 6.30). Stirring the solutions reduces, but does not eliminate, mass transfer effects near the membrane surface. The salt concentrations are the same for both solutions, so the potential differences are negligible. Figure 6.30 shows concentration distributions for the protein solutions.

For each sketch, briefly discuss whether the concentration profiles are physically possible, and if they are, determine whether the partition coefficient $\Phi\left(=C_{m} / C_{L}\right.$ or $\left.C_{m} / C_{R}\right)$ is greater than, less than, or equal to unity.

Left figure:

Reason 1 and 2 are satisfied.

Middle figure:

Reasons 1 and 2 are not satisfied.

Right figure:

Reason 2 is not satisfied.

We know flow is occurring from left to right:
Needs to hold true:
Reason 1: CL is coming from a source and is expected to be higher on the far left. It also needs to be higher than CR and CR needs to continue to drop as you go more to the right.
Reason 2: We know that the partition coefficient is the same on the left side and the right side of the membrane. Thus if the concentration on the far left of the membrane is lower than CL at the membrane, then the concentration of the membrane also needs to be lower than CR on the far right of the membrane. Similarly, if the concentration on the far left of the membrane is higher than CL at the membrane, then the concentration of the membrane also needs to be higher than CR on the far right of the membrane.

Problem 6.8
6.8 In Section 6.7, diffusion through multiple layers of tissue arranged in series was examined. Now consider steady-state diffusion through two media arranged parallel to each other (see Figure 6.31). Assume that diffusion is one dimensional. At $x=0, C_{1}=\Phi_{1} C_{0}$, and $C_{2}=\Phi_{2} \mathrm{C}_{0}$. At $x=\mathrm{L}$, $C_{1}=\Phi_{1} C_{L}$ and $C_{2}=\Phi_{2} C_{L}$. Develop an expression for the steady-state flux across the two media. Show that the diffusive resistances act in parallel.

What is your assumption based on the previous result the prob Is referring to?

FIGURE 6.31 Diffusion through two media arranged in arallel.

Problem 6.8

> 6.8 In Section 6.7, diffusion through multiple layers of tissue arranged in series was examined. Now consider steady-state diffusion through two media arranged parallel to each other (see Figure 6.31). Assume that diffusion is one dimensional. At $x=0, C_{1}=\Phi_{1} C_{0}$, and $C_{2}=\Phi_{2} C_{0}$. At $x=L$, $C_{1}=\Phi_{1} C_{L}$ and $C_{2}=\Phi_{2} C_{L}$. Develop an expression for the steady-state flux across the two media. Show that the diffusive resistances act in parallel.

What is your assumption based on the previous result the prob Is referring to?

IGURE 6.31 Diffusion through two media arranged in arallel.

Reminiscent of resistors in electrical systems!

Problem 6.8
6.8 In Section 6.7, diffusion through multiple layeers of tissue arranged in series was examined. Now consider steady-state diffusion through two media arranged parallel to each other (see Figure 6.31). Assume that diffusion is one dimensional. At $x=0, C_{1}=\Phi_{1} C_{0}$, and $C_{2}=\Phi_{2} \mathrm{C}_{0}$. At $x=\mathrm{L}$, $C_{1}=\Phi_{1} C_{L}$ and $C_{2}=\Phi_{2} C_{L}$. Develop an expression for the steady-state flux across the two media. Show that the diffusive resistances act in parallel.

What variables do we need not shown here?

Problem 6.8
6.8 In Section 6.7, diffusion through multiple layeers of tissue arranged in series was examined. Now consider steady-state diffusion through two media arranged parallel to each other (see Figure 6.31). Assume that diffusion is one dimensional. At $x=0, C_{1}=\Phi_{1} C_{0}$, and $C_{2}=\Phi_{2} \mathrm{C}_{0}$. At $x=\mathrm{L}$, $C_{1}=\Phi_{1} C_{L}$ and $C_{2}=\Phi_{2} C_{L}$. Develop an expression for the steady-state flux across the two media. Show that the diffusive resistances act in parallel.

What variables do we need not shown here?

Problem 6.8
6.8 In Section 6.7, diffusion through multiple layers of tissue arranged in series was examined. Now consider steady-state diffusion through two media arranged parallel to each other (see Figure 6.31), Assume that diffusion is one dimensional. At $x=0, C_{1}=\Phi_{1} C_{0}$, and $C_{2}=\Phi_{2} C_{0}$. At $x=L$, $C_{1}=\Phi_{1} C_{L}$ and $C_{2}=\Phi_{2} C_{L}$. Develop an expression for the steady-state flux across the two media. Show that the diffusive resistances act in parallel.

Assuming what about the concentration?

Problem 6.8
6.8 In Section 6.7, diffusion through multiple layeers of tissue arranged in series was examined. Now consider steady-state diffusion through two media arranged parallel to each other (see Figure 6.31). Assume that diffusion is one dimensional. At $x=0, C_{1}=\Phi_{1} C_{0}$, and $C_{2}=\Phi_{2} \mathrm{C}_{0}$. At $x=\mathrm{L}$, $C_{1}=\Phi_{1} C_{L}$ and $C_{2}=\Phi_{2} C_{L}$. Develop an expression for the steady-state flux across the two media. Show that the diffusive resistances act in parallel.

Assuming what about the concentration? It's dilute...

FICURE 6.31 Diffusion through two media arranged in arallel.

Problem 6.8
6.8 In Section 6.7, diffusion through multiple layers of tissue arranged in series was examined. Now consider steady-state diffusion through two media arranged parallel to each other (see Figure 6.31). Assume that diffusion is one dimensional. At $x=0, C_{1}=\Phi_{1} C_{0}$, and $C_{2}=\Phi_{2} \mathrm{C}_{0}$. At $x=\mathrm{L}$, $C_{1}=\Phi_{1} C_{L}$ and $C_{2}=\Phi_{2} C_{L}$. Develop an expression for the steady-state flux across the two media. Show that the diffusive resistances act in parallel.

What are the conservation relations for each phase?

FIGURE 6.31 Diffusion through two media arranged in arallel.

Problem 6.8
6.8 In Section 6.7, diffusion through multiple layers of tissue arranged in series was examined. Now consider steady-state diffusion through two media arranged parallel to each other (see Figure 6.31), Assume that diffusion is one dimensional. At $x=0, C_{1}=\Phi_{1} C_{0}$, and $C_{2}=\Phi_{2} C_{0}$. At $x=L$, $C_{1}=\Phi_{1} C_{L}$ and $C_{2}=\Phi_{2} C_{L}$. Develop an expression for the steady-state flux across the two media. Show that the diffusive resistances act in parallel.

What are the conservation relations for each phase?

$$
\frac{\mathrm{d}^{2} \mathrm{C}_{1}}{\mathrm{dx}^{2}}=0
$$

$$
\frac{\mathrm{d}^{2} \mathrm{C}_{2}}{\mathrm{dx}^{2}}=0
$$

What does this mean physically?

FIGURE 6.31 Diffusion through two media arranged in arallel.

Problem 6.8
6.8 In Section 6.7, diffusion through multiple layers of tissue arranged in series was examined. Now consider steady-state diffusion through two media arranged parallel to each other (see Figure 6.31). Assume that diffusion is one dimensional. At $x=0, C_{1}=\Phi_{1} C_{0}$, and $C_{2}=\Phi_{2} C_{0}$. At $x=L$, $C_{1}=\Phi_{1} C_{L}$ and $C_{2}=\Phi_{2} C_{L}$. Develop an expression for the steady-state flux across the two media. Show that the diffusive resistances act in parallel.

What are the conservation relations for each phase?

$$
\frac{\mathrm{d}^{2} \mathrm{C}_{1}}{\mathrm{dx}^{2}}=0
$$

$$
\frac{\mathrm{d}^{2} \mathrm{C}_{2}}{\mathrm{dx}^{2}}=0
$$

What does this mean physically?
$C(x)$ changes linearly with x or $C(x)=0 \ldots$ when would $C(x)=0$?

Problem 6.8
6.8 In Section 6.7, diffusion through multiple layers of tissue arranged in series was examined. Now consider steady-state diffusion through two media arranged parallel to each other (see Figure 6.31). Assume that diffusion is one dimensional. At $x=0, C_{1}=\Phi_{1} C_{0}$, and $C_{2}=\Phi_{2} C_{0}$. At $x=L$, $C_{1}=\Phi_{1} C_{L}$ and $C_{2}=\Phi_{2} C_{L}$. Develop an expression for the steady-state flux across the two media. Show that the diffusive resistances act in parallel.

What are the conservation relations for each phase?

$$
\frac{\mathrm{d}^{2} \mathrm{C}_{1}}{\mathrm{dx}^{2}}=0
$$

$$
\frac{\mathrm{d}^{2} \mathrm{C}_{2}}{\mathrm{dx}^{2}}=0
$$

What does this mean physically?
$C(x)$ changes linearly with x or $C(x)=0 \ldots$ when would $C(x)=0 \ldots$ for long time $t(>5$ tau) So what does this mean for our solutions of this problem in terms of $C(x)$?

Problem 6.8
6.8 In Section 6.7, diffusion through multiple layers of tissue arranged in series was examined. Now consider steady-state diffusion through two media arranged parallel to each other (see Figure 6.31). Assume that diffusion is one dimensional. At $x=0, C_{1}=\Phi_{1} C_{0}$, and $C_{2}=\Phi_{2} C_{0}$. At $x=L$, $C_{1}=\Phi_{1} C_{L}$ and $C_{2}=\Phi_{2} C_{L}$. Develop an expression for the steady-state flux across the two media. Show that the diffusive resistances act in parallel.

What are the conservation relations for each phase?

$$
\frac{\mathrm{d}^{2} \mathrm{C}_{1}}{\mathrm{dx}^{2}}=0
$$

$$
\frac{\mathrm{d}^{2} \mathrm{C}_{2}}{\mathrm{dx}^{2}}=0
$$

What does this mean physically?
$C(x)$ changes linearly with x or $C(x)=0 \ldots$ when would $C(x)=0 \ldots$ for long time $t(>5$ tau) So what does this mean for our solutions of this problem in terms of $\mathrm{C}(\mathrm{x})$? $C_{1}=A_{1} x+B_{1}$ and $C_{2}=A_{2} x+B_{2}$ but let's actually show this mathematically...

Now what?

Problem 6.8
6.8 In Section 6.7, diffusion through multiple layers of tissue arranged in series was examined. Now consider steady-state diffusion through two media arranged parallel to each other (see Figure 6.31). Assume that diffusion is one dimensional. At $x=0, C_{1}=\Phi_{1} C_{0}$, and $C_{2}=\Phi_{2} C_{0}$. At $x=L$, $C_{1}=\Phi_{1} C_{L}$ and $C_{2}=\Phi_{2} C_{L}$. Develop an expression for the steady-state flux across the two media. Show that the diffusive resistances act in parallel.

What are the conservation relations for each phase?

$$
\frac{\mathrm{d}^{2} \mathrm{C}_{1}}{\mathrm{dx}^{2}}=0
$$

$$
\frac{\mathrm{d}^{2} \mathrm{C}_{2}}{\mathrm{dx}^{2}}=0
$$

What does this mean physically?
$C(x)$ changes linearly with x or $C(x)=0 \ldots$ when would $C(x)=0 \ldots$ for long time $t(>5$ tau) So what does this mean for our solutions of this problem in terms of $\mathrm{C}(\mathrm{x})$? $C_{1}=A_{1} x+B_{1}$ and $C_{2}=A_{2} x+B_{2}$ but let's actually show this mathematically...

Now what? Apply B.C.s

Problem 6.8

What is
Conductance of Each phase?

Problem 6.9

that the amusive Consider a rectangular laminate consisting of two layers, as shown in Figure 6.9. Assume that $\Phi_{1}=\Phi_{2}=1$.
(a) For the following values, determine the effective diffusion coefficient:

$$
\begin{array}{ll}
D_{i, 1}=5 \times 10^{-6} \mathrm{~cm}^{2} \mathrm{~s}^{-1} & L_{1}=20 \mu \mathrm{~m} \\
D_{i, 2}=7 \times 10^{-7} \mathrm{~cm}^{2} \mathrm{~s}^{-1} & L_{2}=80 \mu \mathrm{~m}
\end{array}
$$

(b) Determine conditions for which the two-layer model behaves as an effective one-layer model.

How?

This is from an earlier problem to remind you of the solution, as it is helpful for you for 6.9.

Problem 6.9

that the amusive Consider a rectangular laminate consisting of two layers, as shown in Figure 6.9. Assume that $\Phi_{1}=\Phi_{2}=1$.
(a) For the following values, determine the effective diffusion coefficient:

$$
\begin{array}{ll}
D_{i, 1}=5 \times 10^{-6} \mathrm{~cm}^{2} \mathrm{~s}^{-1} & L_{1}=20 \mu \mathrm{~m} \\
D_{i, 2}=7 \times 10^{-7} \mathrm{~cm}^{2} \mathrm{~s}^{-1} & L_{2}=80 \mu \mathrm{~m}
\end{array}
$$

(b) Determine conditions for which the two-layer model behaves as an effective one-layer model.

How?

Problem 6.9

that the amusive rensider a rectangular laminate consisting of two layers, as shown in Figure 6.9. Assume that $\Phi_{1}=\Phi_{2}=1$.
(a) For the following values, determine the effective diffusion coefficient:

$$
\begin{array}{ll}
D_{i, 1}=5 \times 10^{-6} \mathrm{~cm}^{2} \mathrm{~s}^{-1} & L_{1}=20 \mu \mathrm{~m} \\
D_{i, 2}=7 \times 10^{-7} \mathrm{~cm}^{2} \mathrm{~s}^{-1} & L_{2}=80 \mu \mathrm{~m}
\end{array}
$$

(b) Determine conditions for which the two-layer model behaves as an effective one-layer model.

Function of L?

Problem 6.9

that the amusive Consider a rectangular laminate consisting of two layers, as shown in Figure 6.9. Assume that $\Phi_{1}=\Phi_{2}=1$.
(a) For the following values, determine the effective diffusion coefficient:

$$
\begin{array}{ll}
D_{i, 1}=5 \times 10^{-6} \mathrm{~cm}^{2} \mathrm{~s}^{-1} & L_{1}=20 \mu \mathrm{~m} \\
D_{i, 2}=7 \times 10^{-7} \mathrm{~cm}^{2} \mathrm{~s}^{-1} & L_{2}=80 \mu \mathrm{~m}
\end{array}
$$

(b) Determine conditions for which the two-layer model behaves as an effective one-layer model.

Function of L?
How?

Problem 6.9

that the amusive rensider a rectangular laminate consisting of two layers, as shown in Figure 6.9. Assume that $\Phi_{1}=\Phi_{2}=1$.
(a) For the following values, determine the effective diffusion coefficient:

$$
\begin{array}{ll}
D_{i, 1}=5 \times 10^{-6} \mathrm{~cm}^{2} \mathrm{~s}^{-1} & L_{1}=20 \mu \mathrm{~m} \\
D_{i, 2}=7 \times 10^{-7} \mathrm{~cm}^{2} \mathrm{~s}^{-1} & L_{2}=80 \mu \mathrm{~m}
\end{array}
$$

(b) Determine conditions for which the two-layer model behaves as an effective one-layer model.

How?
Function of L ?
Phi.s and D.s must Be equal...

Problem 6.10

- Where to start?

Consider a two-layer model of an R_{1} and $R_{1}-R_{i}$. The inner layer has thickness $R_{0}-R_{1}$ aifient D_{i} and the outer layer has the diffuGio $_{10}$ coeffic D_{0}. The solute concentration the diffusion oefficient D_{0}. The solion in the lumen i,e., $0<r<R_{i}$) is C_{i}, and the concentration at R_{0} Calculate the effective diffusion coefficient.
6. 11 Beginning with Equation (6.8.101), derive a gen6. 11 quasi-steady-state relation for transport generalized quane when the volumes on the two acros a thin membrane wher. Show that the result reduces to the membation $(6.8 .107)$ when $V_{1}=V_{2}$
Equation Low-density lipoprotein (LDL) is the major cho-lesterol-carrying lipoprotein in the body. Its entry into lesterol-carry when LDL binds to receptors that are localired on specialized regions of the cell surface known as

Diffusion through a cylindrical laminate.

Problem 6.10

- Where to start?
- ss? Using r, it is how many

Dimensions?

Problem 6.10

- Where to start?
- ss? Using r, it is how many

Dimensions?

Problem 6.10

- Where to start?
- ss? Using r, it is how many

Dimensions?
1-D

Consider a two
 in Figure 6.32

 110 in $R_{1}-R_{i}$. The inner layer has thickness , fo 1 wh R_{1} and $R_{1}-R_{i}$. The inner layer has the diff Ro coefficien. The solute concentration the diffusion sion ficient D_{0}. The solute concentration in the lumen coeft $0<r<R_{i}$) is C_{i}, and the concentration lumen e., , (11 Beginning with Equation (6.8.101), derive a gen6. 11 , quasi-steady-state relation for transport acros eralized quane when the volumes on the two sides a thin membrane differ. Show that the result reduces to the membran (6.8.107) when $V_{1}=V_{2}$
6.12 Low-density lipoprotein (LDL) is the major cho-lesterol-carrying lipoprotein in the body. Its entry into lesterol-cars when LDL binds to receptors that are localcells occurs when LDL

HGURE 6.32 Diffusion through a cylindrical laminate.

Problem 6.10

- Where to start?
- ss? Using r, it is how many

Dimensions?

1-D

What's the equation:

yer model of
 10 in Figure 6.32. The layers are artery

 $11 R_{1}$ and $R_{1}-R_{i}$. The inner layer has thickness $R_{0}-R_{1}$ aicient D_{i} and the outer layer h has the diffu$\mathrm{RO}_{11} \mathrm{O}^{-e^{2}} \mathrm{D}_{0}$. The solute concentration the diffusion officient D_{0}. The R_{i}) is C_{i}, and the concen in the lumen coffficie $<r<R_{i}$) is C_{i}, and the concentration lumen e., , coefficient.Beginning with Equation (6.8.101), derive a gen6. 11 Buasi-steady-state relation for transport acros eralized membrane when the volumes on the two sides of a thin membrane differ. Show that the result reduces to the memb $(6.8 .107)$ when $V_{1}=V_{2}$
6.12 Low-density lipoprotein (LDL) is the major cho-lesterol-carrying lipoprotein in the body. Its entry into lesterol-cars when LDL binds to receptors that are localcells occurs when

Higure 6.32 Diffusion through a cylindrical laminate.

Problem 6.10

- Where to start?
- ss? Using r, it is how many

Consider a two-layer model of an
in Figure 6.32. The layers are of artery, vin in $R_{1}-R_{i}$. The inner layer has thickness $R_{0}-R_{1}$ ficient D_{i} and the outer layer has the diffiffujol 0^{11} coent D_{0}. The solute concentration in the lusion coftrice $0<r<R_{i}$) is C_{i}, and the concentration at R_{0} e.,,$<r<R_{i}$, effective diffusion contration at R_{0} is drusion coefficient.
1 Beginning with Equation (6.8.101), derive a gen6. 1 ized quasi-steady-state relation for transport acros thin membrane when the volumes on the two sides of Dimensions?

1-D

What's the equation:

Remember?
How is this situation different?

Problem 6.10

- Where to start?
- ss? Using r, it is how many

Consider a two-layer model of an
10 in Figure 6.32. The layers are artery, vin in R_{1} and $R_{1}-R_{i}$. The inner layer has thickness $R_{0}-R_{1}$ fefficient D_{i} and the outer layer has the diff diffu;ion ${ }^{\text {c }}$ coelient D_{0}. The solute concentration in the diffusion coe $\left.0<r<R_{i}\right)$ is C_{i}, and the concentration at R_{0} is e., usion coefficient.
Beginning with Equation (6.8.101), derive a gen6. 1 ized quasi-steady-state relation for transport acros eahin membrane when the volumes on the two sides of Dimensions?

1-D

What's the equation:

$$
\begin{aligned}
& \frac{D_{i j}}{r} \frac{d}{d r}\left(r d \frac{d c_{i j}}{d r}\right)=0 \\
& \frac{d}{d r}\left(r d c_{i j}\right)=0 \quad r \frac{d c_{j}}{d r}=u
\end{aligned}
$$

$$
\begin{aligned}
& \frac{r d C_{j}}{d r}=\text { constant }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
c_{i j}=\text { cost }+\ln r+\text { constant } \\
c_{i j}=r_{j} \ln r+\phi_{j} \quad \text { (2 phases) }
\end{array}
\end{aligned}
$$

B.C. 4eractios, 4 manaos $\left(\gamma_{1}, \gamma_{2}, \phi_{1}, \phi_{2}\right)$ $R_{r}=R_{0}, C_{i j}=C_{0}$
2) $C=R_{i}, C_{j}=C_{i}$

2) $c_{i j}=c_{i}=\gamma_{j} \ln R_{i}+\phi_{j}\left(B . c_{1}\right)<\begin{gathered}c_{i}=\gamma_{1} \ln R_{i}+\phi_{1} \\ c_{i}=\gamma_{2} \ln R_{i}+\phi_{2}\end{gathered}$
solve for 4 manas $\left(\gamma_{1}, \gamma_{2}, \phi_{1}, \phi_{2}\right)$
after smalification.
solutions for $N_{i 1} \& N_{i 2}$ are similar

$$
N_{i 1}=-D_{i 1} \frac{d c_{i 1}}{d r} \quad \& N_{i 2}=-D_{i 2} \frac{d c_{i 2}}{d r}
$$

solutions are of the form...
\& we went a Deft which will be getting rit) of R_{1}
so Deff would be of the form

$$
\begin{aligned}
& N_{i j}=\frac{-D / f\left(C_{0}-C_{i}\right)}{\ln \left(R_{0} / R_{i}\right)} \cdot \frac{1}{r}=\frac{-D_{i} D_{i 2}\left(C_{0}-C_{i}\right)}{D_{i} \ln \left(R_{R_{1}}\right)-D_{2} \ln \left(R_{1}\left(\frac{R_{i}}{R_{1}}\right)\right.} \frac{1}{r}
\end{aligned}
$$

6. 11 Beginning with Equation (6.8.101), derive a gen6. 1 lalized quasi-steady-state relation for transport across eralized membrane when the volumes on the two sides of a thin membrane differ. Show that the result reduces to the menation (6.8.107) when $V_{1}=V_{2}$.

Problem 6.11

- Moles of solute leaving side 1 per unit time = moles of solute transported across membrane
$\underset{\text { Diff. statement }}{\text { 6.8.102 }}-\mathrm{V}_{1} \frac{\mathrm{dC}_{1}}{\mathrm{dt}}=\mathrm{A}_{\mathrm{m}} \mathrm{D}_{\mathrm{m}} \mathrm{K} \frac{\left(\mathrm{C}_{1}-\mathrm{C}_{2}\right)}{\mathrm{L}}$
$\underset{\substack{\text { Diff. statement } \\ \text { 6.8.103 }}}{\mathrm{V}_{1}} \frac{\mathrm{dC}_{1}}{\mathrm{dt}}=-\left(\frac{\mathrm{V}_{\mathrm{m}}}{\mathrm{K}} \frac{\mathrm{dC}_{\mathrm{m}}}{\mathrm{dt}}+\mathrm{V}_{2} \frac{\mathrm{dC}_{2}}{\mathrm{dt}}\right)$

If $\mathrm{Vm} \ll \mathrm{V} 2$ and $\mathrm{Vm} \ll \mathrm{V} 1$ then...
6. 11 Beginning with Equation (6.8.101), derive a gen6. 1 lalized quasi-steady-state relation for transport across eralized membrane when the volumes on the two sides of a thin membrane differ. Show that the result reduces to the mequation (6.8.107) when $V_{1}=V_{2}$.

Problem 6.11

- Moles of solute leaving side 1 per unit time = moles of solute transported across membrane
$\underset{\text { Diff. statement }}{\text { 6.8.102 }}-\mathrm{V}_{1} \frac{\mathrm{dC}_{1}}{\mathrm{dt}}=\mathrm{A}_{\mathrm{m}} \mathrm{D}_{\mathrm{m}} \mathrm{K} \frac{\left(\mathrm{C}_{1}-\mathrm{C}_{2}\right)}{\mathrm{L}}$
$\underset{\substack{\text { Diff. statement } \\ \text { 6.8.103 }}}{V_{1}} \frac{\mathrm{dC}_{1}}{\mathrm{dt}}=-\left(\frac{\mathrm{V}_{\mathrm{m}}}{\mathrm{K}} \frac{\mathrm{dC}_{\mathrm{m}}}{\mathrm{dt}}+\mathrm{V}_{2} \frac{\mathrm{dC}_{2}}{\mathrm{dt}}\right)$

If $\mathrm{Vm} \ll \mathrm{V} 2$ and $\mathrm{Vm} \ll \mathrm{V} 1$ then..

$$
\begin{gathered}
\frac{\mathrm{dC}_{2}}{\mathrm{dt}}=-\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}} \frac{\mathrm{dC}_{1}}{\mathrm{dt}} \\
\text { initial conditions } \mathrm{C}_{1}=\mathrm{C}_{\mathrm{o}} \text { and } \mathrm{C}_{2}=0 \\
C_{2}=-\frac{v_{1} C_{o}}{V 2}+C x ; C x=\frac{V_{1} C_{o}}{V 2} \text { so } C_{2}=-\frac{v_{1} C_{o}}{V 2}+\frac{V_{1} C_{o}}{V 2} \text { so } C_{2}=-\frac{v_{1}}{v_{2}}\left(C_{1}-C_{o}\right)
\end{gathered}
$$

Put C2 into 6.8.102

$$
-\mathrm{V}_{1} \frac{\mathrm{dC}_{1}}{\mathrm{dt}}=\frac{\mathrm{A}_{\mathrm{m}} \mathrm{D}_{\mathrm{m}} \mathrm{~K}}{\mathrm{~L}}\left\lfloor\left(1+\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}\right) \mathrm{C}_{1}-\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}} \mathrm{C}_{0}\right\rfloor
$$

Solve this for C 1 : hint: there are exponentials in the solution...
Hint 2: Use integration factor: know how to convert a first order differential equation and Solve using the integration factor method...covering on 2.6.17

$$
\frac{d y}{d t}+p(t) y=g(t)
$$

pretend there is a beauntil $f_{x n}$ called $\mu(t)=$ integnating fictor \& multiply everything by it...

$$
\frac{d y}{d t} \mu(t)+\mu(t) \rho(t) y=g(t) \mu(t)
$$

we also vill magially assune that $\mu(t) \rho(t)=\mu^{\prime}(t)$

$$
\underbrace{\frac{d y}{d t} \mu(t) \mu^{\prime}(t) y}_{\text {what is this? }}=g(t) \mu(t)
$$

chain rule! so...

$$
(\mu(t) y(t))^{\prime}=g(t) \mu(t)=\frac{d[\mu(t) y(t)]}{d t}
$$

maltifly loth sides by $d t$ but daint cancel … $\&$ integrate

$$
\begin{aligned}
& \left.\int c_{\mu}(t) y(t)\right)^{\prime} d t=\int g(t) \mu(t) d t \\
& \mu(t) y(t)+\text { Constant }=\int g(t) \mu(t) d t \\
& y(t)=\frac{\int g(t) \mu(t)(t+\operatorname{consta} t}{\operatorname{Arn}(t)}
\end{aligned}
$$

Hor can we calculate $\mu(t)$ based on what we have..

$$
\begin{aligned}
& \rho(t)=\frac{\mu^{\prime}(t)}{\mu^{(t)}} \leftarrow \text { hhat is this }(\ln \mu(t))^{\prime}=\gamma(t)=\frac{d(\ln \mu(t))}{d t} \\
& \int p(t) d t=\int d\left(\ln _{n} \mu(t)\right)=\ln \mu(t)=\int p(t) d t+\cos s+a t
\end{aligned}
$$

$-V_{1} \frac{d C_{1}}{d t}=\frac{A_{m} D_{m} k}{L}\left[\left(1+\frac{V_{1}}{V_{2}}\right) C_{1}-\frac{V_{1}}{V_{2}} C_{0}\right]$
Male in the form $\frac{\partial y}{\partial t}+\rho(t) y=g(t)$
note: $\Phi=k$

$$
\begin{aligned}
& -\frac{1}{V_{1}},-\frac{V_{1} d C_{1}}{d t}=\frac{A_{m} D_{m} \underline{E}}{-V_{1} L}\left(1+\frac{V_{1}}{V_{2}}\right) C_{1}-\frac{A_{m} D_{m} K}{-V_{1} L} \frac{V_{1}}{V_{2}} C_{0} \\
& \frac{d C_{1}}{d t}=\frac{-A_{m} D_{3} 耳}{V_{1} L}\left(1+\frac{V_{1}}{V_{2}}\right) C_{1}+\frac{A_{m} D_{m} \Phi V_{1} C_{0}}{V_{1} L V_{2}} \\
& =\left(\frac{-A_{m} D_{m} \Phi}{V_{1} L}-\frac{A_{m} D_{m} \Phi}{V_{1} L V_{2}}\right) C_{1}+\frac{A_{m} D_{m} \Phi C_{0}}{L V_{2}} \\
& \underbrace{\frac{d C_{1}}{d t}}_{\sim}=\underbrace{-\left(\frac{A_{m} D_{m} \Phi}{V_{1} L}+\frac{A_{m} D_{3} g}{V_{1} L V_{2}}\right)}_{\sim-P(t)} C_{\sim y}^{C_{1}}+\underbrace{C_{m}}_{\sim g(t)}+\frac{L V_{2}}{A_{m} V_{0}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { InF. } \mu=e^{S_{\rho}(t) d t}=e^{S\left(\frac{A_{m} D_{m} \underline{\sigma}}{V_{1} L}+\frac{A_{m} D_{m} \bar{\sigma}}{V_{1} L V_{2}}\right) d t} \\
& c_{1}(t)=\frac{\int \frac{A_{n} D_{n} I C_{0}}{L V_{2}} e^{\int\left(\frac{A_{n} D_{0} I T}{V_{1} L}+\frac{A_{n} D_{n} I D_{1}}{V_{1} L V_{2}}\right)} d t}{e^{\int\left(\frac{A_{n} D_{2} I T}{V_{1} L}+\frac{A_{n} D_{m} I}{V_{1} L V_{2}}\right)} d t} \\
& =\frac{\int \frac{A_{n} D_{3} \Phi C_{0}}{L_{V}} e^{\left(\frac{V_{1} D_{2} I D_{1}}{V_{1}}+\frac{A_{n} D_{n} D_{n} I}{V_{1} L V_{2}}\right) t} d t}{e^{\left(\frac{D_{n} D_{3} I}{V_{1} L}+\frac{A_{n} D_{-} \Phi}{V_{1} C V_{2}}\right) t}}
\end{aligned}
$$

$k_{-}=\frac{2 D_{L}}{R_{R}^{2} \ln \left(\frac{b}{R_{R}}\right)}$

Equation (uv-density lipoprotein (LDL) is the major cho6.12 Low-density lipoprein in the body. Its entry into eells occurs when LDL binds to receptors that are localized on specialized regions of the cell surface known as

FIGURE 6.32 Diffusion through a cy lindrical laminate.
coated pits. (The name arises from the electron-dense appearance of the membrane in electron micrographs.) A coated pit contains proteins that regulate the binding of receptors and the formation of vesicles. When a coated pit forms a vesicle, LDL molecules are transported to lysosomes. In the lysosome, the cholesterol is esterified and enters the cell cytoplasm; the protein portion is degraded to amino acid.

Determine the rate constant for the diffusion-limited dissociation of LDL receptors from binding sites in coated pits. Binding and dissociation of LDL receptors to coated-pit proteins occurs independently of LDL binding to its receptor. Assume that coated pits have a radius s and are separated by a distance $2 b$ (see Figure 6.33), and use the following data to determine k_{-}for the dissociation of a receptor from a ternary complex in coated pits on the cell membrane surface:

P	0.30 coated pit $\mu \mathrm{m}^{-2}$	Number density of coated pits
	100,000 receptors ce	Number of receptors per cell
A	$5,000 \mu \mathrm{~m}^{2}$	Surface area of cell
R_{R}	1 nm adt divm bo	Receptor radius (b)
R_{R}	$0.10 \mu \mathrm{~m}$	Radius of a coated pit
D_{R}	$4.5 \times 10^{-11} \mathrm{~cm}^{2} \mathrm{~s}^{-1}$	Diffusion coefficient of receptor
λ	$0.20 \mathrm{~min}^{-1}$	Rate constant for - vesicle formation
b	$1.0 \mu \mathrm{~m}$	Half of the separation distance between two coated pits

$$
k_{-}=\frac{2 D_{L}}{R_{R}^{2} \ln \left(\frac{b}{R_{R}}\right)}
$$

- Would a ligand and receptor be more likely to dissociate if the complex were free floating in solution versus on the surface of the cell?
- What does entropy (of what?) have to do with 2 spherical entities in water (i.e., 2 air bubbles or 2 hydrophobic nanoparticles) combining to be one? Why are two bubbles coming together favorable in certain cases?

