Computational Biology: Genomes, Networks, Evolution
MIT course 6.047/6.878

Taught by Prof. Manolis Kellis

January 6, 2016

ii

CONTENTS

1 Introduction to the Course 3
1.1 Introduction and Goals e 3
1.1.1 A course on computational biology L L 3

1.1.2 Duality of Goals: Foundations and Frontiers. 3

1.1.3 Duality of disciplines: Computation and Biology 4

1.1.4 Why Computational Biology? 4

1.1.5 Finding Functional Elements: A Computational Biology Question 6

1.2 Final Project - Introduction to Research In Computational Biology 7
1.2.1 Final project goals e 7

1.2.2 Final project milestones L e 7

1.2.3 Project deliverables L 8

1.2.4 Project grading e e e e 8

13 Additional materialSo 9
1.3.1 Online Materials for Fall 2015 e 9

132 TextbooKS .« . v . v o e e e e e 9

1.4 Crash Course in Molecular Biology 9
1.4.1 The Central Dogma of Molecular Biology 9
142 DNA . . o 10
1.4.3 Transcription oL e e e e e 11
144 RNA . . o e 12
145 Translation - . .« v v e e e e e e e e e e e e e e 13

A6 Protein e 14

1.4.7 Regulation: from Molecules to Life 15
148 MetaboliSm oL e e e 16
1.4.9 Systems Biology e e 16
1.4.10 Synthetic Biology e 17
1.4.11 Model organisms and human biology, 17

1.5 Introduction to algorithms and probabilistic inference 18
1.5.1 Probability distributions L 19

1.5.2 Graphical probabilistic models 19

1.5.3 Bayes rules: priors, likelihood, posterior 19

1.5.4 Markov Chains and Sequential Models 19

1.5.5 Probabilistic inference and learning 19
1.5.6 Max Likelihood and Max A Posteriori Estimates 19

1 Comparing Genomes 21
2 Sequence Alignment and Dynamic Programming 23
2.1 Introduction oo e 23

iii

CONTENTS CONTENTS

2.2 Aligning SeqUENCES i e e e e e e e e 24
2.2.1 Example Alignment e 24
2.2.2 Solving Sequence Alignmento 24

2.3 Problem Formulations o o .o e e e e e e e 26
2.3.1 Formulation 1: Longest Common Substring 26
2.3.2 Formulation 2: Longest Common Subsequence (LCS) 27
2.3.3 Formulation 3: Sequence Alignment as Edit Distance 28
2.3.4 Formulation 4: Varying Gap Cost Models, 28
235 Enumerationo e e e e e e e 29

2.4 Dynamic Programming L e e e 29
2.4.1 Theory of Dynamic Programming 29
2.4.2 Fibonacci Numbers L 30
2.4.3 Sequence Alignment using Dynamic Programming 32

2.5 The Needleman-Wunsch Algorithm 32
2.5.1 Dynamic programming vs. memoization Lo Lo 32
2,52 Problem Statement 33
2.5.3 Index space of subproblems 33
2.5.4 Local optimality 33
2.5.5 Optimal Solution 34
2.5.6 Solution Analysis e 34
2.5.7 Needleman-Wunsch in practice L 0 34
2.5.8 Optimizations e 35

2.6 Multiple alignment e e e 37
2.6.1 Aligning three sequences 37
2.6.2 Heuristic multiple alignmento 38

2.7 Current Research Directions o v v v i i e e 39

2.8 Further Reading e e 39

2.9 Tools and Techniques e 39

2.10 What Have We Learned? 0 it i e e 39

2.11 Appendix 39
2.11.1 Homology e 39
2.11.2 Natural Selection v v v v 39
2.11.3 Dynamic Programming v. Greedy Algorithms 40
2.11.4 Pseudocode for the Needleman-Wunsch Algorithm 41

3 Rapid Sequence Alignment and Database Search 43

31 Introduction . . « v v . oo e e e 43

3.2 Global alignment vs. Local alignment vs. Semi-global alignment 45
3.2.1 Using Dynamic Programming for local alignments 47
3.2.2 Algorithmic Variations e 47
3.2.3 Generalized gap penalties e e e 49

3.3 Linear-time exact string matching L Lo 49
3.3.1 Karp-Rabin Algorithm 49

3.4 The BLAST algorithm (Basic Local Alignment Search Tool) 52
3.4.1 The BLAST algorithm 52
342 FExtensions to BLAST o o oo 54

3.5 Pre-processing for linear-time string matching 54
3.5.1 Suffix Trees o e e e e e e e 54
3.5.2 Suffix Arrays e 55
3.5.3 The Burrows-Wheeler Transform L. 55
3.5.4 Fundamental pre-processing 55
3.5.5 Educated String Matching 55

3.6 Probabilistic Foundations of Sequence Alignment 56

3.7 Current Research Directions e e e 58

iv

CONTENTS CONTENTS

3.8 Further Reading e 58
3.9 Tools and Techniques e 59
3.10 What Have We Learned? e 59
4 Comparative Genomics I: Genome Annotation 61
41 Introductiono e e 62
4.1.1 Motivation and Challenge L 62
4.1.2 Importance of many closely—related genomes 63
4.1.3 Comparative genomics and evolutionary signatures 64

4.2 Conservation of genomic SEqUENCES« v v vt vt e e e e 65
4.2.1 Functional elements in Drosophila e 65
4.2.2 Rates and patterns of selection L 65

4.3 Fxcess Constraif « . v« v v v v e e 66
4.3.1 Causes of Excess Constraint v v v v i v e e e e e 67
4.3.2 Modeling Excess Constraint i e 68
4.3.3 FExcess Constraint in the Human Genome o v v v v oo 69
4.3.4 Examples of Excess Constraint 71
4.3.5 Measuring constraint at individual nucleotides 72

4.4 Diversity of evolutionary signatures: An Overview of Selection Patterns 72
4.4.1 Selective Pressures On Different Functional Flements 73

4.5 Protein—Coding Signatures e 75
4.5.1 Reading-Frame Conservation (RFC) 76
4.5.2 Codon-Substitution Frequencies (CSFs) 7
4.5.3 Classification of Drosophila Genome Sequences 80
4.5.4 Leaky Stop Codons. e 81

4.6 microRNA (miRNA) Gene Signatures 84
4.6.1 Computational Challenge e 84
4.6.2 Upusual miBRNA Genes v v v it e e e e e e e e e 85
4.6.3 Example: Re-examining 'dubious’ protein-coding genes 87

4.7 Regulatory Motifs 87
4.7.1 Computationally Detecting Regulatory Motifs 87
4.7.2 Individual Instances of Regulatory Motifs 88

4.8 Current Research Directions o 0 e 88
4.9 Further Reading e 88
4.10 Tools and Techniques e 88
4.11 Bibliography e e e e e e e e 88
5 Genome Assembly and Whole-Genome Alignment 89
5.1 Tntroduction e e e e e e e e e 91
5.2 Genome Assembly I: Overlap-Layout-Consensus Approach 91
5.2.1 Setting up the experiment 91
5.2.2 Finding overlapping reads e 93

5.2.3 Merging reads into contigs e 94
5.2.4 Laying out contig graph into scaffolds 95
5.2.5 Deriving cOnsensus SEQUENCE v v v v v v v v e e e e e e e e e e e 96

5.3 Genome Assembly II: String graph methods 97
5.3.1 String graph definition and construction 97
5.3.2 Flows and graph consistency e 99
5.3.3 Feasible flow e 99
5.3.4 Dealing with sequencing errorso 100
5.3.5 RESOUICES o o e e e e e 100

5.4 Whole-Genome Alignment L. L 100
5.4.1 Global, local, and ’glocal’ alignment 100
5.4.2 Lagan: Chaining local alignments 101

CONTENTS CONTENTS

5.5 Gene-based region alignment L e 102
5.6 Mechanisms of Genome Evolution e 105
5.6.1 Chromosomal Rearrangements 106
5.7 Whole Genome Duplication 107
5.8 Additional figures L. e e e 107
6 Bacterial Genomics— Molecular Evolution at the Level of Ecosystems 111
6.1 Introduction e 111
6.1.1 Evolution of microbiome research 112
6.1.2 Data generation for microbiome research 112
6.2 Study 1: Evolution of life on earth 112
6.3 Study 2: Pediatric IBD study with Athos Boudvaros 113
6.4 Study 3: Human Gut Ecology (HuGE) project 114
6.5 Study 4: Microbiome as the connection between diet and phenotype 118
6.6 Study 5: Horizontal Gene Transfer (HGT) between bacterial groups and its effect on antibiotic
TEeSIStANCE e e e 119
6.7 Study 6: Identifying virulence factors in Meningitis 119
6.8 Q/A 121
6.9 Current research directions i e e 122
6.10 Further Reading e 122
6.11 Tools and techniques e e 122
6.12 What have we learned? e e 122

1 Coding and Non-Coding Genes 125

7 _Hidden Markov Models T 127
21 Tntroduction .« . v v v o e e e e e e e e e e e e 127
.2 Motivation: e e e e e e e e e e e 128

7.2.1 We have a new sequence of DNA, now what? 128
7.2.2 Why probabilistic sequence modeling? 129
7.3 Markov Chains and HMMS: From Example To Formalizing 129
7.3.1 Motivating Example: Weather Prediction 129
7.3.2 Formalizing of Markov Chain and HMMS 129
7.4 Apply HMM to Real World: From Casino to Biology 131
7.4.1 he Dishonest Casino v o v v it e e e 131
7.4.2 Back to Biology e 134
7.5 Algorithmic Settings for HMMs 137
7.5.1 Scoring 137
7.5.2 Decoding e 138
753 Evaluation o e e e e e e 140
7.6 An Interesting Question: Can We Incorporate Memory in Our Model? 142
7.7 Further Reading e e 143
7.7.1 Length Distributions of States and Generalized Hidden Markov Models 143
7.7.2 Conditional random fields e 143
7.8 Current Research Directions 0 o o i i e e e e 143
7.9 Tools and Techniques e e e 143
7.10 What Have We Learned? e e 143

8 Hidden Markov Models Il - Posterior Decoding and Learning 145

8.1 Review of previous lecture 145
8.1.1 Introduction to Hidden Markov Models 145
8.1.2 Genomic Applications of HMMSs e 146
8.1.3 Viterbi decoding 147

vi

CONTENTS CONTENTS

8.1.4 Forward Algorithm e 147
8.1.5 Thislecture e e e e e e e 149

8.2 Posterior Decoding e e e e e e 150
821 Motivation v e e e e e e e e e 150
8.2.2 Backward Algorithm 150
8.2.3 The Big Picture e 152

8.3 Encoding Memory in a HMM: Detection of CpGislands 153
84 Learning e 155
8.4.1 Supervised Learning e 156
8.4.2 Unsupervised Learning L Lo 156

8.5 Using HMMs to align sequences with affine gap penalties 159
8.6 Current Research Directions i e e 160
8.7 Further Reading L e e 162
8.8 Tools and Techniques 0 e e e e e 162
8.9 What Have We Learned? e e 162
9 Gene Identification: Gene Structure, Semi-Markov, CRFs 163
9.1 TIntroduction o e e e e e e 163
9.2 Overview of Chapter Contents ittt et 164
9.3 Eukaryotic Genes: An Introduction 164
9.4 Assumptions for Computational Gene Identification 164
9.5 Hidden Markov Models e 165
9.6 Conditional Random Fields e e 166
9.7 Other Methods e 167
9.8 ConcluSion o e e e e 168
9.8.1 HMM e 168
9.8.2 CRE e e 168

9.9 Current Research Directions e 169
9.10 Further Reading e 169
9.11 Tools and Techniques L o 0 i e e e 169
9.12 What Have We Learned? e e 169
10 RNA Folding 171
10.1 Motivation and Purpose e e 172
10.2 Chemistry of RNA e 172
10.3 Origin and Functions of RNA 173
10.3.1 Riboswitches e 173
10.3.2 microRNAS e 173
10.3.3 Other types of RNA e 174
10.4 RNA SETUCLULE . .+ v v v o o e 174
10.5 RNA Folding Problem and Approaches 176
10.5.1 Nussinov’s algorithm 177
10.5.2 Zuker Algorithm e 178
10.6 Evolution of RNA o o 181
10.7 Probabilistic Approach to the RNA Folding Problem 181
10.7.1 Application of SCEGS e 182

10.8 Advanced tOPICS o e e e e 183
10.8.1 Other problems 183
10.8.2 Relevance o e e e e 185
10.8.3 Current research L e e e 185

10.9 Summary and key points e e e e 185
10.10Further reading L e 186

vii

CONTENTS CONTENTS
11 RNA Modifications 189
111 Introduction« .o e 189
11.2 Post-Transcriptional Regulation 190
11.2.1 Basics of Protein Translation o 190

11.2.2 Measuring Translation L e 191

2.3 Codon Evolution v v v v e e e e e e e 193

11.2.4 Translational Regulation 195

11.3 Current Research Directions . . . « .« « v v v v v it i 195
11.4 Further Reading e 195
11.5 Tools and Techniques e 195
11.6 What Have We Learned? o it ittt e e 195
12 Large Intergenic non-Coding RNAs 197
12,1 Introduction« oL e e e e e 197
12.2 Noncoding RNAs from Plants to Mammals 198
12.2.1 Long non-coding RNAS e 199

12.3 Practical topic: RNAseq 199
1231 How it works o e e 199

12.3.2 Aligning RNA-Seq reads to genomes and transcriptomes 200

12.3.3 Calculating expression of genes and transcripts 202

12.3.4 Differential analysis with RNA-Seq 203

12.4 Long non-coding RNAs in Epigenetic Regulation 204
12.5 Integergenic Non-coding RNAs: missing lincs in Stem/Cancer cells? 206
12.5.1 An example: XIST e 206

12.6 Technologies: in the wet lab, how can we find these? 206
12.6.1 Example: p53 e 207

12.7 Current Research DITectionS « « -« ¢ v v v v v v v e et e e e e 208
12.8 Further Reading 208
12.9 Tools and Techniques e 208
12.10What Have We Learned? e 208
13 Small RINA 209
13.1 Introduction L e 209
13.1.1 ncRNA classifications e e e 209

13.1.2 Small ncRNA e 211

13.1.3 Long ncRNA e 211

13.2 RNA Interference e e e e e 212
13.2.1 History of discovery e e e 212

13.2.2 Biogenesis pathways L 212

13.2.3 Functions and silencing mechanism L . 213

m Gene and Genome Regulation 217
14 mRINA sequencing for Expression Analysis and Transcript discovery 219
14.1 Introduction L e e e e e e 219
14.2 Expression Microarrays o ot ot e e e e e e e 220
14.3 The Biology of mRNA Sequencing 220
14.4 Read Mapping - Spaced Seed Alignment 220
14.5 Reconstruction e e e e 221
14.6 Quantification L Lo e e e 224

CONTENTS CONTENTS
15 Gene Regulation 1 —Gene Expression Clustering 225
151 Introductiono e 226
15.1.1 Clustering vs Classification i i e 226
15.1.2 Applications e 226

15.2 Methods for Measuring Gene Expression 227
15.2.1 MICTOAITAYS « .« ¢ v v v v e e e e e et e e e e e e e e e e e 227
15.2.2 RNA-SEQ -+« v o o e e e 228
15.2.3 Gene Expression Matrices L e 229

15.3 Clustering Algorithms 231
15.3.1 K-Means Clustering 0 v i it e e e e e 231
15.3.2 Fuzzy K-Means Clustering e 232
15.3.3 K-Means as a Generative Model 233
15.3.4 Expectation Maximization L Lo Lo 234
15.3.5 The limitations of the K-Means algorithm 235
15.3.6 Hierarchical Clustering 235
15.3.7 Evaluating Cluster Performance 236

15.4 Current Research DIiT€CHiONS « - « « « « v v v v v vt e e e e e e e 237
15.5 Further Reading e 237
[5.6 RESOUICES © « + v v v e o e e e e e e e e e e e e e e e e e 237
15.7 What Have We Learned?« . o i ittt e e 238
16 Gene Regulation 2 —Classification 239
161 Tntroduction oL e e e e e e e e 239
16.2 Classification - Bayesian Techniques 240
16.2.1 Single Features and Bayes Rule, 240
16.2.2 Collecting Data e 242
16.2.3 Estimating Priors. e 242
16.2.4 Multiple features and Naive Bayes 243
16.2.5 Testing a classifier e e 243
16.2.6 MAESTRO Mitochondrial Protein Classification 244

16.3 Classification Support Vector Machines 245
16.3.1 Kernels e 245

16.4 Tumor Classification with SVIMs 0 o e e e e e 247
16.5 Semi-Supervised Learningo 248
16.5.1 Open Problems e 248

16.6 Current Research Directions 0 i i i e e e 248
16.7 Further Reading o e 248
16.8 RESOUTCES .+ v v v v o e e e e e e e e e e e e e e e e 248
17 Regulatory Motifs, Gibbs Sampling, and EM 251
17.1 Introduction to regulatory motifs and gene regulation 252
17.1.1 The regulatory code: Transcription Factors and Motifs 252
17.1.2 Challenges of motif discovery e 252
17.1.3 Motifs summarize TF sequence specificity 253

17.2 Expectation maximization 254
17.2.1 The key idea behind EM 254
17.2.2 The E step: Estimating Z;; from the PWM 255
17.2.3 M step: Finding the maximum likelihood motif from starting positions Zij 256

17.3 Gibbs Sampling: Sample from joint (M,Zij) distribution 257
17.3.1 Sampling motif positions based on the Z vector 257
17.3.2 More likely to find global maximum, easy to implement 257

17.4 De novo motif discovery e e 258
17.4.1 Motif discovery using genome-wide conservation 258
17.4.2 Validation of discovered motifs with functional datasets 259

ix

CONTENTS CONTENTS

17.5 Evolutionary signatures for instance identification 259
17.6 Phylogenies, Branch length score Confidence score 259
17.6.1 Foreground vs. background. Real vs. control motifs. 259
17.7 Possibly deprecated stuff below:o L 259
17.7.1 Greedy 259
17.8 Comparing different Methods L 260
17.9 OOPS,ZOOPS, TCM e e e e e e e 260
17.10Extension of the EM Approach 261
17,101 ZO0PS Model v v o e e e e e e 261
17.10.2 Finding Multiple Motifs 262
17.11Motif Representation and Information Content 262
18 Regulatory Genomics 265
181 Introduction . . . - . . o o o e e 265
18.1.1 History of the Field 266
18.1.2 Open Problems e 266
18.2 De Novo Motif Discovery o e 266
18.2.1 TF Motif DIiSCOVErY v o i e e i e e e e 266
18.2.2 Validating Discovered Motifs L 267
18.2.3 Summary e e 267
18.3 Predicting Regular Targets 268
18.3.1 Motif Instance Identification L o 268
18.3.2 Validating Targets e 268
18.4 MicroRNA Genes and Targets 269
18.4.1 MiRNA Gene DiSCOVEry o v ittt e e e e e 269
18.4.2 Validating Discovered MiRNAs e 269
18.4.3 MIiRNA’s 5 End Identification 270
18.4.4 Functional Motifs in Coding Regions 270
185 Current Research Directions o o o v vt i 270
18.6 Further Reading L e 270
18.7 Tools and Techniques e e e 270
18.8 What Have We Learned? e e e e e 270
19 Epigenomics/Chromatin States 271
1901 Introduction o o o 272
19.2 Epigenetic Information in Nucleosomes 273
19.2.1 Epigenetic Inheritance 274
19.3 Epigenomic ASSays i e e e e e e 275
19.3.1 ChIP: a method for determining where proteins bind to DNA or where histones are
anodified L L 275
19.3.2 Bisulfite Sequencing: a method for determining where DNA is methylated 276
19.4 Primary data processing of ChIP data 276
19.4.1 Read mapping e e e e e e 276
19.4.2 Quality control metricso 277
19.4.3 Peak Calling and Selection e 279
19.5 Annotating the Genome Using Chromatin Signatures 282
J95.T1 Datal - - ¢ o v v e e e e e e e e 283
19.5.2 HMMs for Chromatin State Annotation 283
19.5.3 Choosing the Number of states tomodel 284
9.5.4 ReSUILS -+« v v v e 285
19.5.5 Multiple Cell Types 0 e e 286
19.6 Current Research Directions o« o v v ittt 287
19.7 Further Reading e e 288
19.8 Tools and Techniques L 288

CONTENTS CONTENTS

19.9 What Have We Learned?« . . 00t i it 288
20 Networks I: Inference, structure, spectral methods 297
201 Introduction o .o e e e 297
20.1.1 Introducing Biological Networks 298
20.1.2 Interactions Between Biological Networks 299
20.1.3 Network Representation 299

20.2 Network Centrality Measures o ittt e 301
20.2.1 Degree Centrality e e e 301
20.2.2 Betweenness Centrality 302
20.2.3 Closeness Centrality e 303
20.2.4 Eigenvector Centrality 303

20.3 Linear Algebra Review 303
20.3.1 Eigenvectors e e 303
20.3.2 Vector decomposition e 304
20.3.3 Diagonal Decomposition 304
20.3.4 Singular Value Decomposition 305

20.4 Sparse Principal Component Analysis 307
20.4.1 Limitations of Principal Component Analysis 307
20.4.2 Sparse PCA e 308
20.5 Network Communities and Modules o o v vt 311
20.5.1 Node-Centric CommunitieS . . « .« « v v v v v i e e e 312
20.5.2 Group-Centric Communities 313
20.5.3 Network-Centric Communities v o v v v et 313
20.6 Network Diffusion Kernels oo e 319
20.7 Neural Networks o o o v v v e i e e e e e e e 321
20.7.1 Feed-forward mets o . 321
20.7.2 Back-propagationo 321
20.7.3 Deep Learning e e e e 322

20.8 Open Issues and Challenges e 323
20.9 Current Research Directions v o v v v v i i i e e e e 324
20.10Further Reading oL e 324
20.11Tools and Techniques o o 0 0 e e e e 325
20.12What Have We Learned? o o vt v i i e 325
21 Regulatory Networks: Inference, Analysis, Application 327
211 Introduction - « « v v v o e e e e e e e e e e 327
21.1.1 Introducing Biological Networks 328
21.1.2 Interactions Between Biological Networks 329
21.1.3 Studying Regulatory Networks 329

21.2 Structure Inference oo 330
21.2.1 Key Questions in Structure Inteference L. 330
21.2.2 Abstract Mathematical Representations for Networks 330

21.3 Overview of the PGM Learning Task, 331
21.3.1 Parameter Learning for Bayesian Networks 331
21.3.2 Learning Regulatory Programs for Modules 333
21.3.3 Conclusions in Network Inference 333

21.4 Applications of Networks L 333
21.4.1 Overview of Functional Models 333
21.4.2 Functional Prediction for Unannotated Nodes 334

21.5 Structural Properties of Networks 336
21.5.1 Degree distribution 336
21.5.2 Network motifs o L 337

21.6 Network clustering e 338

xi

CONTENTS CONTENTS
21.6.1 An algebraic view to networks e 339
21.6.2 The spectral clustering algorithm L oo 341

22 Chromatin Interactions 345

22.1 Introductiono e e e e e e e e e e e 345
22.1.1 What’s already knowno 346
22.1.2 What we don’t kKnow e e 346
22.1.3 Why do we study it? 347

22.2 Relevant terminology L e e e e 347
22.2.1 Nuclear lamina e e e e 347
22.2.2 Lamina Associated Domains(LADs) L . 347
22.2.3 Histones e e e e 347
2224 Chromatinl . . .« . v v o e e e e e e e e 347
22.2.5 Chromosome territories (CT) 348
22.2.6 Gross folding principles e 348

22.3 Molecular Methods for Studying Nuclear Genome Organization 348
22.3.1 Methods for measuring DNA-Nuclear Lamina interactions 348
22.3.2 Measuring DNA-DNA contacts 350

22.4 Mapping Genome-Nuclear Lamina Interactions (LADs) 352
22.4.1 Interpreting DamID Data L o 353
22.4.2 Interpreting Hi-C Data e 354

22.5 Computational Methods for Studying Nuclear Genome Organization 355
2251 Sources of BIaS « « .« v v o v oo 355
22.5.2 Bias Correction - - « « v« v v v e e e e e e 355
22.5.3 3D-modeling of 3C-based data, e 356

22.6 Architecture of Genome Organization 356
22.6.1 Multiple cell types influence on determining architecture 356
22.6.2 Inter-species comparison of lamina associations L. 356
2263 A-T Content Rule e 357

22.7 Mechanistic Understanding of Genome Architecture 358
22.7.1 Understanding Mitosis and LADs 358
22.7.2 Modeling e 358

22,8 Current Research Directions: v o v v v v i i e e e e e e e e e e e 359
2281 TADS .« . o o o e 359
22.8.2 TADs and Other Compartments: 359
22.8.3 Other/Miscellaneous: L e 359

22.9 Further Reading L o e e 360

22.10Available Tools and Techniques e 360

22 11What Have We Learned? 0 i it e e 360

23 Introduction to Steady State Metabolic Modeling 361

231 Introduction .« e e e e e e e e e e e e 361
23.1.1 What is Metabolism? o o e e 362
23.1.2 Why Model Metabolism? 362

23.2 Model Building e e e e 362
2321 Chemical ReaCtions . . - « v« « v v e i e e e e e 362
23.2.2 Steady-State Assumption e 363
23.2.3 Reconstructing Metabolic Pathways 364

23.3 Metabolic Flux Analysis e 364
23.3.1 Mathematical Representation o 364
23.3.2 Null Space of S e 365
23.3.3 Constraining the Flux Space o 366
23.3.4 Linear Programming e e e 366

23.4 Applications e 368

xii

CONTENTS CONTENTS

23.4.1 In Silico Detection Analysis e 368

23.4.2 Quantitative Flux In Silico Model Predictions 369

23.4.3 Quasi Steady State Modeling (QSSM) 370

23.4.4 Regulation via Boolean Logic 371

23.4.5 Coupling Gene Expression with Metabolism 373

23.4.6 Predicting Nutrient Source L 374

235 Current Research Directions« v v v v v v v v it i e 377
23.6 Further Reading e 377
23.7 Tools and Techniques 0 e 377
23.8 What Have We Learned? 0ottt e e 377
24 The ENCODE project: Systematic experimentation and integrative genomics 379
241 Introductiono e e 379
24.2 Experimental Techniques e 380
24.3 Computational Techniques e 381
24.4 Current Research DITeCtionS « - « « « « v v v v v v et e e e e e 383
24.5 Further Reading e e e 384
24.6 Tools and Techniques e e 384
24.7 What Have We Learned? e e e 384
25 Pharmacogenomics 387
251 Introduction e 387
25.2 Current Research DIT@CtiONS « - « « « « v v v v v vt e e e e e e e 387
25.3 Further Reading o . e 387
25.4 Tools and Techniques o 0 e e e e 387
25.5 What Have We Learned? e e e 387
26 Synthetic Biology 389
26.1 Introduction L e e 389
26.2 Current Research DITectionS « . -« ¢ v v v v v v v e e i e e 391
26.3 Further Reading e 392
26.4 Tools and Techniques e e e e e 392
26.5 What Have We Learned? v v vt v vt e e e e 393

v Phylogenomics and Population Genomicssos

27 Molecular Evolution and Phylogenetics 397
271 Introduction - « « v v v o e e e e e e e e e 398
27.2 Basics of Phylogeny 398

27.2, TEOS -« v v v e e e e e e e e 398
2722 TYalllS .« o v v v e e e e e e e e e e 399
27.2.3 Methods for Tree Reconstruetion« o oo v v v v i 400
27.3 Distance Based Methods . - . . .« o o o o oL 402
27.3.1 From alignment to distances L L o 402
27.32 Distances to Treeso o e 407
27.4 Character-Based Methods oo o 411
27.4.1 Scoring 412
2742 Search . . v v oo 417
27.5 Possible Theoretical and Practical Issues with Discussed Approach 419
27.6 Towards final project L 419
27.6.1 Project Ideas e e 419
27.6.2 Project Datasets e 419
27.7 What Have We Learned? o0ttt e e 420

CONTENTS CONTENTS

28 Phylogenomics I1 421
281 Introduction - - « v« v v o i e e 422
28.2 Inferring Orthologs/Paralogs, Gene Duplication and Loss 422

28.2.1 Species Tree o o e 422
28.2.2 Gene Tree L 423
28.2.3 Gene Family Evolution 423
2824 Reconcillation . « « « « v v v i e e e e e e e e e e e e e e e e e 423
28.2.5 Interpreting Reconciliation Examples 427
28.3 Reconstruction L e e 428
28.3.1 Species Tree Reconstruction 428
28.3.2 Improving Gene Tree Reconstruction and Learning Across Gene Trees 429
28.4 Modeling Population and Allele Frequencies 430
28.4.1 The Wright-Fisher Model 430
28.4.2 The Coalescent Model e e 432
28.4.3 The Multispecies Coalescent Model 434
285 SPIDIR. '« . o o o o e e e e e e e 434
28.5.1 Background 434
2852 Method and Model oL e 436
28.6 Ancestral Recombination Graphs 437
28.6.1 The Sequentially Markov Coalescent 437
287 ConclUSIOI « + « v v o e e e e e e 437
28.8 Current Research Directions v o v v ittt 438
28.9 Further Reading o o e 438
28.10Tools and Techniques o e 438
28 11What Have We Learned? 0 it e e e e 438

29 Population History 439
291 Introduction - - « v« . oo i e e 439
29.2 Quick Survey of Human Genetic Variation 440
29.3 African and European Gene Flow L 441
29.4 Gene Flow on the Indian Subcontinent e 442

29.4.1 Almost All Mainland Indian Groups are Mixed 442
29.4.2 Population structure in India is different from Europe 444
2943 DISCUSSION « + « « v v v e e e e e e e e e e e e e 444
29.5 Gene Flow Between Archaic Human Populations 445
29.5.1 Background e e e 445
29.5.2 Fvidence of Gene Ilow between Humans and Neanderthals 445
29.5.3 Gene Flow between Humans and Denisovans 446
29.5.4 Analysis of High Coverage Archaic Genomes 447
29.5.5 DISCUSSION « + « « v v v e e e e e e e e e 447
29.6 FEuropean Ancestry and Migrations 448
29.6.1 Tracing the Origins of European Genetics 448
29.6.2 Migration from the Steppe e 449
29.6.3 Screening for Natural Selection 449
29.7 Tools and Techniques 0 e e 449
29.7.1 Techniques for Studying Population Relationships 449
29.7.2 Extracting DNA from Neanderthal Bones 451
29.7.3 Reassembling Ancient DNA 452
20.8 Research Directions« « o o 452
29.9 Further Reading e 453

xiv

CONTENTS CONTENTS
30 Population Genetic Variation 455
301 Introduction L e e e e 456
30.2 Population Selection Basics L L 456
30.2.1 Polymorphisms e 456
30.2.2 Allele and Genotype Frequencies 457
30.2.3 Ancestral State of Polymorphisms 460
30.2.4 Measuring Derived Allele Frequencies 461

30.3 Genetic Linkage L L e e e 462
30.3.1 Correlation Coefficient 72 463
304 Natural Selection o o 463
30.4.1 Genomics Signals of Natural Selection 464
305 Human Evolution o o 0o 467
30.5.1 A History of the Study of Population Dynamics 467
30.5.2 Understanding Disease L e 470
30.5.3 Understanding Recent Population Admixture 471

30.6 Current Research e e e 472
30.6.1 HapMap project 0 e e e e e e 472
30.6.2 1000 genomes project oL o e e e e e 472

30.7 Further Reading o e 472
v_Medical Genomics 475
Medical G ics — The P to the Present 477
311 Introduction L e 477
31.2 Goals of investigating the genetic basis of disease 478
31.2.1 Personalized genomic medicine Lo Lo 478
31.2.2 Informing therapeutic development 478
31.3 Mendelian Traits« ¢ v v v v ot e e e e e e e 479
3131 Mendel e 479
31.3.2 Linkage Analysis L 479

31.4 Complex Traits e 482
31.5 Genome-wide Association Studies Lo 482
31.5.1 Events Enabling Genome-wide Association Studies 483
31.5.2 Quality Controls e 484
31.5.3 Testing for Association 484
31.5.4 Interpretation: How can GWAS inform the biology of disease? 486
31.5.5 Bottom-up e e e 486
31.5.6 Top-down e e e e e e e 487
31.5.7 Comparison with Linkage Analysis 487
31.5.8 Challenges of Non-coding Variants 487
31.5.9 ConcluSionS « -« « v v e e e e e e e e e e 488

31.6 Current Research Directions o e 488
31.7 Further Reading e 489
31.8 Tools and Techniques o e e e e 489
31.9 What Have We Learned? 0 e e e e 489
32 Variation 2: : Quantitative trait mapping, eQTLs, molecular trait variation 493
321 Introductiono e 493
32.2 eQTL Basics o o o e e 494
32.2.1 Cis-eQTLS o e e 494
32.2.2 Trans-eQTLs e 495

32.3 Structure of an eQTL Study L 495
32.3.1 Considerations for Expression Data 0L 496

XV

CONTENTS CONTENTS

32,32 Considerations for Genomic Data oo 496

32.3.3 Covariate Adjustment e 496

32.3.4 Points to Consider e e e 497

32.4 Current Research Directions o 0 i e e e 497
32.4.1 Quantifying Trait Variation e 497

32.4.2 New Applications e e e 498

32.5 What Have We Learned? e 498
32.6 Further Reading e 498
32.7 Tools and Resources e e e e e 499
33 Missing Heretibility 505
33.1 Introduction L 505
33.2 Current Research Directions 505
33.3 Further Reading e 505
33.4 Tools and Techniques o i e 505
33.5 What Have We Learned? o 505
34 Personal Genomes, Synthetic Genomes, Computng in C vs. Si 507
34.1 Introduction e 507
34.2 Reading and Writing Genomes L Lo e 507
34.3 Personal Genomes e e 508
34.4 Current Research Directions e 509
34.5 Further Reading o e 509
34.6 Tools and Techniques 0 e 509
34.7 What Have We Learned? e 509
35 Personal Genomics 511
35.1 Introduction e e e e 511
35.2 Epidemiology: An Overview e e e 512
35.3 Genetic Epidemiology e e 513
35.4 Molecular Epidemiology L e 514
35.4.1 meQTLs 515

35.4.2 EWAS e e 516

35.5 Causality Modeling and Testing 516
35.5.1 Polygenic Risk Prediction e 517

35.6 Current Research Directions e e e 518
35.7 Further Reading e e 518
35.8 Tools and Techniques o 0 e e e 518
35.9 What Have We Learned? e 518
36 Cancer Genomics 519
36.1 Introduction L 519
36.2 Characterization 519
36.3 Interpretation L oL e e e 521
36.4 Current Research Directions o i i e e e e 521
36.5 Further Reading e 522
36.6 Tools and Techniques L o o e e 522
36.7 What Have We Learned? e e 522
37 Genome Editing 523
37.1 Introduction L e 523
37.1.1 What is CRISPR/Cas? it 523

37.1.2 Why is CRISPR/Cas important tous? 523

37.1.3 Cas-9 e e 524

37.2 Current Research Directions e 524

xvi

CONTENTS CONTENTS

37.2.1 Improvement of Cas-9 524
37.2.2 Current research being done with CRISPR/Cas-9 524
37.3 Further Reading e 525
37.4 Tools and Techniques o i e 525
375 What Have We Learned? o . v v vt vt i e e e e e 525

xvii

CONTENTS CONTENTS

xviii

CONTENTS History of the Course CONTENTS

Preface and Acknowledgements

These notes summarize the material taught in the MIT course titled “Computational Biology: Genomes,
Networks, Evolution”, also cross-listed with Harvard, HST, HSPH and BU over the years. The course was
listed as MIT course 6.047/6.878 in 2007-2011 (and under the temporary numbers 6.085/6.095/6.895 in Fall
2005-2006, and 6.096 in Spring 2005). It was cross-listed with MIT/Harvard Health Sciences and Technology
(HST) course HST.507 in 2007-2011, Boston University Biological Engineering course BE-562 in 2008 and
2009, and Harvard School of Public Health course IMI231 in 2009-2011.

The course was originally developed by Prof. Manolis Kellis at MIT, with advice from Silvio Micali. It
was first taught in Spring Spring 2005 as a half-course extension to the Introduction to Algorithms Course
(6.046), and as an independent full-credit course in Fall 2005-2011. The course was co-lectured with Prof.
Piotr Indyk in Fall 2005-2006, who contributed to the material on hashing and dimentionality reduction
techniques. It was co-taugh with Prof. James Galagan in Fall 2007-2009 who contributed to the lectures on
expression clustering, supervised learning and metabolic modelling, and who continued teaching the course
independently at BU.

The material in the course has benefited tremendously from courses by Bonnie Berger at MIT, whose
course “Introduction to Computational Biology (18.417)” was co-taught by Manolis Kellis as a student in
Fall 2001, and Serafim Batzoglou at Stanford whose course “Computational Genomics (CS262)” was an
inspiration for clarity and style and a source of figures and diagrams for the early chapters on alignment and
HMDMs. Lastly, the material in the course also benefited from two books used extensively in the course in
the last several years, titled “Biological Sequence Analysis” by Durbin, Eddy, Drogh, and Mitchison,
and “Bioinformatics Algorithms” by Jones and Pevzner.

The material of several chapters was initially developed by guest lecturers who are experts in their field
and contributed new material, figures, slides, organization, and thoughts in the form of one or more lec-
tures. Without them, the corresponding chapters would not have been possible. They are: Pardis Sabeti
(Population Genetic Variation), Mark Daly (Medical Genetics), David Reich (Population History), Eric
Alm (Bacterial Genomics), John Rinn (Long Non-Coding RNAs), James Galagan (Steady State mod-
eling), Matt Rasmussen (Phylogenomics), Mike Lin (Gene finding), Stefan Washietl (RNA folding),
Jason Ernst (Epigenomics), Sushmita Roy (Regulatory Networks), Pouya Kheradpour (Regulatory
Genomics).

The Teaching Assistants who taught recitations and help develop the course problem sets have been
Reina Reimann (Spring 2005), Pouya Kheradpour (Fall 2005), Matt Rasmussen and Mike Lin
(Fall 2006), Mike Lin and David Sontag (Fall 2007), Matt Rasmussen and Pouya Kheradpour (Fall
2008), Ed Reznik and Bob Altshuler (Fall 2009), Matt Edwards (Fall 2010), and Melissa Gymrek
(Fall 2011). The notes were originally compiled in a uniform format Anna Shcherbina (Fall 2011).

The current and past members of the MIT CompBio Lab (http://compbio.mit.edu/people.html),
who have taught me as they grew into experts in their own fields. They are: Matt Rasmussen, Mike Lin,
Pouya Kheradpour, Alexander Stark, Xiaohui Xie, Jason Ernst, Sushmita Roy, Luke Ward, Chris Bristow,
Abdoulaye Diallo, David Hendrix, Loyal Goff, Stefan Washietl, Daniel Marbach, Mukul Bansal, Matthew
Eaton, Irwin Jungreis, Rachel Sealfon, Bob Altshuler, Jessica Wu, Angela Yen, Soheil Feizi, Luis Barrera,
Ben Holmes, Anna Ayuso, Wouter Meuleman, Ferhat Ay, Rogerio Candeias, Patrick Meyer, Tom Morgan,
Wes Brown, Will Gibson, Rushil Goel, Luisa Di Stefano, Stephan Ossowski, Aviva Presser, Erez Lieberman,
Joshua Grochow, Yuliya Kodysh, Leopold Parts, Ameya Deoras, Matt Edwards, Adrian Dalca.

The students taking the class and contributing to the scribe notes are:

e Spring 2005: Dan Arlow, Arhab Battacharyya, Punyashloka Biswal, Adam Bouhenguel, Dexter Chan,
Shuvo Chatterjee, Tiffany Dohzen, Lyric Doshy, Robert Figueiredo, Edena Gallagher, Josh Grochow,
Aleksas Hauser, Blanca Himes, George Huo, Xiaoming Jia, Scott Johnson, Steven Kannan, Faye
Kasemset, Jason Kelly, Daniel Kim, Yuliya Kodysh, Nate Kushman, Lucy Mendel, Jose Pacheco,
Sejal Patel, Haiharan Rahul, Gireeja Ranade, Sophie Rapoport, Aditya Rastogi, Shubhangi Saraf,
Oded Shaham, Walter Stiehl, Kevin Stolt, James Sun, Xin Sun, Kah Tai, Kah Tay, Chester Tse, Verlik
Tzanov, Brian Wu

e Fall 2005: Ebad Ahmed, Christophe Falling, Michael Farry, Elaine Gee, Luke Hutchison, Michael Lin,
Grigore Pintilie, Asfandyar Qureshi, Matthew Rasmussen, Alexandru Salcianu, Zeeshan Syed, Hayden

1

http://compbio.mit.edu/people.html

CONTENTS History of the Course CONTENTS

Taylor, Velin Tzanov, Grant Wang

e Fall 2006: Mats Ahlgren, Zhu Ailing, Bob Altshuler, Nada Amin, Shay Artzi, Solomon Bisker, Allen
Bryan, Sumeet Gupta, Adam Kiezun, Richard Koche, Mieszko Lis, Ryan Newton, Michael O’Kelly,
Chris Reeder, Jonathan Rhodes, Michael Schnall-Levin, Alex Tsankov, Tarak Upadhyaya, Kush Varsh-
ney, Sam Volchenboum, Jon Wetzel, Amy Williams

e Fall 2007: Anton Aboukhalil, Matthew Belmonte, Ellenor Brown, Brad Cater, Alal Eran, Guilherme
Fujiwara, Saba Gul, Kate Hoff, Shannon Iyo, Eric Jonas, Peter Kruskall, Michael Lee, Ben Levick, Fulu
Li, Alvin Liang, Joshua Lim, Chit-Kwan Lin, Po-Ru Loh, Kevin Modzelewski, Georgis Papachristoudis,
Michalis Potamias, Emmanuel Santos, Alex Schwendner, Maryam Shanechi, Timo Somervuo, James
Sun, Xin Sun, Robert Toscano, Qingqging Wang, Ning Xie, Qu Zhang, Blaine Ziegler

e Fall 2008: Burak Alver, Tural Badirkhanli, Arnab Bhattacharyya, Can Cenik, Clara Chan, Lydia
Chilton, Arkajit Dey, Ardavan Farjadpour, Jeremy Fineman, Bernhard Haeupler, Arman Hajati, Ethan
Heilman, Joe Herman, Irwin Jungreis, Arjun Manrai, Nilah Monnier, Christopher Rohde, Rachel
Sealfon, Daniel Southern, Paul Steiner, David Stiebel, Mengdi Wang

e Fall 2009: Layla Barkal, Michael Bennie, David Charlton, Guoliang Chew, John Dong, Matthew
Edwards, Eric Eisner, Subha Gollakota, Nathan Haseley, Allen Lin, Christopher McFarland, Michael
Melgar, Anrae Motes, Anand Oza, Elizabeth Perley, Brianna Petrone, Arya Tafvizi Zavareh, Yi-Chieh
Wu, Angela Yen, Morteza Zadimoghaddam, Chelsea Zhang, James Zou

e Fall 2010: Minjeong Ahn, Andreea Bodnari, Wesley Brown, Jenny Cheng, Bianca Dumitrascu, Sam
Esfahani, Amer Fejzic, Talitha Forcier, Maria Frendberg, Dhruv Garg, Rushil Goel, Melissa Gymrek,
Benjamin Holmes, Wui Ip, Isaac Joseph, Geza Kovacs, Gleb Kuznetsov, Adam Marblestone, Alexander
Mccauley, Sheida Nabavi, Jacob Shapiro, Andrew Shum, Ashutosh Singhal, Mark Smith, Mashaal
Sohail, Eli Stickgold, Tahin Syed, Lance Wall, Albert Wang, Fulton Wang, Jerry Wang

e Fall 2011: Asa Adadey, Leah Alpert, Ahmed Bakkar, Rebecca Bianco, Brett Boval, Kelly Brock, Pe-
ter Carr, Efrain Cermeno, Alex Chernyakhovsky, Diana Chien, Akashnil Dutta, Temuge Enkhbaatar,
Maha Farhat, Alec Garza-Galindo, Fred Grober, Gabriel Ha, Marc Hafner, Neel Hajare, Timothy
Helbig, Ivan Imaz, Yarden Katz, Gwang Ko, David Ku, Yu-Chi Kuo, Dan Landay, Yinqing Li, Mark
Mimee, Selene Mota, Hyun Ji Noh, Chrisantha Perera, Aleksey Pesterev, Michael Quintin, Maria
Rodriguez, Megan Roytman, Abhishek Sarkar, Angela Schwarz, Meriem Sefta, Anna Shcherbina,
Mindy Shi, Noam Shoresh, Eric Soderstrom, Ying Qi Soh, Sarah Spencer, Derrick Sund, Ruqi Tang,
Zenna Tavares, Arvind Thiagarajan, Paul Tillberg, Christos Tzamos, Leonardo Urbina, Manasi Vartak,
Nathan Villagaray-Carski, Sajith Wickramasekara, Thomas Willems, Maxim Wolf, Lok Sang Wong,
Iris Xu, Johannes Yeh, Deniz Yorukoglu, Boyang Zhao.

e Fall 2013: Maria Alexis, Polina Binder, Jake Bograd-Denton, Orhan Tunc Celiker, Hyunghoon Cho,
Brian Cleary, David Danko, Vivek Dasari, Dalesh Dharamshi, Atray Dixit, Joseph Driscoll, John
Froberg, Themistoklis Gouleakis, Carissa Jansen, Yuta Kato, Hanna Levitin, Brendan Liu, Quan-
quan Liu, Yang Li, Julianna Mello, Hayden Metsky, Peter Nguyen, Luke O’Connor, Alexander Pagan,
Sebastian Palacios, Peter Palmedo, Jr., Staphany Park, Nicole Power, Emma Seropian, Meena Sub-
ramaniam, Nirvan Tyagi, Joseph Vitti, Timothy Wall, Deena Wang, James Weis, Iris Xu, Haoyang
Zeng, Sidi Zhang

e Fall 2014: Abdulaziz Alghunaim, Sahar Alkhairy, Benjamin Bauchwitz, Tristan Bepler, Silvia Canas
Duarte, Kevin Chen, Michael Coulombe, Lei (Jerry) Ding, Gabriel Filsinger, Matthew Fox, Kristjan
Kaseniit, Joseph Kim, David Lazar, William Leiserson, Jenny Lin, Kathy Lin, Yunpeng Liu, Nicolai
Ludvigsen, Eric Mazumdar, Hilary Mulholland, Pavel Muravyev, Muneeza Patel, Divya Pillai, Clément
Pit-Claudel, Adam Sealfon, Ha Kyung (Kris) Shin, Aradhana Sinha, Daniel Sosa, Yi-Shiuan Tung,
Margaret Walker, Sarah Walker, Yuhao Wang, Hui Ting Grace Yeo, Catherine Yun

e Fall 2015: Jonathan Li, Jesse Tordoff, Thrasyvoulos Karydis, Heather Sweeney, Eric Bartell, Anas-
tasiya Belyaeva, Justin Gullingsrud, Cara Weisman, Robert Hunt, Alex Genshaft, Ge Liu, Richard

2

CONTENTS History of the Course CONTENTS

Hsu, Karthik Murugadoss, Sagar Indurkhya, Max Shen, Kevin Tian, Alvin Shi, Connor Duffy, Narek
Dshkhunyan, Joyce Hong, Gil Goldshlager, Sophia Liu, Aurora Alvarez-Buylla, Giri Anand, Tejas
Sundaresan, Nolan Kamitaki, Bryce Hwang, Hunter Gatewood, Misha Jamy, Nadia Wallace, Carles
Boix, Ava Soleimany, Brock Wooldridge, Sadik Yildiz, Anne Kim, Divya Shanmugam, Deniz Aksel,
Molly Schmidt, Jonahtan Uesato, Joseph Cunningham, Suganya Sridharma, Oleksandr Chaykovskyy,
Eunice Wu, Sam Johnson, Ye Tao

CONTENTS History of the Course CONTENTS

CHAPTER
ONE

INTRODUCTION TO THE COURSE

Figures
1.1 In this computational biology problem, we are provided with a sequence of bases, and wish
to locate genes and regulatory motifs.o oo 6
1.2 The double-helix structure of DNA. Nucleotides are in the center, and the sugar-phosphate
_backbone lies on the outside. e 11
1.3 DNA is packed over several layers of organization into a compact chromosome. 12

1.4 RNA is produced from a DNA template during transcription. A “bubble” is opened in the
DNA, allowing the RNA polymerase to enter and place down bases complementary to the

DNA. 13

(a) Transcription initiation L 13

(b) Transcription elongation L 13

(c) Transcription termination 13

14
1.6 Operon Lac illustrates a simple biological regulatory system. In the presence of glucose,
genes to lactose metabolism are turn out because glucose inactives an activator protein. In
the absence of lactose, a repressor protein also turns out the operon. Lactose metabolism

genes are expressed only in the presence of lactose and absence of glucose. 15
1.7 Metabolic pathways and regulation can be studied by Computational biology. Models
are made from genome scale information and used to predict metabolic function and to
metabolic engineering. An example of biological engineering is modifying bacteria genome

to overproduce artemesenin, an antibiotic used to treat malaria. 16

1.1 Introduction and Goals

1.1.1 A course on computational biology

These lecture notes are aimed to be taught as a term course on computational biology, each 1.5 hour lecture
covering one chapter, coupled with bi-weekly homework assignments and mentoring sessions to help students
accomplish their own independent research projects. The notes grew out of MIT course 6.047/6.878, and
very closely reflect the structure of the corresponding lectures.

1.1.2 Duality of Goals: Foundations and Frontiers

There are two goals for this course. The first goal is to introduce you to the foundations of the field of
computational biology. Namely, introduce the fundamental biological problems of the field, and learn the
algorithmic and machine learning techniques needed for tackling them. This goes beyond just learning how to

6.047/6.878 Lecture 01: Introduction and Administrative Details

use the programs and online tools that are popular any given year. Instead, the aim is for you to understand
the underlying principles of the most successful techniques that are currently in use, and provide you with
the capacity to design and implement the next generation of tools. That is the reason why an introductory
algorithms class is set as a pre-req; the best way to gain a deeper understanding for the algorithms presented
is to implement them yourself.

The second goal of the course is to tackle the research frontiers of computational biology, and that’s
what all the advanced topics and practical assignments are really about. We’d actually like to give you a
glimpse of how research works, expose you to current research directions, guide you to find the problems
most interesting to you, and help you become an active practitioner in the field. This is achieved through
guest lectures, problem sets, labs, and most importantly a term-long independent research project, where
you carry out your independent research.

The modules of the course follow that pattern, each consisting of lectures that cover the foundations
and the frontiers of each topic. The foundation lectures introduce the classical problems in the field. These
problems are very well understood and elegant solutions have already been found; some have even been
taught for well over a decade. The frontiers portion of the module cover advanced topics, usually by tackling
central questions that still remain open in the field. These chapters frequently include guest lectures by
some of the pioneers in each area speaking both about the general state of the field as well as their own lab’s
research.

The assignments for the course follow the same foundation/frontiers pattern. Half of the assignments
are going to be about working out the methods with pencil on paper, and diving deep into the algorithmic
and machine learning notions of the problems. The other half are actually going to be practical questions
consisting of programming assignments, where real data sets are provided. You will analyze this data using
the techniques you have learned and interpret your results, giving you a real hands on experience. The
assignments build up to the final project, where you will propose and carry out an original research project,
and present your findings in conference format. Overall, the assignments are designed to give you the
opportunity to apply computational biology methods to real problems in biology.

1.1.3 Duality of disciplines: Computation and Biology

In addition to aiming to cover both foundations and frontiers, the other important duality of this course is
between computation and biology.

From the biological perspective of the course, we aim to teach topics that are fundamental to our
understanding of biology, medicine, and human health. We therefore shy away from any computationally-
interesting problems that are biologically-inspired, but not relevant to biology. We’re not just going to see
something in biology, get inspired, and then go off into computer science and do a lot of stuff that biology
will never care about. Instead, our goal is to work on problems that can make a significant change in the
field of biology. We’d like you to publish papers that actually matter to the biological community and have
real biological impact. This goal has therefore guided the selection of topics for the course, and each chapter
focuses on a fundamental biological problem.

From the computational perspective of the course, being after all a computer science class, we focus
on exploring general techniques and principles that are certainly important in computational biology, but
nonetheless can be applied in any other fields that require data analysis and interpretation. Hence, if what
you want is to go into cosmology, meteorology, geology, or any such, this class offers computational techniques
that will likely become useful when dealing with real-world data sets related to those fields.

1.1.4 Why Computational Biology?

lecturel_transcript.html#Motivations

There are many reasons why Computational Biology has emerged as an important discipline in recent
years, and perhaps some of these lead you to pick up this book or register for this class. Even though we
have our own opinion on what these reasons are, we have asked the students year after year for their own
view on what has enabled the field of Computational Biology to expand so rapidly in the last few years.
Their responses fall into several broad themes, which we summarize here.

6

6.047/6.878 Lecture 01: Introduction and Administrative Details

10.

11.

12.

. Perhaps the most fundamental reason why computational approaches are so well-suited to the study of

biological data is that at their core, biological systems are fundamentally digital in nature. To be
blunt, humans are not the first to build a digital computer — our ancestors are the first digital computer,
as the earliest DNA-based life forms were already storing, copying, and processing digital information
encoded in the letters A,C,G, and T. The major evolutionary advantage of a digital medium for storing
genetic information is that it can persist across thousands of generations, while analog signals would
be diluted from generation to generation from basic chemical diffusion.

. Besides DNA, many other aspects of biology are digital, such as biological switches, which ensure

that only two discrete possible states are achieved by feedback loops and metastable processes, even
though these are implemented by levels of molecules. Extensive feedback loops and other diverse
regulatory circuits implement discrete decisions through otherwise unstable components, again with
design principles similar to engineering practice, making our quest to understand biological systems
from an engineering perspective more approachable.

Sciences that heavily benefit from data processing, such as Computational Biology, follow a virtuous
cycle involving the data available for processing. The more that can be done by processing and analyz-
ing the available data, the more funding will be directed into developing technologies to obtain, process
and analyze even more data. New technologies such as sequencing, and high-throughput experimental
techniques like microarray, yeast two-hybrid, and ChIP-chip assays are creating enormous and in-
creasing amounts of data that can be analyzed and processed using computational techniques. The
$1000 and $100 genome projects are evidence of this cycle. Over ten years ago, when these projects
started, it would have been ludicrous to even imagine processing such massive amounts of data. How-
ever, as more potential advantages were devised from the processing of this data, more funding was
dedicated into developing technologies that would make these projects feasible.

. The ability to process data has greatly improved in the recent years, owing to: 1) the massive compu-

tational power available today (due to Moore’s law, among other things), and 2) the advances in the
algorithmic techniques at hand.

Optimization approaches can be used to solve, via computational techniques, that are otherwise in-
tractable problems.

Running time & memory considerations are critical when dealing with huge datasets. An algorithm
that works well on a small genome (for example, a bacteria) might be too time or space inefficient to be
applied to 1000 mammalian genomes. Also, combinatorial questions dramatically increase algorithmic
complexity.

Biological datasets can be noisy, and filtering signal from noise is a computational problem.

Machine learning approaches are useful to make inferences, classify biological features, & identify
robust signals.

As our understanding of biological systems deepens, we have started to realize that such systems cannot
be analyzed in isolation. These systems have proved to be intertwined in ways previously unheard of,
and we have started to shift our analyses to techniques that consider them all as a whole.

It is possible to use computational approaches to find correlations in an unbiased way, and to come up
with conclusions that transform biological knowledge and facilitate active learning. This approach is
called data-driven discovery.

Computational studies can predict hypotheses, mechanisms, and theories to explain experimental
observations. These falsifiable hypotheses can then be tested experimentally.

Computational approaches can be used not only to analyze existing data but also to motivate data
collection and suggest useful experiments. Also, computational filtering can narrow the experimental
search space to allow more focused and efficient experimental designs.

7

6.047/6.878 Lecture 01: Introduction and Administrative Details

13.

14.

15.
16.
17.

18.

Biology has rules: Evolution is driven by two simple rules: 1) random mutation, and 2) brutal selection.
Biological systems are constrained to these rules, and when analyzing data, we are looking to find and
interpret the emerging behavior that these rules generate.

Datasets can be combined using computational approaches, so that information collected across
multiple experiments and using diverse experimental approaches can be brought to bear on questions
of interest.

Effective visualizations of biological data can facilitate discovery.
Computational approaches can be used to simulate & model biological data.

Computational approaches can be more ethical. For example, some biological experiments may be
unethical to perform on live subjects but could be simulated by a computer.

Large scale, systems engineering approaches are facilitated by computational technique to obtain global
views into the organism that are too complex to analyze otherwise.

1.1.5 Finding Functional Elements: A Computational Biology Question

lecturel_transcript.html#Codons
Several computational biology problems refer to finding biological signals in DNA data (e.g. coding
regions, promoters, enhancers, regulators, ...).

T T T U T I e T T
TAAAARAACCTTCTCTTTGGARACTTT
ACAGCCCTCCGACGGAAGACTC_CCT

AACAATAAAGATTCTACAATAC
CRARATTAACRACCATAGGAT
TAACAGATATATAAATGGAS

FAGCGCAAAGGAATTAC CAAGACCATTGGCCGAAAAGTGC CCGAGCATAATTAAI TATGATGCTAAACCG

L TGTTGCTAGATCGCCTGGTAGAGTCAATCTAATTGGTGAACATATTGATTATTGTGAY CCTTTAGCTATTGA'
S o AACG, TCCATCCATTACCTTAATAAATG! TTGCTCAAAGGAS
bd %emcmmms@cmwm T
hd Genes FARAGGTTTGCCAGTGCTCCICTGECCGEGCTS) O lat tifs [C
g TTCATTTGTGCCGTTGCTTTAGCTETTGTTAA| MEGUIALOrY IMOLINS |2
2| FCGTTGCAGAACATTATGTTGGTGTTAACAAT I
& Encode [FAGTTCAAACCGCAGTIGAAGGCTACTCCGTTT k2
b . [GTATCTAACAAGTTTGAAACCGCCCCAACCAA) Control FA
hql proteins hceGGTETTGTITTACTTICTGGAAAAGAAGGAT . EA
el FACAACATTTCCACACCCTGGAACGGCGATATT gene expression ia
F TAGTACTAGTTGAAGAGTCTCIN NCCAATAAGAAACAGGGCTTTAGTGTTGACGATGT| G}
hTTCACAAGAGACTACTTAACAACK XCTCCAGTGAGATTTCAAGTCTTAAAGCTATATCAGAGGY A AAGCATGTGTATTCTGAA!

'GACTACAGCGAGCTTTACTGCCGACGAAGACTTTT!
CGAATGTTCTTGTCCAGAGATTGACAAAATTTG;
'GGTTGTACTGTTCACTTGGTTCCAGGGGGC!
TACCCTAAGATCACTGATGCTGAGCTA(
TTCTTTTTTTTACTTTGTTCAGAAC,
CACTTTTATAGTTCATACATGCTT

FAGTCTCAAGCTTCTTGCGATAAACT
FGGTTCCCGTTTGACCGGAGCTGGCTG
RPAGCCCTTGCCAATGAGTTCTACAAGGT!
[TGGGCAGCTGTCTATATGAATTATAAGTAN
CATCACAARATACGCAATAATAACGAGTAG!
TAAGAGATTTCGATTATCCACAAR!
GACATGATATGACTACCATTTTGTT.
[TGGCARGTTGCCAACTGACGAGATGCAGTAAARA
hACCCTTTGTCCTACTGATTAATTTTGTACTGRAATT!
ACAAGAAGATAGGA ARA AGC
'AGACAAGGACAAAATCAGGACARATTGT
FCCATTARATCTCTGTTCTCTCTTACTTATATGATGATTA

CATAGAGAAGATCTTTCGGTTCGAAGACATTCCTACGCAT
[;CGGCTCTTCAAAAAGATTGAACTCTCGCCAACTTATGGAATC!

TCTCATTTTTTTCTACTCATAAC!
CTACTTAATARATGATTGTATGAT.
s ATATGCTTTCAACCGCTGCGTTTTG!
A TATCATATGTCAAAGTCATTTGCGAA
TGTCCTTTTTTTTTTCCGGGGACTCTA!
GACAAGCGCGAGGAGGAARRGARATGAC,
CCGGAAAARAGTCGTATGACATCAGAATG,

TCATCTGTATAAAACTCCTTTCTTAATTTCACTCTARAGCA
GAATAGGAGGGAATAATGCCAGACAATCTATCATTACAT!
(CAATGAGACCTTTGCGCCAAATAATGTGGATTTGGAAAR]

L TCATTCTGGAAGAAAATCTATTATGAATATGTGGTCGITGACAAATCAATCTTGGGTGTITTCTATTCTGGATTCATTTATGTAC,
RGGACTTGAAGCCCGTCGAAAAAGAAAGGCGGGTTTGGTCCTGGTACAATTATTGTTACTTCTGGCTTGCTGAATGTTTCAATAT!
RCTTGGCAAATTGCAGCTACAGGTCTACAACTGGGTCTAAATTGETGGCAGTGTTGGATAACAATTTGGATTGGGTACGGTTTCG]

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Figure 1.1: In this computational biology problem, we are provided with a sequence of bases, and wish to
locate genes and regulatory motifs.

We then discussed a specific question that computational biology can be used to address: how can one
find functional elements in a genomic sequence? Figure 1.1 shows part of the sequence of the yeast genome.
Given this sequence, we can ask:

Q: What are the genes that encode proteins?

A: During translation, the start codon marks the first amino acid in a protein, and the stop codon indicates

the end of the protein. However, as indicated in the “Extracting signal from noise” slide, only a few
of these ATG sequences in DNA actually mark the start of a gene which will be expressed as protein.
The others are “noise”; for example, they may have been part of introns (non-coding sequences which
are spliced out after transcription).

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 01: Introduction and Administrative Details

Q: How can we find features (genes, regulatory motifs, and other functional elements) in the genomic
sequence?

A: These questions could be addressed either experimentally or computationally. An experimental approach
to the problem would be creating a knockout, and seeing if the fitness of the organism is affected. We
could also address the question computationally by seeing whether the sequence is conserved across
the genomes of multiple species. If the sequence is significantly conserved across evolutionary time, it’s
likely to perform an important function.

There are caveats to both of these approaches. Removing the element may not reveal its function—even if
there is no apparent difference from the original, this could be simply because the right conditions have not
been tested. Also, simply because an element is not conserved doesn’t mean it isn’t functional. (Also, note
that “functional element” is an ambiguous term. Certainly, there are many types of functional elements in
the genome that are not protein-encoding. Intriguingly, 90-95% of the human genome is transcribed (used
as a template to make RNA). Tt isn’t known what the function of most of these transcribed regions are, or
indeed if they are functional).

1.2 Final Project - Introduction to Research In Computational
Biology

lecturel_transcript.html#FinalProject

1.2.1 Final project goals

An important component of being a computational biologist is the ability to carry out independent research
in the area. The skills for a successful researcher differ from one person to the next, but in the process
of teaching this course, we have identified several aspects that are all needed, and laid out activities for a
term-long project, that enable students to carry out their independent research.

The project mirrors real world scientific process: come up with an idea — frame it — propose it— revise
it — carry it out — present your results. Students are expected to think critically about their own project,
and also evaluate peer research proposals, and lastly respond to feedback from their peers.

Students are expected to use real data and present their results in conference format. The ultimate goal is
publishable research. Students are encouraged to talk with the course staff while formulating a final project
idea, look head through the various chapters and modules, and get an idea of what areas will interest you
most.

1.2.2 Final project milestones

Instead of waiting until the end of the term to begin brainstorming or provide feedback, we begin project
activities with the first problem set, to identify problems of interest and types of projects, find partners,
speak with current students and postdocs in computational biology that can serve as mentors, and lay out
a research plan in the style of an NIH proposal to identify potential pitfalls early and address them or work
around them before they become a bottleneck.

By setting up several incremental progress milestones throughout the term, coupled with mentoring and
feedback throughout the semester, we have achieved consistent progress in previous years, which can be
useful to students taking on a new project at any stage of their career. Research projects from this course
in the past have been used as the starting point for a published paper, have led to Masters and PhD theses,
and earned awards both academically and in conferences.

The timeline for the final project is as follows:

1. Set-up: a brief overview of your experience and interest. Due 9/29
2. Brainstorming: a list of initial project ideas and partners. Due 10/6

3. Proposal: submit a project proposal in the form of an NIH proposal. Due 10/20

9

6.047/6.878 Lecture 01: Introduction and Administrative Details

4. Proposal presentation: present slides to class and mentors on the proposal. Due 10/23
5. Review: review and critique 3 peer proposals. Due 10/30

6. Midterm Progress Report: write outline of final report. Due 11/19

7. Final Project Report: write report in conference paper format. Due 12/6

8. Final Class Presentation: 10min conference talk. Due 12/10

There will be Friday mentoring sessions before each portion of the final project is due, and you are
encouraged to find a mentor at the first few sessions who is actively interested in your project and could
help you more frequently. The mentoring sessions can be helpful in identifying if unexpected results are the
result of a bug or are instead a discovery.

Make sure you start working on the project even while waiting for peer reviews, so that you will have
4-5 weeks to complete the research itself.

1.2.3 Project deliverables

The final project will include the following two deliverables:

1. A written presentation, due Mon at 8pm, last week of classes. The written presentation can contain
the following elements:

e Who did what (to reflect trend in publications)
e The overall project experience
e Your discoveries
e What you learned from the experience (introspection)
2. An oral presentation, due Thursday after the written presentation. This allows students three days to

prepare the oral presentation.

1.2.4 Project grading

Selecting a project that will be successful can be difficult. To help students optimize for a successful project,
we let them know in advance the grading scheme, designed to maximize the project impact by being orig-
inal, challenging, and relevant to the field, but of course the grade is ultimately dependent on the overall
achievement and the clarity of presentation.

Briefly, the grading equation for the final project is:

min(O,C,R) x A+ P
where
Originality - unoriginal computational experiments don’t get published
Challenge - the project needs to be sufficiently difficult
Relevance - it needs to be from biology, can’t just reuse something from another field
Achievement - if you don’t accomplish anything you won’t get a good grade

Presentation - even if you've achieved a good project you have to be able to present it so everyone knows
that, and make it look easy. The presentation should show how the project is O, C, and R.

Originality, Challenge, Relevance are each out of 5 points, Achievement and Presentation are each out of
10.

10

6.047/6.878 Lecture 01: Introduction and Administrative Details

1.3 Additional materials

1.3.1 Online Materials for Fall 2015

lecturel_transcript.html#Handouts
In addition to these static notes, the course has several online resources:

e The course calendar on Google Calendar. You can add ”6.047 Lectures”, a public calendar.

e The NB note-taking system for annotating these notes http://nb.mit.edu/

1.3.2 Textbooks

lecturel_transcript.html#CourseInformation The following three (optional) reference textbooks are
recommended for the class.

1. Richard Durbin, Sean R. Eddy, Anders Krogh and Graeme Mitchison, Biological Sequence Analysis:
Probabilistic Models of Proteins and Nucleic Acids.

2. Neil Jones and Pavel Pevzner, An Introduction to Bioinformatics Algorithms.
3. Richard Duda, Peter Hart, David Stork, Pattern Classification.

Each book has a different advantage. The first book is a classic one. It is heavy in math and covers much
of what is in class. The book is focused on sequence alignment. As part of sequence alignment theory, the
book approaches Hidden Markov Models (HMM), pairwise and multiple alignment methods, phylogenetic
trees as well as a short background in probability theory.

The second book intends to balance between mathematical rigor and biological relevance. According to
the author, it is a good book for undergrad students. The book includes a table that associates algorithms
to biological problems.

The third book is about machine learning. It takes more of an engineering approach. It includes machine
learning theory, neural network and, as the name suggests, pattern recognition.

1.4 Crash Course in Molecular Biology

For the primarily computational students, we provide a brief introduction to the key notions of molecular
biology that we will encounter throughout the term.

1.4.1 The Central Dogma of Molecular Biology

lecturel_transcript.html#CentralDogma DNA — RNA — Protein

The central dogma of molecular biology describes how genetic information is stored and interpreted
in the cell: The genetic code of an organism is stored in DNA, which is transcribed into RNA, which is
finally translated into protein. Proteins carry out the majority of cellular functions such as motility, DNA
regulation, and replication.

Though the central dogma holds true in most situations, there are a number of notable exceptions to the
model. For instance, retroviruses are able to generate DNA from RNA via reverse-transcription. In addition,
some viruses are so primitive that they do not even have DNA, instead only using RNA to protein.

11

http://nb.mit.edu/

6.047/6.878 Lecture 01: Introduction and Administrative Details

Did You Know?

The central dogma is sometimes incorrectly interpreted too strongly as meaning that DNA only
stores immutable information from one generation to the next that remains identical within a gen-
eration, RNA is only used as a temporary information transfer medium, and proteins are the only
molecule that can carry out complex actions.

Again, there are many exceptions to this interpretation, for example:

e Somatic mutations can alter the DNA within a generation, and different cells can have different
DNA content.

Some cells undergo programmed DNA alterations during maturation, resulting in different
DNA content, most famously the B and T immunity while blood cells

Epigenetic modifications of the DNA can be inherited from one generation to the next

e RNA can play many diverse roles in gene regulation, metabolic sensing, and enzymatic reac-
tions, functions that were previously thought to be reserved to proteins.

e Proteins themselves can undergo conformational changes that are epigenetically inherited no-
tably prion states that were famously responsible for mad cow disease

1.4.2 DNA
DNA — RNA — Protein

DNA function

The DNA molecule stores the genetic information of an organism. DNA contains regions called genes, which
encode for proteins to be produced. Other regions of the DNA contain regulatory elements, which partially
influence the level of expression of each gene. Within the genetic code of DNA lies both the data about the
proteins that need to be encoded, and the control circuitry, in the form of regulatory motifs.

DNA structure

DNA is composed of four nucleotides: A(adenine), C(cytosine),T (thymine), and G (guanine). A and
G are purines, which have two rings, while C and T are pyrimidines, with one ring. A and T are connected
by two hydrogen bonds, while C and G are connected by three bonds. Therefore, the A-T pairing is weaker
than the C-G pairing. (For this reason, the genetic composition of bacteria that live in hot springs is 80%
G-C). lecturel_transcript.html#Complementarity

The two DNA strands in the double helix are complementary, meaning that if there is an A on one
strand, it will be bonded to a T on the other, and if there is a C on one strand, it will be bonded to a G
on the other. The DNA strands also have directionality, which refers to the positions of the pentose ring
where the phosphate backbone connects. This directionality convention comes from the fact that DNA and
RNA polymerase synthesize in the 5’ to 3’ direction. With this in mind, we can say that that the DNA
strands are anti-parallel, as the 5’ end of one strand is adjacent to the 3’ end of the other. As a result,
DNA can be read both in the 3’ to 5 direction and the 5 to 3’ direction, and genes and other functional
elements can be found in each. By convention, DNA is written from 5’ to 3’. The 5" and 3’ directions refer
to the positions on the pentose ring where the phosphate backbone connects.

Base pairing between nucleotides of DNA constitutes its primary and secondary structure. In addition
to DNA’s secondary structure, there are several extra levels of structure that allow DNA to be tightly
compacted and influence gene expression (Figure 3). The tertiary structure describes the twist in the DNA
ladder that forms a helical shape. In the quaternary structure, DNA is tightly wound around small proteins
called histones. These DNA-histone complexes are further wound into tighter structures seen in chromatin.

Before DNA can be replicated or transcribed into RNA, the chromatin structure must be locally “un-
packed”. Thus, gene expression may be regulated by modifications to the chromatin structure, which make it

12

6.047/6.878 Lecture 01: Introduction and Administrative Details

© Hydrogen
© Oxygen

@ Nitrogen
© Carbon

© Phosphorus

Minor groove

Major groove

Pyrimidines Purines)

© Zephyris on wikipedia. Some rights reserved. License: CC BY-SA. This content is excluded from
our Creative Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 1.2: The double-helix structure of DNA. Nucleotides are in the center, and the sugar-phosphate
backbone lies on the outside.

easier or harder for the DNA to be unpacked. This regulation of gene expression via chromatin modification
is an example of epigenetics.

DNA replication

The structure of DNA, with its weak hydrogen bonds between the bases in the center, allows the strands
to easily be separated for the purpose of DNA replication (the capacity for DNA strands to be separated
also allows for transcription, translation, recombination, and DNA repair, among others). This was noted
by Watson and Crick as “It has not escaped our notice that the specific pairing that we have postulated
immediately suggests a possible copying mechanism for the genetic material.” In the replication of DNA, the
two complementary strands are separated, and each of the strands are used as templates for the construction
of a new strand.

DNA polymerases attach to each of the strands at the origin of replication, reading each existing strand
from the 3’ to 5’ direction and placing down complementary bases such that the new strand grows in the
5 to 3’ direction. Because the new strand must grow from 5’ to 3’, one strand (the leading strand) can be
copied continuously, while the other (the lagging strand) grows in pieces which are later glued together by
DNA ligase. The end result is 2 double-stranded pieces of DNA, where each is composed of 1 old strand,
and 1 new strand; for this reason, DNA replication is semiconservative.

Many organisms have their DNA broken into several chromosomes. Each chromosome contains two
strands of DNA, which are complementary to each other but are read in opposite directions. Genes can
occur on either strand of DNA. The DNA before a gene (in the 5’ region) is considered “upstream” whereas
the DNA after a gene (in the 3’ region) is considered “downstream”.

1.4.3 Transcription
lecturel_transcript.html#Transcription

DNA — RNA — Protein

13

https://en.wikipedia.org/wiki/DNA#/media/File:DNA_Structure%2BKey%2BLabelled.pn_NoBB.png
http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 01: Introduction and Administrative Details

DNA

Histone

Ch romosome

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Qiu, Jane. "Epigenetics: Unfinished Symphony." Nature 441, no. 7090 (2006): 143-45.

Figure 1.3: DNA is packed over several layers of organization into a compact chromosome.

mRNA generation

Transcription is the process by which RNA is produced using a DNA template. The DNA is partially
unwound to form a “bubble”, and RNA polymerase is recruited to the transcription start site (T'SS) by
regulatory protein complexes. RNA polymerase reads the DNA from the 3’ to 5’ direction and placing down
complementary bases to form messenger RNA (mRNA). RNA uses the same nucleotides as DNA, except
Uracil is used instead of Thymine.

Post-transcriptional modifications

mRNA in eukaryotes experience post-translational modifications, or processes that edit the mRNA strand
further. Most notably, a process called splicing removes introns, intervening regions which don’t code for
protein, so that only the coding regions, the exons, remain. Different regions of the primary transcript may
be spliced out to lead to different protein products (alternative splicing). In this way, an enormous number
of different molecules may be generated based on different splicing permutations.

In addition to splicing, both ends of the mRNA molecule are processed. The 5’ end is capped with a
modified guanine nucleotide. At the 3’ end, roughly 250 adenine residues are added to form a poly(A) tail.

1.4.4 RNA

lecturel_transcript.html#RNA

DNA — RNA — Protein

RNA is produced when DNA is transcribed. It is structurally similar to DNA, with the following major
differences:

1. The nucleotide uracil (U) is used instead of DNA’s thymine (T).

2. RNA contains ribose instead of deoxyribose (deoxyribose lacks the oxygen molecule on the 2’ position
found in ribose).

3. RNA is single-stranded, whereas DNA is double-stranded.

RNA molecules are the intermediary step to code a protein. RNA molecules also have catalytic and
regulatory functions. One example of catalytic function is in protein synthesis, where RNA is part of the
ribosome.

There are many different types of RNA, including:

14

http://dx.doi.org/10.1038/441143a

6.047/6.878 Lecture 01: Introduction and Administrative Details

4 Srand
- N ran .
T ‘/Jmmmm 5
y Template
Gene Strand

(a) Transcription initiation

o & Coding
, h’ N\ - —> strand

: TITITEATIIIIT 3

y 5 Template

Strand

AP NI S
(b) Transcription elongation

& Coding
5 - L Strand .
3) /mmmﬁ
y Template
Strand

(¢) Transcription termination
Courtesy of Forluvoft on wikipedia. Images in the public domain.

Figure 1.4: RNA is produced from a DNA template during transcription. A “bubble” is opened in the DNA,
allowing the RNA polymerase to enter and place down bases complementary to the DNA.

1. mRNA (messenger RNA) contains the information to make a protein and is translated into protein
sequence.

2. tRNA (transfer RNA) specifies codon-to-amino-acid translation. It contains a 3 base pair anti-codon
complementary to a codon on the mRNA, and carries the amino acid corresponding to its anticodon
attached to its 3’ end.

3. rRNA (ribosomal RBA) forms the core of the ribosome, the organelle responsible for the translation
of mRNA to protein.

4. snRNA (small nuclear RNA) is involved in splicing (removing introns from) pre- mRNA, as well as
other functions.

Other functional kinds of RNA exist and are still being discovered. Though proteins are generally thought
to carry out essential cellular functions, RNA molecules can have complex three-dimensional structures and
perform diverse functions in the cell.

According to the “RNA world” hypothesis, early life was based entirely on RNA. RNA served as both
the information repository (like DNA today) and the functional workhorse (like protein today) in early
organisms. Protein is thought to have arisen afterwards via ribosomes, and DNA is thought to have arisen
last, via reverse transcription.

1.4.5 Translation
lecturel_transcript.html#Translation

DNA — RNA — Protein

Translation

Unlike transcription, in which the nucleotides remained the means of encoding information in both DNA
and RNA, when RNA is translated into protein, the primary structure of the protein is determined by the

15

https://en.wikipedia.org/wiki/Transcription_%28genetics%29

6.047/6.878 Lecture 01: Introduction and Administrative Details

sequence of amino acids of which it is composed. Since there are 20 amino acids and only 4 nucleotides,
3-nucleotides sequences in mRNA, known as codons, encode for each of the 20 amino acids.

Each of the 64 possible 3-sequences of nucleotides (codon) uniquely specifies either a particular amino
acid, or is a stop codon that terminates protein translation (the start codon also encodes methionine). Since
there are 64 possible codon sequences, the code is degenerate, and some amino acids are specified by multiple
encodings. Most of the degeneracy occurs in the 3rd codon position.

Post-translational modifications

Like mRNA, protein also undergo further modifications that affect its structure and function. One type of
post-translational modification (PTM) involves introducing new functional groups to the amino acids. Most
notably, phosphorylation is the process by which a phosphate group is added onto an amino acid which can
activate or deactivate the protein entirely. Another type of PTM is cleavage of peptide bonds. For example,
the hormone insulin is cleaved twice following the formation of disulfide bonds within the original protein.

SECOND POSITION
U C A G
henyl-

1;-1 afmni . fyrosine oy steine U

U serine <

lencine Stp Stop A

gt ryprophan e
=z : =
9 histidine U E
=)) . c =
7 C lencine proline arginine A !
o] glutammine 8

jan &)
= &
¢ ag i i U =
o isolencine paragine senne o 5
o A threomnine A =z

i .

—— ysine arginine G

aspartic U

_ _ acid . e

G waling alanine — glycine i

acid o

* and start

Figure 1.5: This codon table shows which of the 20 amino acid each of the 3-nucleotide codons in mRNA
are translated into. In red are the stop codons, which terminate translation.

1.4.6 Protein

DNA — RNA — Protein

Protein is the molecule responsible for carrying out most of the tasks of the cell, and can have many
functions, such as enzymatic, contractile, transport, immune system, signal and receptor to name a few.
Like RNA and DNA, proteins are polymers made from repetitive subunits. Instead of nucleotides, however,
proteins are composed of amino acids.

Each amino acid has special properties of size, charge, shape, and acidity. As such, additional structure
emerges beyond simply the sequence of amino acids (the primary structure), as a result of interactions
between the amino acids. As such, the three-dimensional shape, and thus the function, of a protein is
determined by its sequence. However, determining the shape of a protein from its sequence is an unsolved
problem in computational biology.

16

6.047/6.878 Lecture 01: Introduction and Administrative Details

1.4.7 Regulation: from Molecules to Life

lecturel_transcript.html#Regulation

Not all genes are expressed at the same time in a cell. For example, cells would waste energy if they
produced lactose transporter in the absence of lactose. It is important for a cell to know which genes it
should expresses and when. A regulatory network is involved to control expression level of genes in a specific
circumstance.

Transcription is one of the steps at which protein levels can be regulated. The promoter region, a segment
of DNA found upstream (past the 5’ end) of genes, functions in transcriptional regulation. The promoter
region contains motifs that are recognized by proteins called transcription factors. When bound, transcription
factors can recruit RNA polymerase, leading to gene transcription. However, transcription factors can also
participate in complex regulatory interactions. There can be multiple binding sites in a promotor, which
can act as a logic gate for gene activation. Regulation in eukaryokes can be extremely complex, with gene
expression affected not only by the nearby promoter region, but also by distant enhancers and repressors.

We can use probabilistic models to identify genes that are regulated by a given transcription factor. For
example, given the set of motifs known to bind a given transcription factor, we can compute the probability
that a candidate motif also binds the transcription factor (see the notes for precept #1). Comparative
sequence analysis can also be used to identify regulatory motifs, since regulatory motifs show characteristic
patterns of evolutionary conservation.

The lac operon in E. coli and other bacteria is an example of a simple regulatory circuit. In bacteria,
genes with related functions are often located next to each other, controlled by the same regulatory region,
and transcribed together; this group of genes is called an operon. The lac operon functions in the metabolism
of the sugar lactose, which can be used as an energy source. However, the bacteria prefer to use glucose as an
energy source, so if there is glucose present in the environment the bacteria do not want to make the proteins
that are encoded by the lac operon. Therefore, transcription of the lac operon is regulated by an elegant
circuit in which transcription occurs only if there is lactose but not glucose present in the environment.

1) + GLUCOSE
- LACTOSE

|0peron off ‘

RMA polymerase can't bind

Bepressor bound to operator

2) - GLUCOSE
‘ +LACTOSE IC'lJ Eanely ‘

% Inducerbound
o torepressor

Repressor can't hind

RENA polgmerase binds

Induction of the /ac Operon

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 1.6: Operon Lac illustrates a simple biological regulatory system. In the presence of glucose, genes
to lactose metabolism are turn out because glucose inactives an activator protein. In the absence of lactose,
a repressor protein also turns out the operon. Lactose metabolism genes are expressed only in the presence
of lactose and absence of glucose.

17

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 01: Introduction and Administrative Details

Sucrose 7 «“— Gle6-P
Pi Fru-6-P
ATP
>
PFK N 0
H Fru-16-P, Starch

Cytosol

Ampyloplast

H Triose-P
°
H v
L PEP ®

Asp
“* PEPC co\ PK, &
Mal Y g ¢ Ve,
Glu},,ze ADP @-»A‘{Elu
0V
OA. ate Pyr
v
Other {Asp

Asp
i Py
amino <1,
v v

ATP,
acids
Mal Pyr

2C0, l\b Co,
NH," Acetyl-CoA
206G
ADP +Pi ATP
I e

Respiratory E.T.C.

20+ %0, H,0

Gle-6-P

H
A PP

Mal

Cit. Cit
Mitochondrion

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 1.7: Metabolic pathways and regulation can be studied by Computational biology. Models are made
from genome scale information and used to predict metabolic function and to metabolic engineering. An
example of biological engineering is modifying bacteria genome to overproduce artemesenin, an antibiotic
used to treat malaria.

1.4.8 Metabolism

lecturel_transcript.html#

Live organisms are made from self-organizing building blocks. Energy source is necessary for organize
blocks. The basic mechanism involved in building blocks is degrading small molecules to get energy to build
big molecules. The process of degrading molecules to release energy is called catabolism and the process of
using energy to assemble more complex molecules is called anabolism. Anabolism and catabolism are both
metabolic processes. Metabolism regulates the flow of mass and energy in order to keep an organism in a
state of low entropy.

Enzymes are a critical component of metabolic reactions. The vast majority of (but not all!) enzymes are
proteins. Many biologically critical reactions have high activation energies, so that the uncatalyzed reaction
would happen extremely slowly or not at all. Enzymes speed up these reactions, so that they can happen
at a rate that is sustainable for the cell. In living cells, reactions are organized into metabolic pathways. A
reaction may have many steps, with the products of one step serving as the substrate for the next. Also,
metabolic reactions often require an investment of energy (notably as a molecule called ATP), and energy
released by one reaction may be captured by a later reaction in the pathway. Metabolic pathways are also
important for the regulation of metabolic reactionsif any step is inhibited, subsequent steps may lack the
substrate or the energy that they need to proceed. Often, regulatory checkpoints appear early in metabolic
pathways, since if the reaction needs to be stopped, it is obviously better to stop it before much energy has
been invested.

1.4.9 Systems Biology

lecturel_transcript.html#SystemsBiology

Systems biology strives to explore and explain the behavior that emerges from the complex interactions
among the components of a biological system. One interesting recent paper in systems biology is “Metabolic
gene regulation in a dynamically changing environment” (Bennett et al., 2008). This work makes the
assumption that yeast is a linear, time invariant system, and runs a signal (glucose) through the system
to observe the response. A periodic response to low-frequency fluctuations in glucose level is observed, but
there is little response to high-frequency fluctuations in glucose level. Thus, this study finds that yeast acts
as a low-pass filter for fluctuations in glucose level.

18

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 01: Introduction and Administrative Details

1.4.10 Synthetic Biology

lecturel_transcript.html#SyntheticBiology

Not only can we use computational approaches to model and analyze biological data collected from cells,
but we can also design cells that implement specific logic circuits to carry out novel functions. The task of
designing novel biological systems is known as synthetic biology.

A particularly notable success of synthetic biology is the improvement of artemesenin production. Arteme-
senin is a drug used to treat malaria. However, artemisinin was quite expensive to produce. Recently, a
strain of yeast has been engineered to synthesize a precursor to artemisinic acid at half of the previous cost.

1.4.11 Model organisms and human biology

Diverse model organisms exist for all aspects of human biology. Importance of using model organisms at
appropriate level of complexity.

Note: In this particular book, we’ll focus on human biology, and we’ll use examples from baker’s yeast
Saccharomyces cerevisiae, the fruitfly Drosophila melanogaster, the nematode worm Coenorhabditis elegans,
and the house mouse Mus musculus. We’ll deal with bacterial evolution only in the context of metagenomics
of the human microbiome.

19

6.047/6.878 Lecture 01: Introduction and Administrative Details

1.5 Introduction to algorithms and probabilistic inference

1. We will quickly review some basic probability by considering an alternate way to represent motifs: a
position weight matriz (PWM). We would like to model the fact that proteins may bind to motifs that
are not fully specified. That is, some positions may require a certain nucleotide (e.g. A), while others
positions are free to be a subset of the 4 nucleotides (e.g. A or C). A PWM represents the set of all
DNA sequences that belong to the motif by using a matrix that stores the probability of finding each
of the 4 nucleotides in each position in the motif. For example, consider the following PWM for a motif
with length 4:

0.6 | 0.25 | 0.10 | 1.0
0.4] 0.25 | 0.10 | 0.0
0.0 | 0.25 | 0.40 | 0.0
0.0 | 0.25 | 0.40 | 0.0

Q|| Q=

We say that this motif can generate sequences of length 4. PWMs typically assume that the distribution
of one position is not influenced by the base of another position. Notice that each position is associated
with a probability distribution over the nucleotides (they sum to 1 and are nonnegative).

2. We can also model the background distribution of nucleotides (the distribution found across the genome):

0.1
0.4
0.1
0.4

Q|| Q>

Notice how the probabilities for A and T are the same and the probabilities of G and C are the same.
This is a consequence of the complementarity DNA which ensures that the overall composition of A
and T, G and C is the same overall in the genome.

3. Consider the sequence S = GCAA.
The probability of the motif generating this sequence is P(S|M) = 0.4 x 0.25 x 0.1 x 1.0 = 0.01.
The probability of the background generating this sequence P(S|B) = 0.4 x 0.4 x 0.1 x 0.1 = 0.0016.

4. Alone this isn’t particularly interesting. However, given fraction of sequences that are generated by
the motif, e.g. P(M) = 0.1, and assuming all other sequences are generated by the background
(P(B) = 0.9) we can compute the probability that the motif generated the sequence using Bayes’
Rule:

P(S|M)P(M)
P(S)
P(S|M)P(M)
P(S|B)P(B) + P(S[M)P(M)
0.01 x 0.1

= = 0.40984
0.0016 x 0.9+ 0.01 x 0.1

P(M]S)

20

6.047/6.878 Lecture 01: Introduction and Administrative Details

1.5.1 Probability distributions

1.5.2 Graphical probabilistic models

1.5.3 Bayes rules: priors, likelihood, posterior

1.5.4 Markov Chains and Sequential Models

1.5.5 Probabilistic inference and learning

1.5.6 Max Likelihood and Max A Posteriori Estimates
Bibliography

[1] lecltest. lecltest, lecltest.

21

6.047/6.878 Lecture 01: Introduction and Administrative Details

22

Part 1

Comparing Genomes

23

CHAPTER
TWO

SEQUENCE ALIGNMENT AND DYNAMIC PROGRAMMING

Guilherme Issao Fujiwara, Pete Kruskal (2007)
Arkajit Dey, Carlos Pards (2008)

Victor Costan, Marten van Dijk (2009)
Andreea Bodnari, Wes Brown (2010)

Sarah Spencer (2011)

Nathaniel Parrish (2012)

Clément Pit-Claudel (2014)

Jesse Tordoff, Thrasyvoulos Karydis (2015)

Figures
2.1 Sequence alignment of Gall0-Gall between four yeast strains. Asterisks mark conserved
nucleotides. L L e e 25
2.2 Evolutionary changes of a genetic sequence oL, 25
2.3 Aligning human to mouse sequences is analogous to tracing 26
2.4 Example of longest common substring L 27
2.5 Example of longest common subsequence formulation 27
2.6 Cost matrix for matches and mismatches L 28
2.7 Examples of Finonacci numbers in nature are ubiquitous. 30
2.8 The recursion tree for the fib procedure showing repeated subproblems. The size of the
tree is O(¢p(n)), where ¢ is the golden ratio. 31
2.9 (Example) Initial setup for Needleman-Wunsch 35
2.10 (Example) Half-way through the second step of Needleman-Wunsch 35
2.11 (Example) Tracing the optimal alignment 36
2.12 Bounded dynamic programming exampleo 36
2.13 Recovering the sequence alignment with O(m +n) space 37
2.14 Ortholog and paralog sequences i i i e 40
2.1 Introduction

Sequence alignment is a powerful tool capable of revealing the patterns and functions of genes. If two genetic
regions are similar or identical, sequence alignment can demonstrate the conserved elements or differences
between them. Evolution has preserved two broad classes of functional elements in the genome. Such pre-
served elements between species are often homologst — either orthologous or paralogous sequences (refer
to Appendix 2.11.1). Both classes of conserved elements can help demonstrate the function or evolution-
ary history of a gene sequence. Primarily solved using computational methods (most frequently dynamic

1Homologous sequences are genomic sequences descended from a common ancestor.

25

6.047/6.878 Lecture 2: Sequence Alignment and Dynamic Programming

programming), sequence alignment is a fast and powerful way to find similarities among genes or genomes.
These notes discuss the sequence alignment problem, the technique of dynamic programming, and a specific
solution to the problem using this technique.

2.2 Aligning Sequences

Sequence alignment represents the method of comparing two or more genetic strands, such as DNA or RNA.
These comparisons help with the discovery of genetic commonalities and with the (implicit) tracing of strand
evolution. There are two main types of alignment:

e Global alignment: an attempt to align every element in a genetic strand, most useful when the genetic
strands under consideration are of roughly equal size. Global alignment can also end in gaps.

e Local alignment: an attempt to align regions of sequences that contain similar sequence motifs within
a larger context.

2.2.1 Example Alignment

Within orthologous gene sequences, there are islands of conservation, or relatively large stretches of nu-
cleotides that are preserved between generations. These conserved regions typically imply functional ele-
ments and vice versa. As an example, we considered the alignment of the Gall0-Gall intergenic region for four
different yeast species, the first cross-species whole genome alignment (Figure 2.1). As we look at this
alignment, we note that some areas are more similar than others, suggesting that these areas have been con-
served through evolution. In particular, we note some small conserved motifs such as CGG and CGC, which
in fact are functional elements in the binding of Gal4[8].2 This example highlights how evolutionary data
can help locate functional areas of the genome: per-nucleotide levels of conservation denote the importance
of each nucleotide, and exons are among the most conserved elements in the genome.

We have to be cautious with our interpretations, however, because conservation does sometimes occur
by random chance. In order to extract accurate biological information from sequence alignments we have
to separate true signatures from noise. The most common approach to this problem involves modeling
the evolutionary process. By using known codon substitution frequencies and RNA secondary structure
constraints, for example, we can calculate the probability that evolution acted to preserve a biological
function. See Chapter 7?7 for an in-depth discussion of evolutionary modeling and functional conservation
in the context of genome annotation.

2.2.2 Solving Sequence Alignment

Genomes change over time, and the scarcity of ancient genomes makes it virtually impossible to compare the
genomes of living species with those of their ancestors. Thus, we are limited to comparing just the genomes
of living descendants. The goal of sequence alignment is to infer the ‘edit operations’ that change a genome
by looking only at these endpoints.
We must make some assumptions when performing sequence alignment, if only because we must transform
a biological problem into a computationally feasible one and we require a model with relative simplicity and
tractability. In practice, sequence evolution is mostly due to nucleotide mutations, deletions, and insertions
(Figure 2.2). Thus, our sequence alignment model will only consider these three operations and will ignore
other realistic events that occur with lower probability (e.g. duplications).2
1. A nucleotide mutation occurs when some nucleotide in a sequence changes to some other nucleotide
during the course of evolution.

2. A nucleotide deletion occurs when some nucleotide is deleted from a sequence during the course of
evolution.

2@Gald in fact displays a particular structure, comprising two arms that each bind to the same sequence, in reversed order.
3Interestingly, modeling decisions taken to improve tractability do not necessarily result in diminished relevance; for exam-
ple, accounting for directionality in the study of chromosome inversions yields polynomial-time solutions to an otherwise NP

problem.[§]

26

6.047/6.878 Lecture 2: Sequence Alignment and Dynamic Programming

Scer TIMAFIMAHTTCMTICHAHrlTrTrI'lEMIWWEGAMEM TTTAATAATCATATTACATGGCATTACCACCATATACA
Spar CTATGTTEATCTTTTCAGAA] CACTATATTAAGATGGGT GCAAAGAAGTGTGAT TATTATATTACATCEC TTTCCTATCATACACA
Smik GTATATTGAATTITTCAGT: TEACTATCTTCAAGETTA] TGTCAAGATAATATTAGAT T TCGT TAGTATGATAGY

Sbay Yl'lHTIEMTICHTAAYTTIC"TH"Anc[!m‘lYATMWQGTGTAGT:MATEMGCM‘C'I—ﬁlm@wn;.gc:«h}q\

Scer TATCCATATCTAATCTTAQTTATATGITET -GOAMT -GTAAGAGCTCCATTATCTTAGCCTAMAARGE - - TTCTCTTTEGACTTTCAGTANTACE
P TATCCATATCTAGTCTTAUTTATATG 0T -GAGAT - 6T TGATAACLUCAGTATCTTAACCCAAGAAAGEE - T TCTATGARACTTOAACTC- TACG
Smik TACCEATGTCTAGTCTTAQTTATATGTTAC - GEGGAATTGT TGETAATCCCAGT CTCCCAGA TCAAAAARGET - - CTTTCTATEGAGCTTTG-CTA-TATG
Sbey TAGATATTTCTGATCTTTUTTATATATTATAGAGABATGCCAATAAACETGCTACC TCOAACAMABAAGOGEAT ITTETGTAGOGE TTTCECTATT TTE

GAL4 GAL4 GALY
Scer CTTAACTGCTCATTGE - (ATATTGAAGTACBEAT T AGAAGCLGCCRAGLEEECEACABCECTCC! GEAAGACTCTCCTECATGCETCCTCETCT
Spar CTAAACTGCTCATTEC- \TATTEAAGTACEEATCABAAGCCGCCOAGCGEACBACAGCCCTCC! GEAATATTCCCCTECRTGCETCGCCGTCT
Smik TTTAGCTGTTCAAG- - -ATATTGAAATACGGAT GAGAAGLLGLC! GMWMHWCC \COGAACATTCTCCTCCRCGCGECGTCCTCT
S0ay TETTATTGTCCATTACTTCOLAATOT T GAATACBEAT CABAGET BECOATCORA TRACAGT GEAMACTETCETCCHTOCEAAGTEATCT
GAL4

Scer TCACCGG-TOGCGTTCCTGAAACGCAGATGTGOCTCOCGCCGCACTGLTCCGAACAATAMABATTCTACAA - - - - TACTAGCTTTT - - ATGETTATGAA

SBar TR T T T AT AT C T A T E O CECCTCETCCEACARTAGCATT CTACAAGAA TACTTCTTTTTTTATGETTATEAT

Smik ACATIO. TOCAICECTONA CATACATACOIE TCOCACCACCETOE ICCAACTA L AN TACTGECATAABAOT ACTAATTTCT - -ACGETGATGCE

Sbay GTG-CGGATCACGTCCCTGAT - TACT GAAGCGTCTEREC ATACCC GLAAATGLAAGAACARA - laccTETAGTE -GEASTTATGET
MIG1

SCEr GAGGA-AAAATTGGCAGTAA- - - - CCTGACOCCACAAACET Y - CAALT TAACGAAT CAMT TAACAACCATA - GGATGATARTGEGA - -

Spar ABBAACAAAATAAGCAGCCC CTBACCCCATATACCT ITCANACTAT TGAATCAAAT TGECCABCATA- TGETAATAGTACAS

ik CAACOCAMATAMCAGTCC. - CCCGOCLCCACATACCT . CAMA T CCATECGT AL TGUC TAGCATAL BAAT I TTGGTAGEAA. i
Shay GAACGTGARATEACAATTCCTTBOCECT A srrccﬁTcmc-wecncugwsAraem:nrursﬁwvmcesrcmsu}ucms

WIG1
Scer TTTTTAGCCTTATTICTOOGUTAATTAATCABCGAAGCS - - ATGATTTTT - GATCTATTAACAGATATATAAAT GEAMMGC TOCATARCCAC - - - - - TT
Spar GITTTTETTATTCETS T CCA AT AT TTTTT - SOTCTATTACCAAACATATART COAMACT TECATAGCEA Pu
Smik TTCTCA--ECTTICTCTGTGATAATTCATCACCGAMATG - -ATGETTTA - GEACTATTAGCAMMCATATAMAT CCANAG
Sbay ITFTCCGTTTH\CTFCTGM TGECTCAT - - GLAGAAAGTAATGGTTT TCTGTTCCTTTTECA YMEMMIMM'OGCCYWTYGM

Soor TAACTAATACTTTCAACATTITCAGT - - TTGTATTACTT- CTTATTCAAAT - - -GTCATAMAAGTATCAACH - AMMAATTGTTAATATACCTCTATACT
Soar TAMITAC-ATTIGETCCTCCAMGATT. - TTTANTTTCOT, ITTGTITTATT - CTCATCOAMTATIAACA- ACAMGTAGTTANTAT

Smik CC-ATTCGAACCT T TRAGAC ATATT AT ALLAAR AAAAATAC TLAG TAT CTATALATACA
Sbay mﬁTrlTrcrn.ﬂchmTmucncrr.amnmrmﬂrccﬁGT"rAs:leTmcmanTcwacAﬂMM ATTCAACATTTGT

Seer TTAA-CGTCAAGGA- - -GAAAMAACTATA

ik {Eﬁrgﬂccw;\":m" “CRARARACTA, - [Factor footprint
i AN CAACAACAEA TATA | p

= Conservation island

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Figure 2.1: Sequence alignment of Gall0-Gall between four yeast strains. Asterisks mark conserved nu-
cleotides.

3. A nucleotide insertion occurs when some nucleotide is added to a sequence during the course of evolution.

ancestral lalclelT|clalT]c]Al

mutation

lalclelT|c[alT]c]Al

deletion

[a]%[a[T]a]*[T]c]A]

lalelT|a[T]|c|a]

IMSEnmon

ITlAla|T]|a[T[clA]

derived [T]ala]T]a][T]c]A]
sequence

Figure 2.2: Evolutionary changes of a genetic sequence

Note that these three events are all reversible. For example, if a nucleotide N mutates into some nucleotide
M, it is also possible that nucleotide M can mutate into nucleotide N. Similarly, if nucleotide N is deleted,
the event may be reversed if nucleotide N is (re)inserted. Clearly, an insertion event is reversed by a
corresponding deletion event.

This reversibility is part of a larger design assumption: time-reversibility. Specifically, any event in our
model is reversible in time. For example, a nucleotide deletion going forward in time may be viewed as
a nucleotide insertion going backward in time. This is useful because we will be aligning sequences which
both exist in the present. In order to compare evolutionary relatedness, we will think of ourselves following
one sequence backwards in time to a common ancestor and then continuing forward in time to the other
sequence. In doing so, we can avoid the problem of not having an ancestral nucleotide sequence.

Note that time-reversibility is useful in solving some biological problems but does not actually apply to

27

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 2: Sequence Alignment and Dynamic Programming

AT A

Figure 2.3: Aligning human to mouse sequences is analogous to tracing
backward from the human to a common ancestor, then forward to the mouse

biological systems. For example, CpG* may incorrectly pair with a TpG or CpA during DNA replication,
but the reverse operation cannot occur; hence this transformation is not time-reversible. To be very clear,
time-reversibility is simply a design decision in our model; it is not inherent to the biology®.

We also need some way to evaluate our alignments. There are many possible sequences of events that
could change one genome into another. Perhaps the most obvious ones minimize the number of events (i.e.,
mutations, insertions, and deletions) between two genomes, but sequences of events in which many insertions
are followed by corresponding deletions are also possible. We wish to establish an optimality criterion that
allows us to pick the ‘best’ series of events describing changes between genomes.

We choose to invoke Occam’s razor and select a maximum parsimony method as our optimality criterion.
That is, in general, we wish to minimize the number of events used to explain the differences between two
nucleotide sequences. In practice, we find that point mutations are more likely to occur than insertions and
deletions, and certain mutations are more likely than others[11]. Our parsimony method must take these
and other inequalities into account when maximizing parsimony. This leads to the idea of a substitution
matrix and a gap penalty, which are developed in the following sections. Note that we did not need to choose
a maximum parsimony method for our optimality criterion. We could choose a probabilistic method, for
example using Hidden Markov Models (HMMs), that would assign a probability measure over the space of
possible event paths and use other methods for evaluating alignments (e.g., Bayesian methods). Note the
duality between these two approaches: our maximum parsimony method reflects a belief that mutation events
have low probability, thus in searching for solutions that minimize the number of events we are implicitly
maximizing their likelihood.

2.3 Problem Formulations

In this section, we introduce a simple problem, analyze it, and iteratively increase its complexity until it
closely resembles the sequence alignment problem. This section should be viewed as a warm-up for Section
2.5 on the Needleman-Wunsch algorithm.

2.3.1 Formulation 1: Longest Common Substring

As a first attempt, suppose we treat the nucleotide sequences as strings over the alphabet A, C, G, and T.
Given two such strings, S1 and S2, we might try to align them by finding the longest common substring
between them. In particular, these substrings cannot have gaps in them.

As an example, if S1 = ACGTCATCA and S2 = TAGTGTCA (refer to Figure 2.4), the longest common
substring between them is GTCA. So in this formulation, we could align S1 and S2 along their longest
common substring, GTCA, to get the most matches. A simple algorithm would be to try aligning S1 with
different offsets of S2 and keeping track of the longest substring match found thus far. Note that this
algorithm is quadratic in the length of the shortest sequence, which is slower than we would prefer for such
a simple problem.

4p denotes the phosphate backbone in a DNA strand

5This is an example where understanding the biology helps the design greatly, and illustrates the general principle that
success in computational biology requires strong knowledge of the foundations of both CS and biology. Warning: computer
scientists who ignore biology will work too hard.

28

6.047/6.878 Lecture 2: Sequence Alignment and Dynamic Programming

51 |alcla|T|c|alT|c|A]
s2 [T]laleltlalT[c|A]
;uﬂset:ﬂ

St lalclelticlalticla

52 [T]ala[T][a]T[c]A]

offset: -2

Figure 2.4: Example of longest common substring
formulation

2.3.2 Formulation 2: Longest Common Subsequence (LCS)

Another formulation is to allow gaps in our subsequences and not just limit ourselves to substrings with no
gaps. Given a sequence X = (21 .., &,), we formally define Z = (z1,...,2;) to be a subsequence of X if
there exists a strictly increasing sequence i1 < i3 < ... < i of indices of X such that for all j, 1 < j < k, we
have z;, = z;(CLRS 350-1).

In the longest common subsequence (LCS) problem, we’re given two sequences X and Y and we want to
find the maximum-length common subsequence Z. Consider the example of sequences S1 = ACGTCATCA
and S2 = TAGTGTCA (refer to Figure 2.5). The longest common subsequence is AGTTCA, a longer match
than just the longest common substring.

S1 |A G[T|CIA|T|[ClA
| T e

S2 T G| TI|G
51 iGElJTCﬂlEi
Y IE|E = FRIEE T
52 ["I'_A agltla| |Tlc|a
LCSS LA LGIT TICIA

Figure 2.5: Example of longest common subsequence formulation

29

6.047/6.878 Lecture 2: Sequence Alignment and Dynamic Programming

2.3.3 Formulation 3: Sequence Alignment as Edit Distance
Formulation

The previous LCS formulation is close to the full sequence alignment problem, but so far we have not specified
any cost functions that can differentiate between the three types of edit operations (insertion, deletions, and
substitutions). Implicitly, our cost function has been uniform, implying that all operations are equally likely.
Since substitutions are much more likely, we want to bias our LCS solution with a cost function that prefers
substitutions over insertions and deletions.

We recast sequence alignment as a special case of the classic Edit-Distance® problem in computer science
(CLRS 366). We add varying penalties for different edit operations to reflect biological occurrences. One
biological reasoning for this scoring decision is the probabilities of bases being transcribed incorrectly during
polymerization. Of the four nucleotide bases, A and G are purines (larger, two fused rings), while C and T are
pyrimidines (smaller, one ring). Thus DNA polymerase’ is much more likely to confuse two purines or two

pyrimidines since they are similar in structure. The scoring matrix in Figure 2.6 models the considerations
above. Note that the table is symmetric - this supports our time-reversible design.

AlG|(T|C
Al+|-al-1] -1
G |-+ [-1]-1
T=1]-1|+1]|-%
Cl=1]-1|-"=+

Figure 2.6: Cost matrix for matches and mismatches

Calculating the scores implies alternating between the probabilistic interpretation of how often biological
events occur and the algorithmic interpretation of assigning a score for every operation. The problem is
to the find the least expensive (as per the cost matrix) operation sequence which can transform the initial
nucleotide sequence into the final nucleotide sequence.

Complexity of Edit Distance

All algorithms to solve the edit distance between two strings operate in near-polynomial time. In 2015,
Backurs and Indyk [? | published a proof that edit distance cannot be solved faster than O(n?) in the
general case. This result depends on the Strong Exponential Time Hypothesis (SETH), which states that
NP-complete problems cannot be solved in subexponential time in the worse case.

2.3.4 Formulation 4: Varying Gap Cost Models

Biologically, the cost of creating a gap is more expensive than the cost of extending an already created gap.
Thus, we could create a model that accounts for this cost variation. There are many such models we could
use, including the following:

e Linear gap penalty: Fixed cost for all gaps (same as formulation 3).

e Affine gap penalty: Impose a large initial cost for opening a gap, then a small incremental cost for
each gap extension.

e General gap penalty: Allow any cost function. Note this may change the asymptotic runtime of
our algorithm.

6Edit-distance or Levenshtein distance is a metric for measuring the amount of difference between two sequences (e.g., the
Levenshtein distance applied to two strings represents the minimum number of edits necessary for transforming one string into
another).

"DNA polymerase is an enzyme that helps copy a DNA strand during replication.

30

6.047/6.878 Lecture 2: Sequence Alignment and Dynamic Programming

e Frame-aware gap penalty: Tailor the cost function to take into account disruptions to the coding
frame (indels that cause frame-shifts in functional elements generally cause important phenotypic
modifications).

2.3.5 Enumeration

Recall that in order to solve the Longest Common Substring formulation, we could simply enumerate all
possible alignments, evaluate each one, and select the best. This was because there were only O(n) alignments
of the two sequences. Once we allow gaps in our alignment, however, this is no longer the case. It is a known
issue that the number of all possible gapped alignments cannot be enumerated (at least when the sequences
are lengthy). For example, with two sequences of length 1000, the number of possible alignments exceeds
the number of atoms in the universe.

Given a metric to score a given alignment, the simple brute-force algorithm enumerates all possible
alignments, computes the score of each one, and picks the alignment with the maximum score. This leads
to the question, ‘How many possible alignments are there?” If you consider only NBAs ® n > m, the number
of alignments is

nlm! (a2 (vV2rn)2 ~ 21)

en

(n—i—m) ~(n+m)! _(2n)! Vdmn (2;)3% 22n

m

This number grows extremely fast, and for values of n as small 30 is too big (> 10'7) for this enumeration
strategy to be feasible. Thus, using a better algorithm than brute-force is a necessity.

2.4 Dynamic Programming

Before proceeding to a solution of the sequence alignment problem, we first discuss dynamic programming,
a general and powerful method for solving problems with certain types of structure.

2.4.1 Theory of Dynamic Programming

Dynamic programming may be used to solve problems with:

1. Optimal Substructure: The optimal solution to an instance of the problem contains optimal solutions
to subproblems.

2. Overlapping Subproblems: There are a limited number of subproblems, many/most of which are
repeated many times.

Dynamic programming is usually, but not always, used to solve optimization problems, similar to greedy
algorithms. Unlike greedy algorithms, which require a greedy choice property to be valid, dynamic program-
ming works on a range of problems in which locally optimal choices do not produce globally optimal results.
Appendix 2.11.3 discusses the distinction between greedy algorithms and dynamic programming in more
detail; generally speaking, greedy algorithms solve a smaller class of problems than dynamic programming.

In practice, solving a problem using dynamic programming involves two main parts: Setting up dynamic
programming and then performing computation. Setting up dynamic programming usually requires the
following 5 steps:

1. Find a ’matrix’ parameterization of the problem. Determine the number of dimensions (variables).

2. Ensure the subproblem space is polynomial (not exponential). Note that if a small portion of subproblems
are used, then memoization may be better; similarly, if subproblem reuse is not extensive, dynamic
programming may not be the best solution for the problem.

3. Determine an effective transversal order. Subproblems must be ready (solved) when they are needed, so
computation order matters.

8Non-Boring Alignments, or alignments where gaps are always paired with nucleotides.

31

N

6.047/6.878 Lecture 2: Sequence Alignment and Dynamic Programming

4. Determine a recursive formula: A larger problem is typically solved as a function of its subparts.

5. Remember choices: Typically, the recursive formula involves a minimization or maximization step. More-
over, a representation for storing transversal pointers is often needed, and the representation should be
polynomial.

Once dynamic programming is setup, computation is typically straight-forward:
1. Systematically fill in the table of results (and usually traceback pointers) and find an optimal score.

2. Traceback from the optimal score through the pointers to determine an optimal solution.

2.4.2 Fibonacci Numbers

UM AR

| =

Romanesque spirals Nautilus si

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 2.7: Examples of Finonacci numbers in nature are ubiquitous.

The Fibonacci numbers provide an instructive example of the benefits of dynamic programming. The
Fibonacci sequence is recursively defined as Fy = F; = 1, F, = F,_1 + F,,_o for n < 2. We develop an
algorithm to compute the n'* Fibonacci number, and then refine it first using memoization and later using
dynamic programming to illustrate key concepts.

The Naive Solution

The simple top-down approach is to just apply the recursive definition. Listing 1 shows a simple Python
implementation.
Assume n is a non-negative integer.
def fib(m):
if n == 0 or n ==
return 1

else:
return fib(n - 1) + fib(n - 2)

Listing 2.1: Python implementation for computing Fibonacci numbers recursively.
But this top-down algorithm runs in exponential time. That is, if T(n) is how long it takes to compute

the n'™ Fibonacci number, we have that T'(n) = T'(n — 1) + T(n — 2) + O(1), so T(n) = O(¢™) . The
problem is that we are repeating work by solving the same subproblem many times.

9¢ is the golden ratio, i.e. %

32

http://ocw.mit.edu/help/faq-fair-use/

g W N e

~

6.047/6.878 Lecture 2: Sequence Alignment and Dynamic Programming

Fg

N

Fy Iy
E Fy ///////A\\\\\\\
SN PNy Fy Fy
Fo i F s T ////A\\\\
F/\F Fl FQ F2 F3
0 1 T
Py ///\\\
Fb PH I% fﬁ f% fﬁ
R R

Figure 2.8: The recursion tree for the fib procedure showing repeated subproblems. The size of the tree is
O(é(n)), where ¢ is the golden ratio.

The Memoization Solution

A better solution that still utilizes the top-down approach is to memoize the answers to the subproblems.
Listing 2 gives a Python implementation that uses memoization.

Assume n is a non-negative integer.
fibs = {0: 1, 1: 1} # stores subproblem answers
fib(n):
n fibs:

x = fib(n - 2)

y = fib(n - 1)

fibs[n] = x + y

fibs [n]

Listing 2.2: Python implementation for computing Fibonacci numbers using memoization.

Note that this implementation now runs in 7'(n) = O(n) time because each subproblem is computed at
most once.
The Dynamic Programming Solution

For calculating the n*" Fibonacci number, instead of beginning with F'(n) and using recursion, we can start
computation from the bottom since we know we are going to need all of the subproblems anyway. In this
way, we will omit much of the repeated work that would be done by the naive top-down approach, and we
will be able to compute the n'" Fibonacci number in O(n) time.

As a formal exercise, we can apply the steps outlined in section 2.4.1:

1. Find a ’matrix’ parameterization: In this case, the matrix is one-dimensional; there is only one
parameter to any subproblem F'(x).

2. Ensure the subproblem space is polynomial: Since there are only n — 1 subproblems, the space is
polynomial.

3. Determine an effective transversal order: As mentioned above, we will apply a bottom-up transver-
sal order (that is, compute the subproblems in ascending order).

4. Determine a recursive formula: This is simply the well-known recurrance F'(n) = F(n—1)+ F(n—2).

5. Remember choices: In this case there is nothing to remember, as no choices were made in the recursive
formula.

Listing 3 shows a Python implementation of this approach.

33

6.047/6.878 Lecture 2: Sequence Alignment and Dynamic Programming

Assume n is a non-negative integer

fib(n):
x =y =1
i (1, n):

X,y=y,X+y
X

Listing 2.3: Python implementation for computing Fibonacci numbers iteratively using dynamic
programming.

This method is optimized to only use constant space instead of an entire table since we only need the
answer to each subproblem once. But in general dynamic programming solutions, we want to store the
solutions to subproblems in a table since we may need to use them multiple times without recomputing
their answers. Such solutions would look somewhat like the memoization solution in Listing 2, but they
will generally be bottom-up instead of top-down. In this particular example, the distinction between the
memoization solution and the dynamic programming solution is minimal as both approaches compute all
subproblem solutions and use them the same number of times. In general, memoization is useful when not all
subproblems will be computed, while dynamic programming saves the overhead of recursive function calls,
and is thus preferable when all subproblem solutions must be calculated !°. Additional dynamic programming
examples may be found online [7].

2.4.3 Sequence Alignment using Dynamic Programming

We are now ready to solve the more difficult problem of sequence alignment using dynamic programming,
which is presented in depth in the next section. Note that the key insight in solving the sequence alignment
problem is that alignment scores are additive. This allows us to create a matrix M indexed by ¢ and j, which
are positions in two sequences S and T to be aligned. The best alignment of S and T corresponds with the
best path through the matrix M after it is filled in using a recursive formula.

By using dynamic programming to solve the sequence alignment problem, we achieve a provably optimal
solution, that is far more efficient than brute-force enumeration.

2.5 The Needleman-Wunsch Algorithm

We will now use dynamic programming to tackle the harder problem of general sequence alignment. Given
two strings S =(S1,...,5,) and T =(T1,...,T),), we want to find the longest common subsequence, which
may or may not contain gaps. Rather than maximizing the length of a common subsequence we want to
compute the common subsequence that optimizes the score as defined by our scoring function. Let d denote
the gap penalty cost and s(x; y) the score of aligning a base x and a base y. These are inferred from
insertion/deletion and substitution probabilities which can be determined experimentally or by looking at
sequences that we know are closely related. The algorithm we will develop in the following sections to solve
sequence alignment is known as the Needleman-Wunsch algorithm.

2.5.1 Dynamic programming vs. memoization

Before we dive into the algorithm, a final note on memoization is in order. Much like the Fibonacci problem,
the sequence alignment problem can be solved in either a top-down or bottom-up approach.

In a top-down recursive approach we can use memoization to create a potentially large dictionary indexed
by each of the subproblems that we are solving (aligned sequences). This requires O(n?m?) space if we index
each subproblem by the starting and end points of the subsequences for which an optimal alignment needs
to be computed. The advantage is that we solve each subproblem at most once: if it is not in the dictionary,
the problem gets computed and then inserted into dictionary for further reference.

In a bottom-up iterative approach we can use dynamic programming. We define the order of computing
sub-problems in such a way that a solution to a problem is computed once the relevant sub-problems have

10Tn some cases dynamic programming is virtually the only acceptable solution; this is the case in particular when dependency
chains between subproblems are long: in this case, the memoization-based solution recurses too deeply, and causes a stack
overflow

34

6.047/6.878 Lecture 2: Sequence Alignment and Dynamic Programming

been solved. In particular, simpler sub-problems will come before more complex ones. This removes the
need for keeping track of which sub-problems have been solved (the dictionary in memoization turns into a
matrix) and ensures that there is no duplicated work (each sub-alignment is computed only once).

Thus in this particular case, the only practical difference between memoization and dynamic programming
is the cost of recursive calls incurred in the memoization case (space usage is the same).

2.5.2 Problem Statement

Suppose we have an optimal alignment for two sequences Si. ., and 77, ., in which S; matches T;. The
key insight is that this optimal alignment is composed of an optimal alignment between (Si,...,S;-1) and
(Th,...,Tj—1) and an optimal alignment between (Sij;1,....,5,) and (Tjy1,....,Tyn). This follows from a
cut-and-paste argument: if one of these partial alignments is suboptimal, then we cut-and-paste a better
alignment in place of the suboptimal one. This achieves a higher score of the overall alignment and thus
contradicts the optimality of the initial global alignment. In other words, every subpath in an optimal path
must also be optimal. Notice that the scores are additive, so the score of the overall alignment equals the
addition of the scores of the alignments of the subsequences. This implicitly assumes that the sub-problems
of computing the optimal scoring alignments of the subsequences are independent. We need to biologically
motivate that such an assumption leads to meaningful results.

2.5.3 Index space of subproblems

We now need to index the space of subproblems. Let F; ; be the score of the optimal alignment of (51, ..., S;)
and (11, ...,T;). The space of subproblems is {F; ;,i € [0,]S]],7 € [0,|T|]}. This allows us to maintain an
(m+1) x (n+ 1) matrix F with the solutions (i.e. optimal scores) for all the subproblems.

2.5.4 Local optimality

We can compute the optimal solution for a subproblem by making a locally optimal choice based on the
results from the smaller sub-problems. Thus, we need to establish a recursive function that shows how the
solution to a given problem depends on its subproblems. And we use this recursive definition to fill up the
table F in a bottom-up fashion.

We can consider the 4 possibilities (insert, delete, substitute, match) and evaluate each of them based
on the results we have computed for smaller subproblems. To initialize the table, we set Fy; = —j - d and
F, o = —i-d since those are the scores of aligning (T4, ...,T;) with j gaps and (S1,....,S;) with ¢ gaps (aka
zero overlap between the two sequences). Then we traverse the matrix column by column computing the
optimal score for each alignment subproblem by considering the four possibilities:

e Sequence S has a gap at the current alignment position.
e Sequence T has a gap at the current alignment position.
e There is a mutation (nucleotide substitution) at the current position.

e There is a match at the current position.

We then use the possibility that produces the maximum score. We express this mathematically by the
recursive formula for Fj ;:

35

6.047/6.878 Lecture 2: Sequence Alignment and Dynamic Programming

F(0,0)=0
Initialization F(i,0)=F(i—1,0)—d
F(0,)) = F(0,j— 1) —d
F(i—1,7)—d insert gapin S
Iteration : F(i,j) =max< F(i,j—1)—d insert gapinT
F(i—1,j—1)+s(z;,y;) matchor mutation
Termination : Bottom right

After traversing the matrix, the optimal score for the global alignment is given by F}, ,. The traversal
order needs to be such that we have solutions to given subproblems when we need them. Namely, to compute
F; ; , we need to know the values to the left, up, and diagonally above F; ; in the table. Thus we can traverse
the table in row or column major order or even diagonally from the top left cell to the bottom right cell.
Now, to obtain the actual alignment we just have to remember the choices that we made at each step.

2.5.5 Optimal Solution

Paths through the matrix F' correspond to optimal sequence alignments. In evaluating each cell F;; we
make a choice by selecting the maximum of the three possibilities. Thus the value of each (uninitialized) cell
in the matrix is determined either by the cell to its left, above it, or diagonally to the left above it. A match
and a substitution are both represented as traveling in the diagonal direction; however, a different cost can
be applied for each, depending on whether the two base pairs we are aligning match or not. To construct the
actual optimal alignment, we need to traceback through our choices in the matrix. It is helpful to maintain
a pointer for each cell while filling up the table that shows which choice was made to get the score for that
cell. Then we can just follow our pointers backwards to reconstruct the optimal alignment.

2.5.6 Solution Analysis

The runtime analysis of this algorithm is very simple. Each update takes O(1) time, and since there are mn
elements in the matrix F, the total running time is O(mn). Similarly, the total storage space is O(mn). For
the more general case where the update rule is more complicated, the running time may be more expensive.
For instance, if the update rule requires testing all sizes of gaps (e.g. the cost of a gap is not linear), then
the running time would be O(mn(m + n)).

2.5.7 Needleman-Wunsch in practice

Assume we want to align two sequences S and T, where

S = AGT

T = AAGC

The first step is placing the two sequences along the margins of a matrix and initializing the matrix cells.
To initialize we assign a 0 to the first entry in the matrix and then fill in the first row and column based on
the incremental addition of gap penalties, as in Figure 2.9 below. Although the algorithm could fill in the
first row and column through iteration, it is important to clearly define and set boundaries on the problem.

The next step is iteration through the matrix. The algorithm proceeds either along rows or along
columns, considering one cell at time. For each cell three scores are calculated, depending on the scores
of three adjacent matrix cells (specifically the entry above, the one diagonally up and to the left, and the
one to the left). The maximum score of these three possible tracebacks is assigned to the entry and the
corresponding pointer is also stored. Termination occurs when the algorithm reaches the bottom right corner.
In Figure 2.10 the alignment matrix for sequences S and T has been filled in with scores and pointers.

36

6.047/6.878 Lecture 2: Sequence Alignment and Dynamic Programming

A G T T
Initialization:
4 « M(i,0=M(-1,0) - 2 gap

- . M(0,)=M(0,5-1) -2 gap
Update Rule:

M(i,j)=max{

-H H B

}

- Termination:

} A G T
Initialization:
-1 0 "'."'."'. « Top left: 0
=l . A(i0)=A(i-1,0)-2 @ap
A ! -: - .: _ . - A(0)=A(0/1)-2 oap
| il i Update Rule:
S S Ny A(i,j)=max{
EOE T
s, L « ACP 1) -2 gap
g . « A(i-1,j1)-1 mismatch
- - -\;1 « A(F1,j1)+1} match
y Termination:
> . . . -1 . Bottom right

Figure 2.10: (Example) Half-way through the second step of Needleman-Wunsch

The final step of the algorithm is optimal path traceback. In our example we start at the bottom right
corner and follow the available pointers to the top left corner. By recording the alignment decisions made
at each cell during traceback, we can reconstruct the optimal sequence alignment from end to beginning
and then invert it. Note that in this particular case, multiple optimal pathways exist (Figure 2.11). A
pseudocode implementation of the Needleman-Wunsch algorithm is included in Appendix 2.11.4

2.5.8 Optimizations

The dynamic algorithm we presented is much faster than the brute-force strategy of enumerating alignments
and it performs well for sequences up to 10 kilo-bases long. Nevertheless, at the scale of whole genome align-
ments the algorithm given is not feasible. In order to align much larger sequences we can make modifications
to the algorithm and further improve its performance.

Bounded Dynamic Programming

One possible optimization is to ignore Mildly Boring Alignments (MBAs), or alignments that have too many
gaps. Explicitly, we can limit ourselves to stay within some distance W from the diagonal in the matrix

37

6.047/6.878 Lecture 2: Sequence Alignment and Dynamic Programming

- A G

‘1.

>

-> O

Traceback from
bottom right

>
—_

PR

Final alignment:

A-GT
AAGC
OR
-AGT
w1 AAGC

Figure 2.11: (Example) Tracing the optimal alignment

Q

4]

B
N
lt
7]

(@]

T_T

F of subproblems. That is, we assume that the optimizing path in F from Fy o to F, , is within distance
W along the diagonal. This means that recursion (2.2) only needs to be applied to the entries in F within
distance W around the diagonal, and this yields a time/space cost of O((m + n)W) (refer to Figure 2.12).

= PR

¥1:-:-

k(N)

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faqg-fair-use/.

Figure 2.12: Bounded dynamic programming example

Note, however, that this strategy is heuristic and no longer guarantees an optimal alignment. Instead it
attains a lower bound on the optimal score. This can be used in a subsequent step where we discard the
recursions in matrix F which, given the lower bound, cannot lead to an optimal alignment.

Linear Space Alignment

Recursion (2.2) can be solved using only linear space: we update the columns in F from left to right during
which we only keep track of the last updated column which costs O(m) space. However, besides the score

38

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 2: Sequence Alignment and Dynamic Programming

F, n of the optimal alignment, we also want to compute a corresponding alignment. If we use trace back,
then we need to store pointers for each of the entries in F, and this costs O(mn) space.

h“'ﬁ“.
H-l-
| .h
H‘L N_H-l-
& Ty - ¥
M/2 M2

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 2.13: Recovering the sequence alignment with O(m + n) space

It is also possible to find an optimal alignment using only linear space! The goal is to use divide and
conquer in order to compute the structure of the optimal alignment for one matrix entry in each step. Figure
2.13 illustrates the process. The key idea is that a dynamic programming alignment can proceed just as
easily in the reverse direction, starting at the bottom right corner and terminating at the top left. So if the
matrix is divided in half, then both a forward pass and a reverse pass can run at the same time and converge
in the middle column. At the crossing point we can add the two alignment scores together; the cell in the
middle column with the maximum score must fall in the overall optimal path.

We can describe this process more formally and quantitatively. First compute the row index u €
{1,...,m} that is on the optimal path while crossing the gth column. For 1 <i<mand § <j <n
let C; ; denote the row index that is on the optimal path to F; ; while crossing the %th column. Then, while
we update the columns of F from left to right, we can also update the columns of C from left to right. So,
in O(mn) time and O(m) space we are able to compute the score F,, ,, and also Cy, ,,, which is equal to the
row index u € {1,...,m} that is on the optimal path while crossing the %th column.

Now the idea of divide and conquer kicks in. We repeat the above procedure for the upper left u x 5
submatrix of F and also repeat the above procedure for the lower right (m — u) x § submatrix of F . This
can be done using O(m + n) allocated linear space. The running time for the upper left submatrix is O(*g*)
and the running time for the lower right submatrix is O(@)
of O(") = O(mn).

We keep on repeating the above procedure for smaller and smaller submatrices of F while we gather more
and more entries of an alignment with optimal score. The total running time is O(mn)+O("*)+O(%52)+-... =
O(2mn) = O(mn). So, without sacrificing the overall running time (up to a constant factor), divide and

conquer leads to a linear space solution (see also Section ?? on Lecture 3).

, which added together gives a running time

2.6 Multiple alignment

2.6.1 Aligning three sequences

Now that we have seen how to align a pair of sequences, it is natural to extend this idea to multiple sequences.
Suppose we would like to find the optimal alignment of 3 sequences. How might we proceed?

39

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 2: Sequence Alignment and Dynamic Programming

Recall that when we align two sequences S and T, we choose the maximum of three possibilities for
the final position of the alignment (sequence T aligned against a gap, sequence S aligned against a gap, or
sequence S aligned against sequence T):

Fiyjfl +d
Fi,j = Imax Fifl’j + d
Fio1j-1+5(5:,T))

For three sequences S, T, and U, there are seven possibilities for the final position of the alignment. That
is, there are three ways to have two gaps in the final position, three ways to have one gap, and one way to
have all three sequences aligned ((‘;’) + (3) + (g) = 7). The update rule is now:

2
Fi 1k +5(Si,— —)
Fij1k+s(=Tj—)
Fijr—1+s(——Ug)
Fijr=max Fi_q ;15 +s(5;,T;,—)
Fi 1 k-1 +5(S:;,—,Ux)
Fij—1k—1+s(—T;,Uk)
Fio1j—1k—1+5(8:,T;,Upg)

where s is the function describing gap, match, and mismatch scores.

This approach, however, is exponential in the number of sequences we are aligning. If we have k sequences
of length n, computing the optimal alignment using a k-dimensional dynamic programming matrix takes
O((2n)*) time (the factor of 2 results from the fact that a k-cube has 2% vertices, so we need to take the
maximum of 2% — 1 neighboring cells for each entry in the score matrix). As you can imagine, this algorithm
quickly becomes impractical as the number of sequences increases.

2.6.2 Heuristic multiple alignment

One commonly used approach for multiple sequence alignment is called progressive multiple alignment. As-
sume that we know the evolutionary tree relating each of our sequences. Then we begin by performing
a pairwise alignment of the two most closely-related sequences. This initial alignment is called the seed
alignment. We then proceed to align the next closest sequence to the seed, and this new alignment replaces
the seed. This process continues until the final alignment is produced.

In practice, we generally do not know the evolutionary tree (or guide tree), this technique is usually
paired with some sort of clustering algorithm that may use a low-resolution similarity measure to generate
an estimation of the tree.

While the running time of this heuristic approach is much improved over the previous method (polynomial
in the number of sequences rather than exponential), we can no longer guarantee that the final alignment is
optimal.

Note that we have not yet explained how to align a sequence against an existing alignment. One possible
approach would be to perform pairwise alignments of the new sequence with each sequence already in the
seed alignment (we assume that any position in the seed alignment that is already a gap will remain one).
Then we can add the new sequence onto the seed alignment based on the best pairwise alignment (this
approach was previously described by Feng and Doolittle[4]). Alternatively, we can devise a function for
scoring the alignment of a sequence with another alignment (such scoring functions are often based on the
pairwise sum of the scores at each position).

Design of better multiple sequence alignment tools is an active area of research. Section 2.9 details some
of the current work in this field.

40

6.047/6.878 Lecture 2: Sequence Alignment and Dynamic Programming

2.7 Current Research Directions
2.8 Further Reading

2.9 Tools and Techniques

Lalign finds local alignments between two sequences. Dotlet is a browser-based Java applet for visualizing
the alignment of two sequences in a dot-matrix.
The following tools are available for multiple sequence alignment:

e Clustal Omega - A multiple sequence alignment program that uses seeded guide trees and HMM
profile-profile techniques to generate alignments.[10]

MUSCLE - MUltiple Sequence Comparison by Log-Expectation[3]

T-Coffee - Allows you to combine results obtained with several alignment methods|2]

MAFFT - (Multiple Alignment using Fast Fourier Transform) is a high speed multiple sequence align-
ment program[3)

Kalign - A fast and accurate multiple sequence alignment algorithm|[9]

2.10 What Have We Learned?
2.11 Appendix

2.11.1 Homology

One of the key goals of sequence alignment is to identify homologous sequences (e.g., genes) in a genome. Two
sequences that are homologous are evolutionarily related, specifically by descent from a common ancestor.
The two primary types of homologs are orthologous and paralogous (refer to Figure 2.14). Other forms of
homology exist (e.g., xenologs), but they are outside the scope of these notes.

Orthologs arise from speciation events, leading to two organisms with a copy of the same gene. For
example, when a single species A speciates into two species B and C, there are genes in species B and C that
descend from a common gene in species A, and these genes in B and C are orthologous (the genes continue
to evolve independent of each other, but still perform the same relative function).

Paralogs arise from duplication events within a species. For example, when a gene duplication occurs in
some species A, the species has an original gene B and a gene copy B’, and the genes B and B’ are paralogus.

Generally, orthologous sequences between two species will be more closely related to each other than
paralogous sequences. This occurs because orthologous typically (although not always) preserve function
over time, whereas paralogous often change over time, for example by specializing a gene’s (sub)function
or by evolving a new function. As a result, determining orthologous sequences is generally more important
than identifying paralogous sequences when gauging evolutionary relatedness.

2.11.2 Natural Selection

The topic of natural selection is a too large topic to summarize effectively in just a few short paragraphs;
instead, this appendix introduces three broad types of natural selection: positive selection, negative selection,
and neutral selection.

e Positive selection occurs when a trait is evolutionarily advantageous and increases an individual’s
fitness, so that an individual with the trait is more likely to have (robust) offspring. It is often
associated with the development of new traits.

1R.B. - BIOS 60579

41

http://www.ch.embnet.org/software/LALIGN_form.html
http://myhits.isb-sib.ch/cgi-bin/dotlet
http://www.ebi.ac.uk/Tools/msa/clustalo/
http://www.ebi.ac.uk/Tools/msa/muscle/
http://www.ebi.ac.uk/Tools/msa/tcoffee/
http://www.ebi.ac.uk/Tools/msa/mafft/
http://www.ebi.ac.uk/Tools/msa/kalign/

6.047/6.878 Lecture 2: Sequence Alignment and Dynamic Programming

F_LA’V-\-‘
i. WEM
J‘+1~L

e I

A,

ii. e O

“

IV ara sy

o

T
- Al
L paralogous
. A2

speciesw (A2

~ N

spccmN
e S .
- R

Afx

Alx orthologous Aly

. = A orthelogous A2y e
Laz« Az
N ST
species x species y

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 2.14: Ortholog and paralog sequences

e Negative selection occurs when a trait is evolutionarily disadvantageous and decreases an individual’s
fitness. Negative selection acts to reduce the prevalence of genetic alleles that reduce a species’ fitness.
Negative selection is also known as purifying selection due to its tendency to ’purify’ genetic alleles
until only the most successful alleles exist in the population.

e Neutral selection describes evolution that occurs randomly, as a result of alleles not affecting an indi-
vidual’s fitness. In the absence of selective pressures, no positive or negative selection occurs, and the
result is neutral selection.

2.11.3 Dynamic Programming v. Greedy Algorithms

Dynamic programming and greedy algorithms are somewhat similar, and it behooves one to know the
distinctions between the two. Problems that may be solved using dynamic programming are typically
optimization problems that exhibit two traits:

1. optimal substructure and
2. overlapping subproblems.

Problems solvable by greedy algorithms require both these traits as well as (3) the greedy choice
property. When dealing with a problem “in the wild,” it is often easy to determine whether it satisfies (1)
and (2) but difficult to determine whether it must have the greedy choice property. It is not always clear
whether locally optimal choices will yield a globally optimal solution.

For computational biologists, there are two useful points to note concerning whether to employ dynamic
programming or greedy programming. First, if a problem may be solved using a greedy algorithm, then it
may be solved using dynamic programming, while the converse is not true. Second, the problem structures
that allow for greedy algorithms typically do not appear in computational biology.

To elucidate this second point, it could be useful to consider the structures that allow greedy programming
to work, but such a discussion would take us too far afield. The interested student (preferably one with a
mathematical background) should look at matroids and greedoids, which are structures that have the greedy
choice property. For our purposes, we will simply state that biological problems typically involve entities
that are highly systemic and that there is little reason to suspect sufficient structure in most problems to
employ greedy algorithms.

42

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 2: Sequence Alignment and Dynamic Programming

2.11.4 Pseudocode for the Needleman-Wunsch Algorithm

The first problem in the first problem set asks you to finish an implementation of the Needleman-Wunsch
(NW) algorithm, and working Python code for the algorithm is intentionally omitted. Instead, this appendix
summarizes the general steps of the NW algorithm (Section 2.5) in a single place.
Problem: Given two sequences S and T of length m and n, a substitution matrix vU of matching scores,
and a gap penalty G, determine the optimal alignment of S and T and the score of the alignment.
Algorithm:

1. Create two m + 1 by n + 1 matrices A and B. A will be the scoring matrix, and B will be the traceback
matrix. The entry (%, j) of matrix A will hold the score of the optimal alignment of the sequences S[1, ...,]
and T'[1,...,j], and the entry (¢,) of matrix B will hold a pointer to the entry from which the optimal
alignment was built.

2. Initialize the first row and column of the score matrix A such that the scores account for gap penalties,
and initialize the first row and column of the traceback matrix B in the obvious way.

3. Go through the entries (i, 7) of matrix A in some reasonable order, determining the optimal alignment of
the sequences S[1,...,4] and T[1,...,j] using the entries (i — 1,5 — 1), (i — 1,4), and (¢, — 1). Set the
pointer in the matrix B to the corresponding entry from which the optimal alignment at (i, j) was built.

4. Once all entries of matrices A and B are completed, the score of the optimal alignment may be found in
entry (m,n) of matrix A.

5. Construct the optimal alignment by following the path of pointers starting at entry (m,n) of matrix B
and ending at entry (0,0) of matrix B.

Bibliography

[1] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algo-
rithms. The MIT Press, London, third edition, 1964.

[2] Paolo Di Tommaso, Sebastien Moretti, Ioannis Xenarios, Miquel Orobitg, Alberto Montanyola, Jia-Ming
Chang, Jean-Frangois Taly, and Cedric Notredame. T-Coffee: a web server for the multiple sequence
alignment of protein and RNA sequences using structural information and homology extension. Nucleic
Acids Research, 39(Web Server issue):W13-W17, 2011.

[3] Robert C Edgar. MUSCLE: multiple sequence alignment with high accuracy and high throughput.
Nucleic acids research, 32(5):1792-7, January 2004.

[4] D F Feng and R F Doolittle. Progressive sequence alignment as a prerequisite to correct phylogenetic
trees. Journal of Molecular Evolution, 25(4):351-360, 1987.

[5] Kazutaka Katoh, George Asimenos, and Hiroyuki Toh. Multiple alignment of DNA sequences with
MAFFT. Methods In Molecular Biology Clifton Nj, 537:39-64, 2009.

[6] John D. Kececioglu and David Sankoff. Efficient bounds for oriented chromosome inversion distance.
In Proceedings of the 5th Annual Symposium on Combinatorial Pattern Matching, CPM 94, pages
307-325, London, UK, UK, 1994. Springer-Verlag.

[7] Manolis Kellis. Dynamic programming practice problems. http://people.csail.mit.edu/bdean/6.046/dp/,
September 2010.

[8] Manolis Kellis, Nick Patterson, Matthew Endrizzi, Bruce Birren, and Eric S Lander. Sequencing and
comparison of yeast species to identify genes and regulatory elements. Nature, 423(6937):241-254, 2003.

[9] Timo Lassmann and Erik L L Sonnhammer. Kalign—an accurate and fast multiple sequence alignment
algorithm. BMC Bioinformatics, 6(1):298, 2005.

43

http://people.csail.mit.edu/bdean/6.046/dp/

6.047/6.878 Lecture 2: Sequence Alignment and Dynamic Programming

[10] Fabian Sievers, Andreas Wilm, David Dineen, Toby J Gibson, Kevin Karplus, Weizhong Li, Rodrigo
Lopez, Hamish McWilliam, Michael Remmert, Johannes Séding, Julie D Thompson, and Desmond G
Higgins. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal
Omega. Molecular Systems Biology, 7(539):539, 2011.

[11] Zhaolei Zhang and Mark Gerstein. Patterns of nucleotide substitution, insertion and deletion in the
human genome inferred from pseudogenes. Nucleic Acids Research, 31(18):5338-5348, 2003.

44

CHAPTER
THREE

RAPID SEQUENCE ALIGNMENT AND DATABASE SEARCH

Heather Sweeney (Sep 20, 2015)

Eric Bartell (Sep 20, 2015)

Kathy Lin (Sep 11, 2014)

Maria Rodriguez (Sep 13, 2011)

Rushil Goel (Sep 16, 2010)

Eric Eisner -Guilhelm Richard (Sep 17, 2009)
Tural Badirkhnali (Sep 11, 2008)

Figures
3.1 Global Alignment e 44
3.2 Global Alignment L e e e e 45
3.3 Local Alignment e 46
3.4 Local alignments to detect rearrangements 46
3.5 Semi-global Alignment 46
3.6 Bounded-space computation Lo Lo 48
3.7 Linear-space computation for optimal alignment score 48
3.8 Space-saving optimization for finding the optimal alignment 48
3.9 Divide and Conquer e e e e e 49
3.10 Naive Karp-Rabin algorithm 50
3.11 Final Karp-Rabin algorithm 51
3.12 Pigeonhole Principle L 52
3.13 The BLAST Algorithm 53
3.14 Educated String Matching 56
3.15 Final String Matching e 56
3.16 Nucleotide match SCOTes o o s 57
317 BLOSUMG62 matrix for amino acids« o o v oo 58

3.1 Introduction

In the previous chapter, we used dynamic programming to compute sequence alignments in O(n?). In
particular, we learned the algorithm for global alignment, which matches complete sequences with one
another at the nucleotide level. We usually apply this when the sequences are known to be homologous (i.e.
the sequences come from organisms that share a common ancestor).

The biological significance of finding sequence alignments is to be able to infer the most likely set of
evolutionary events such as point mutations/mismatches and gaps (insertions or deletions) that occurred in
order to transform one sequence into the other. To do so, we first assume that the set of transformations with

45

6.047/6.878 Lecture 3 - Rapid Sequence Alignment and Database Search

the lowest cost is the most likely sequence of transformations. By assigning costs to each transformation type
(mismatch or gap) that reflect their respective levels of evolutionary difficulty, finding an optimal alignment
reduces to finding the set of transformations that result in the lowest overall cost.

We achieve this by using a dynamic programming algorithm known as the Needleman-Wunsch algorithm.
Dynamic programming uses optimal substructures to decompose a problem into similar sub-problems. The
problem of finding a sequence alignment can be nicely expressed as a dynamic programming algorithm since
alignment scores are additive, which means that finding the alignment of a larger sequence can be found
by recursively finding the alignments of smaller subsequences. The scores are stored in a matrix, with
one sequence corresponding to the columns and the other sequence corresponding to the rows. Each cell
represents the transformation required between two nucleotides corresponding to the cell’s row and column.
An alignment is recovered by tracing back through the dynamic programming matrix (shown below). The
dynamic programming approach is preferable to a greedy algorithm that simply chooses the transition with
minimum cost at each step because a greedy algorithm does not guarantee that the overall result will give
the optimal or lowest-cost alignment.

A

=0 (@ [H|@ ==

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 3.1: Global Alignment
To summarize the Needleman-Wunsch algorithm for global alignment:

We compute scores corresponding to each cell in the matrix and record our choice (memoization) at that
step i.e. which one of the top, left or diagonal cells led to the maximum score for the current cell.
We are left with a matrix full of optimal scores at each cell position, along with pointers at each cell
reflecting the optimal choice that leads to that particular cell.

We can then recover the optimal alignment by tracing back from the cell in the bottom right corner (which
contains the score of aligning one complete sequence with the other) by following the pointers reflecting
locally optimal choices, and then constructing the alignment corresponding to an optimal path followed
in the matrix.

The runtime of Needleman-Wunsch algorithm is O(n?) since for each cell in the matrix, we do a finite
amount of computation. We calculate 3 values using already computed scores and then take the
maximum of those values to find the score corresponding to that cell, which is a constant time (O(1))
operation.

To guarantee correctness, it is necessary to compute the cost for every cell of the matrix. It is possible
that the optimal alignment may be made up of a bad alignment (consisting of gaps and mismatches)
at the start, followed by many matches, making it the best alignment overall. These are the cases that
traverse the boundary of our alignment matrix. Thus, to guarantee the optimal global alignment, we
need to compute every entry of the matrix.

Global alignment is useful for comparing two sequences that are believed to be homologous. It is less
useful for comparing sequences with rearrangements or inversions or aligning a newly-sequenced gene against
reference genes in a known genome, known as database search. In practice, we can also often restrict the
alignment space to be explored if we know that some alignments are clearly sub-optimal.

This chapter will address other forms of alignment algorithms to tackle such scenarios. It will first intro-
duce the Smith-Waterman algorithm for local alignment for aligning subsequences as opposed to complete
sequences, in contrast to the Needleman-Wunsch algorithm for global alignment. Later on, an overview
will be given of hashing and semi-numerical methods like the Karp-Rabin algorithm for finding the longest

46

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 3 - Rapid Sequence Alignment and Database Search

(contiguous) common substring of nucleotides. These algorithms are implemented and extended for inexact
matching in the BLAST program, one of the most highly cited and successful tools in computational biology.
Finally, this chapter will go over BLAST for database searching as well as the probabilistic foundation of
sequence alignment and how alignment scores can be interpreted as likelihood ratios.

Outline:
1. Introduction
e Review of global alignment (Needleman-Wunsch)
2. Global alignment vs. Local alignment vs. Semi-global alignment

e Initialization, termination, and update rules for Global alignment (Needleman-Wunsch) vs. Local
alignment (Smith-Waterman) vs. Semi-global alignment

e Varying gap penalties, algorithmic speedups
3. Linear-time exact string matching

e Karp-Rabin algorithm and semi-numerical methods

e Hash functions and randomized algorithms
4. The BLAST algorithm and inexact matching

e Hashing with neighborhood search
e Two-hit blast and hashing with combs

5. Pre-processing for linear-time string matching

e Fundamental pre-processing
e Suffix Trees
e Suffix Arrays

e The Burrows-Wheeler Transform
6. Probabilistic foundations of sequence alignment

e Mismatch penalties, BLOSUM and PAM matrices

e Statistical significance of an alignment score

3.2 Global alignment vs. Local alignment vs. Semi-global align-
ment

A global alignment is defined as the end-to-end alignment of two strings s and t.

A local alignment of string s and ¢ is an alignment of substrings of s with substrings of .

In general are used to find regions of high local similarity. Often, we are more interested in finding local
alignments because we normally do not know the boundaries of genes and only a small domain of the gene
may be conserved. In such cases, we do not want to enforce that other (potentially non-homologous) parts of
the sequence also align. Local alignment is also useful when searching for a small gene in a large chromosome
or for detecting when a long sequence may have been rearranged (Figure 4).

A semi-global alignment of string s and t is an alignment of a substring of s with a substring of t.

This form of alignment is useful for overlap detection when we do not wish to penalize starting or ending
gaps. For finding a semi-global alignment, the important distinctions are to initialize the top row and
leftmost column to zero and terminate end at either the bottom row or rightmost column.

The algorithm is as follows:

47

6.047/6.878 Lecture 3 - Rapid Sequence Alignment and Database Search

Figure 3.2: Global Alignment

Figure 3.3: Local Alignment

Figure 3.4: Local alignments to detect rearrangements

Figure 3.5: Semi-global Alignment

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Initialization : F(i,0) =0
F(0,5)=0
F(i—-1,5)—d
Iteration : F(i,j) = max FGi,j—1)—d
F(i—1,7—1) 4+ s(zs,y;)
Termination : Bottom row or Right column

48

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 3 - Rapid Sequence Alignment and Database Search

3.2.1 Using Dynamic Programming for local alignments

In this section we will see how to find local alignments with a minor modification of the Needleman-Wunsch
algorithm that was discussed in the previous chapter for finding global alignments.

To find global alignments, we used the following dynamic programming algorithm (Needleman-Wunsch
algorithm):

Initialization : F(0,0) =0
(Z - 17.7)
Iteration : F(i,j) = max F(i,j—1)—
Fi—-1,7-1) +s(:1:,,yj)
Termination Bottom right

For finding local alignments we only need to modify the Needleman-Wunsch algorithm slightly to start
over and find a new local alignment whenever the existing alignment score goes negative. Since a local
alignment can start anywhere, we initialize the first row and column in the matrix to zeros. The iteration
step is modified to include a zero to include the possibility that starting a new alignment would be cheaper
than having many mismatches. Furthermore, since the alignment can end anywhere, we need to traverse
the entire matrix to find the optimal alignment score (not only in the bottom right corner). The rest of the
algorithm, including traceback, remains unchanged, with traceback indicationg an end at a zero, indicating
the start of the optimal alignment.

These changes result in the following dynamic programming algorithm for local alignment, which is also
known as the :

Initialization : F(i,0) =
F(0,7)=0
0
Iteration : F(i,j) = max ?Ez ; i"i; 3
F(i—1,7—1) + s(z,y)
Termination : Anywhere

3.2.2 Algorithmic Variations

Sometimes it can be costly in both time and space to run these alignment algorithms. Therefore, this section
presents some algorithmic variations to save time and space that work well in practice.

One method to save time, is the idea of bounding the space of alignments to be explored. The idea is
that good alignments generally stay close to the diagonal of the matrix. Thus we can just explore matrix
cells within a radius of k from the diagonal. The problem with this modification is that this is a heuristic
and can lead to a sub-optimal solution as it doesn’t include the boundary cases mentioned at the beginning
of the chapter. Nevertheless, this works very well in practice. In addition, depending on the properties of the
scoring matrix, it may be possible to argue the correctness of the bounded-space algorithm. This algorithm
requires O(k * m) space and O(k * m) time.

We saw earlier that in order to compute the optimal solution, we needed to store the alignment score in
each cell as well as the pointer reflecting the optimal choice leading to each cell. However, if we are only
interested in the optimal alignment score, and not the actual alignment itself, there is a method to compute
the solution while saving space. To compute the score of any cell we only need the scores of the cell above,
to the left, and to the left-diagonal of the current cell. By saving the previous and current column in which
we are computing scores, the optimal solution can be computed in linear space.

If we use the principle of divide and conquer, we can actually find the optimal alignment with linear
space. The idea is that we compute the optimal alignments from both sides of the matrix i.e. from the
left to the right, and vice versa. Let u = [§]|. Say we can identify v such that cell (u,v) is on the optimal

49

6.047/6.878 Lecture 3 - Rapid Sequence Alignment and Database Search

ABTECCCTEEANC D TEADEE TEGETCACAMMATT TCTEEA

DL WYIVI LTSRN LTV VYIS ITVILIY

Figure 3.6: Bounded-space computation

AGTECCC TERAMD OC TEADEE TEEE T CAGAMMMET TC TEEA

QLIOVYTIDLREE L 20RO VENYERE L DRLY
-

P RRARARRARS (S

. h

Figure 3.7: Linear-space computation for optimal alignment score
© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

alignment path. That means v is the row where the alignment crosses column u of the matrix. We can find
the optimal alignment by concatenating the optimal alignments from (0,0) to (u,v) plus that of (u,v) to
(m,n), where m and n is the bottom right cell (note: alignment scores of concatenated subalignments using
our scoring scheme are additive. So we have isolated our problem to two separate problems in the the top
left and bottom right corners of the DP matrix. Then we can recursively keep dividing up these subproblems
to smaller subproblems, until we are down to aligning 0-length sequences or our problem is small enough
to apply the regular DP algorithm. To find v the row in the middle column where the optimal alignment
crosses we simply add the incoming and outgoing scores for that column.

Incoming scores Outgoing scores Sum the two - best transition
-
N s =
K 3
o [x:) K
o h
o hA
g [=.} ge :}ﬁ
AT
C |

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 3.8: Space-saving optimization for finding the optimal alignment

One drawback of this divide-and-conquer approach is that it has a longer runtime. Nevertheless, the
runtime is not dramatically increased. Since v can be found using one pass of regular DP, we can find v
for each column in O(mn) time and linear space since we don’t need to keep track of traceback pointers
for this step. Then by applying the divide and conquer approach, the subproblems take half the time since
we only need to keep track of the cells diagonally along the optimal alignment path (half of the matrix of
the previous step) That gives a total run time of O(mn(1+ 1 + 1 +...)) = O(2MN) = O(mn) (using the
sum of geometric series), to give us a quadratic run time (twice as slow as before, but still same asymptotic
behavior). The total time will never exceed 2M N (twice the time as the previous algorithm). Although the
runtime is increased by a constant factor, one of the big advantages of the divide-and-conquer approach is
that the space is dramatically reduced to O(N).

50

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 3 - Rapid Sequence Alignment and Database Search

A

J AT
N D\
K’ Kk’]
v v D

N N-k’ ||k

M

M/2 M/2 M/2 M/2
Iterate procedure in corner quadrants Total cost MN(1+V2+Ya+%+...)<2MN

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 3.9: Divide and Conquer

Q: Why not use the bounded-space variation over the linear-space variation to get both linear time and
linear space?

A: The bounded-space variation is a heuristic approach that can work well in practice but does not guarantee
the optimal alignment.

3.2.3 Generalized gap penalties

Gap penalties determine the score calculated for a subsequence and thus affect which alignment is selected.
The normal model is to use a where each individual gap in a sequence of gaps of length & is penalized equally
with value p. This penalty can be modeled as w(k) = k * p.

Depending on the situation, it could be a good idea to penalize differently for, say, gaps of different lengths.
One example of this is a in which the incremental penalty decreases quadratically as the size of the gap
grows. This can be modeled as w(k) = p + ¢ * k + r * k. However, the trade-off is that there is also cost
associated with using more complex gap penalty functions by substantially increasing runtime.

This cost can be mitigated by using simpler approximations to the gap penalty functions. The is a fine
intermediate: you have a fixed penalty to start a gap and a linear cost to add to a gap; this can be modeled
as w(k) =p+qx*k.

You can also consider more complex functions that take into consideration the properties of protein coding
sequences. In the case of protein coding region alignment, a gap of length mod 3 can be less penalized
because it would not result in a frame shift.

3.3 Linear-time exact string matching

While we have looked at various forms of alignment and algorithms used to find such alignments, these
algorithms are not fast enough for some purposes. For instance, we may have a 100 nucleotide sequence
which we want to search for in the whole genome, which may be over a billion nucleotides long. In this case,
we want an algorithm with a run-time that depends on the length of query sequence, possibly with some
pre-processing on the database, because processing the entire genome for every query would be extremely
slow. For such problems, we enter the realm of randomized algorithms where instead of worrying about the
worst-case performance, we are more interested in making sure that the algorithm is linear in the expected
case. When looking for exact(consecutive) matches of a sequence, the Karp-Rabin algorithm interprets such
a match numerically. There are many other solutions to this problem and some of them that can ensure the
problem is linear in the worst case such as: the Z-algorithm, Boyer-Moore and Knuth-Morris-Pratt algorithm,
algorithms based on suffix trees, suffix arrays, etc. (discussed in the “Lecture 3 addendum” slides)

3.3.1 Karp-Rabin Algorithm

This algorithm tries to match a particular pattern to a string, which is the basic principle of database search.
The problem is as follows: in text T of length n we are looking for pattern P of length m. Strings are mapped
to numbers to enable fast comparison. A naive version of the algorithm involves mapping the string P and

51

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 3 - Rapid Sequence Alignment and Database Search

m-length substrings of T sinto numbers x and y, respectively, sliding x along T at every offset until there is
a match of the numbers.

T- [2]3]5]9] o[2[3]1]4]1]5 2 6|7 3]0] 9] 2] 1]

y, =123590 y, = 31,415
Y, ='§35,902
y, = 59,023

P= nn / compute x

for 1 in [1..n]:
compute vy,

if x == y,:
print “match at S[i]"

Figure 3.10: Naive Karp-Rabin algorithm

However, one can see that the algorithm, as stated, is in fact non-linear for two reasons:

1. Computing each y; takes more than constant time (it is in fact linear if we naively compute each
number from scratch for each subsequence)

2. Comparing = and y; can be expensive if the numbers are very large which might happen if the pattern
to be matched is very long

To make the algorithm faster, we first modify the procedure for calculating y; in constant time by using
the previously computed number, y; — 1. We can do this using some bit operations: a subtraction to remove
the high-order bit, a multiplication to shift the characters left, and an addition to append the low-order
digit. For example, in Figure 10, we can compute y2 from y; by

e removing the highest order bit: 23590 mod 10000 = 3590
e shifting left: 3590 % 10 = 35900
e adding the new low-order digit: 35900 + 2 = 35902

Our next issue arises when we have very long sequences to compare. This causes our calculations to be
with very large numbers, which becomes no longer linear time. To keep the numbers small to ensure efficient
comparison, we do all our computations modulo p (a form of hashing), where p reflects the word length
available to us for storing numbers, but is small enough such that the comparison between x and y; is doable
in constant time.

: Using a function to map data values to a data set of fixed size.
Because we are using hashing, mapping to the space of numbers modulo p can result in spurious hits due
to hashing collisions, and so we modify the algorithm to deal with such spurious hits by explicitly verifying
reported hits of the hash values. Hence, the final version of the Karp-Rabin algorithm is:

To compute the expected runtime of Karp-Rabin, we must factor in the expect cost of verification. If we
can show the probability of spurious hits is small, the expected runtime is linear.

Questions:
Q: What if there are more than 10 characters in the alphabet?

A: In such a case, we can just modify the above algorithm by including more digits i.e. by working in a
base other than 10, e.g. say base 256. But in general, when hashing is used, strings are mapped into
a space of numbers and hence the strings are interpreted numerically.

Q: How do we apply this to text?

52

6.047/6.878 Lecture 3 - Rapid Sequence Alignment and Database Search

T=12/3/5/9(02/3|1|4|1|5|2 6(7|3[|9/9|2|1

Voo I
Y1 =23;590 y, = 31415
¥, =135,902
Yg = 59,023 compute x (mod p)

for i in [1..n]:

P= 3| 1 ‘4‘ 1 | 5 compute y; (mod p) (using y,;_,)
if x == y;:
-

if p==S[i..]:
x=31415

print “match at S[{i]”

else:

(spurious hit)

Figure 3.11: Final Karp-Rabin algorithm

A: A hash function is used that changes the text into numbers that are easier to compare. For example, if
the whole alphabet is used, letters can be assigned a value between 0 and 25, and then be used similar
to a string of numbers.

Q: Why does using modulus decrease the computation time?

A: Modulus can be applied to each individual part in the computation while preserving the answer. For
instance: imagine our current text is ”314152” and word length is 5. After making our first computation
on ”31415”, we move our frame over to make our second computation, which is:

14152 = (31415 — 3 % 10000) * 10 + 2(mod13)

= (7—3%3) %10 + 2(mod13)

= 8(modl13)

This computation can be done now in linear time.

Q: Are there provisions in the algorithm for inexact matches?

A: The above algorithm only works when there are regions of exact similarity between the query sequence
and the database. However, the BLAST algorithm, which we look at later, extends the above ideas
to include the notion of searching in a biologically meaningful neighborhood of the query sequence to
account for some inexact matches. This is done by searching in the database for not just the query
sequence, but also some variants of the sequence up to some fixed number of changes.

In general, in order to reduce the time for operations on arguments like numbers or strings that are
really long, it is necessary to reduce the number range to something more manageable. Hashing is a general
solution to this and it involves mapping keys k from a large universe U of strings/numbers into a hash of
the key h(k) which lies in a smaller range, say [1...m]. There are many hash function that can be used, all
with different theoretical and practical properties. The two key properties that we need for hashing are:

1. Reproducibility if z =y, then h(z) = h(y). This is essential for our mapping to make sense.

2. Uniform output distribution This implies that regardless of the input distribution, the output distri-
bution is uniform. i.e. if 2! = y, then P(h(z) = h(y)) = 1/m, irrespective of the input distribution.
This is a desirable property to reduce the chance of spurious hits.

An interesting idea that was raised was that it might be useful to have locality sensitive hash functions
from the point of view of use in neighborhood searches, such that points in U that are close to each other
are mapped to nearby points by the hash function. The notion of Random projections, as an extension of
the BLAST algorithm, is based on this idea. Also, it is to be noted that modulo doesnt satisfy property 2
above because it is possible to have input distributions (e.g. all multiples of the number vis--vis which the

53

6.047/6.878 Lecture 3 - Rapid Sequence Alignment and Database Search

modulo is taken) that result in a lot of collisions. Nevertheless, choosing a random number as the divisor of
the modulo can avoid many collisions.

Working with hashing increases the complexity of analyzing the algorithm since now we need to compute
the expected run time by including the cost of verification. To show that the expected run time is linear, we
need to show that the probability of spurious hits is small.

3.4 The BLAST algorithm (Basic Local Alignment Search Tool)

The BLAST algorithm looks at the problem of sequence database search, wherein we have a query, which
is a new sequence, and a target, which is a set of many old sequences, and we are interested in knowing
which (if any) of the target sequences is the query related to. One of the key ideas of BLAST is that it
does not require the individual alignments to be perfect; once an initial match is identified, we can fine-tune
the matches later to find a good alignment which meets a threshold score. Also, BLAST exploits a distinct
characteristic of database search problems: most target sequences will be completely unrelated to the query
sequence, and very few sequences will match.

However, correct (near perfect) alignments will have long substrings of nucleotides that match perfectly.
E.g. if we looking for sequences of length 100 and are going to reject matches that are less than 90%
identical, we need not look at sequences that do not even contain a consecutive stretch of less than 10
matching nucleotides in a row. We base this assumption on the : if m items are put in n containers and
m>n, at least 2 items must be put in one of the n containers.

IR s

Pigeonhole principle

— If you have 2 pigeons and 3 holes, there must be
at least one hole with no pigeon

RKI WGD PRS

i o ol

] : . VGD RRS
Pigeonholing mis-matches

— Two sequences, each 9 amino-acids, with 7 identities
— There is a stretch of 3 amino-acids perfectly conserved

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Figure 3.12: Pigeonhole Principle

In addition, in biology, functional DNA is more likely to be conserved, and therefore the mutations that
we find will not actually be distributed randomly, but will be clustered in nonfunctional regions of DNA
while leaving long stretches of functional DNA untouched. Therefore because of the pigeonhole principle
and because highly similar sequences will have stretches of similarity, we can pre-screen the sequences for
common long stretches. This idea is used in BLAST by breaking up the query sequence into W-mers and
pre-screening the target sequences for all possible W — mers by limiting our seeds to be W — mers in the
neighborhood that meet a certain threshold.

The other aspect of BLAST that allows us to speed up repeated queries is the ability to preprocess a
large database of DNA off-line. After preprocessing, searching for a sequence of length m in a database of
length n will take only O(m) time. The key insights that BLAST is based on are the ideas of hashing and
neighborhood search that allows one to search for W — mers, even when there are no exact-matches.

3.4.1 The BLAST algorithm

The steps are as follows:
1. Split query into overlapping words of length W (the W-mers)

2. Find a “neighborhood” of similar words for each word (see below)

54

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 3 - Rapid Sequence Alignment and Database Search

3. Lookup each word in the neighborhood in a hash table to find the location in the database where each
word occurs. Call these the seeds, and let S be the collection of seeds.

4. Extend the seeds in S until the score of the alignment drops off below some threshold X.

5. Report matches with overall highest scores

query word {1/ = 3)
Query: GSVEDTTGSCSLAALLNKCKTE(GQRLVNCWIKQPLMDKNRIEERLNLVE AFVEDAELROTLOEDL

1. Split query into words

PQG W-mer
FEG
PRG Database
PEG
FG
FDG
2. Expand word PHG Queryt 325 SLAALLHKCETROGERLVNGIIROFLMDINRIEERIMLVEA 35S
. MG LA+t TE F B+ —H E+ L + TE + A
ne'ghborhOOd F3G Skeyet: 290 TLASVLDCTV | 5208 LERIL DIFVRD TRVLLEFQOTIGA 330

High-seoring Seament Pair (HSP)

3. Search database for

neighborhood matches 4. Extend each hit into alignment

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 3.13: The BLAST Algorithm

The pre-processing step of BLAST makes sure that all substrings of W nucleotides will be included in
our database (or in a hash table). These are called the W-mers of the database. As in step 1, we first split
the query by looking at all substrings of W consecutive nucleotides in the query. To find the neighborhood
of these W-mers, we then modify these sequences by changing them slightly and computing their similarity
to the original sequence. We generate progressively more dissimilar words in our neighborhood until our
similarity measure drops below some threshold T". This affords us flexibility to find matches that do not have
exactly W consecutive matching characters in a row, but which do have enough matches to be considered
similar, i.e. to meet a certiain threshold score.

Then, we look up all of these words in our hash table to find seeds of W consecutive matching nucleotides.
We then extend these seeds to find our alignment using the Smith-Waterman algorithm for local alignment,
until the score drops below a certain threshold X. Since the region we are considering is a much shorter
segment, this will not be as slow as running the algorithm on the entire DNA database.

It is also interesting to note the influence of various parameters of BLAST on the performance of the
algorithm vis-a-vis run-time and sensitivity:

e W Although large W would result in fewer spurious hits/collisions, thus making it faster, there are
also tradeoffs associated, namely: a large neighborhood of slightly different query sequences, a large
hash table, and too few hits. On the other hand, if W is too small, we may get too many hits which
pushes runtime costs to the seed extension/alignment step.

e T If T is higher, the algorithm will be faster, but you may miss sequences that are more evolutionarily
distant. If comparing two related species, you can probably set a higher T since you expect to find
more matches between sequences that are quite similar.

e X Its influence is quite similar to 7" in that both will control the sensitivity of the algorithm. While
W and T affect the total number of hits one gets, and hence affect the runtime of the algorithm
dramatically, setting a really stringent X despite less stringent W and 7', will result runtime costs
from trying unnecessary sequences that would not meet the stringency of X. So, it is important to
match the stringency of X with that of W and T to avoid unnecessary computation time.

55

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 3 - Rapid Sequence Alignment and Database Search

3.4.2 Extensions to BLAST

e Filtering Low complexity regions can cause spurious hits. For instance, if our query has a string of
copies of the same nucleotide e.g. repeats of AC or just G, and the database has a long stretch of the
same nucleotide, then there will be many many useless hits. To prevent this, we can either try to filter
out low complexity portions of the query or we can ignore unreasonably over-represented portions of
the database.

e Two-hit BLAST The idea here is to use double hashing wherein instead of hashing one long W -mer,
we will hash two small W-mers. This allows us to find small regions of similarity since it is much more
likely to have two smaller W-mers that match rather than one long W-mer. This allows us to get a
higher sensitivity with a smaller W, while still pruning out spurious hits. This means that we’ll spend
less time trying to extend matches that don’t actually match. Thus, this allows us to improve speed
while maintaining sensitivity.

Q: For a long enough W, would it make sense to consider more than 2 smaller W-mers?

A: It would be interesting to see how the number of such W-mers influences the sensitivity of the
algorithm. This is similar to using a comb, described next.

e Combs This is the idea of using non-consecutive W-mers for hashing. Recall from your biology
classes that the third nucleotide in a triplet usually doesnt actually have an effect on which amino acid
is represented. This means that each third nucleotide in a sequence is less likely to be preserved by
evolution, since it often doesnt matter. Thus, we might want to look for W-mers that look similar
except in every third codon. This is a particular example of a comb. A comb is simply a bit mask
which represents which nucleotides we care about when trying to find matches. We explained above
why 110110110 . . . (ignoring every third nucleotide) might be a good comb, and it turns out to
be. However, other combs are also useful. One way to choose a comb is to just pick some nucleotides
at random. Rather than picking just one comb for a projection, it is possible to randomly pick a set
of such combs and project the W-mers along each of these combs to get a set of lookup databases.
Then, the query string can also be projected randomly along these combs to lookup in these databases,
thereby increasing the probability of finding a match. This is called Random Projection. Extending
this, an interesting idea for a final project is to think of different techniques of projection or hashing
that make sense biologically. One addition to this technique is to analyze false negatives and false
positives, and change the comb to be more selective. Some papers that explore additions to this search
include Califino-Rigoutsos’93, Buhler’01, and Indyk-Motwani’98.

e PSI-BLAST Position-Specific Iterative BLAST create summary profiles of related proteins using
BLAST. After a round of BLAST, it updates the score matrix from the multiple alignment, and then
runs subsequent rounds of BLAST, iteratively updating the score matrix. It builds a Hidden Markov
Model to track conservation of specific amino acids. PSI-BLAST allows detection of distantly-related
proteins.

3.5 Pre-processing for linear-time string matching

The hashing technique at the core of the BLAST algorithm is a powerful way of string for rapid lookup. A
substantial time is invested to process the whole genome, or a large set of genomes, in advance of obtaining
a query sequence. Once the query sequence is obtained, it can be similarly processed and its parts searched
against the indexed database in linear time.

In this section, we briefly describe four additional ways of pre-processing a database for rapid string
lookup, each of which has both practical and theoretical importance.

3.5.1 Suffix Trees

Suffix trees provide a powerful tree representation of substrings of a target sequence T, by capturing all
suffixes of T in a radix tree.

56

6.047/6.878 Lecture 3 - Rapid Sequence Alignment and Database Search

Representation of a sequence in a suffix tree

Searching a new sequence against a suffix tree

Linear-time construction of suffix trees

3.5.2 Suffix Arrays

For many genomic applications, suffix trees are too expensive to store in memory, and more efficient rep-
resentations were needed. Suffix arrays were developed specifically to reduce the memory consumption of
suffix trees, and achieve the same goals with a significantly reduced space need.

Using suffix arrays, any substring can be found by doing a binary search on the ordered list of suffixes.
By thus exploring the prefix of every suffix, we end up searching all substrings.

3.5.3 The Burrows-Wheeler Transform

An even more efficient representation than suffix trees is given by the Burrows-Wheeler Transform (BWT),
which enables storing the entire hashed string in the same number of characters as the original string
(and even more compactly, as it contains frequent homopolymer runs of characters that can be more easily
compresed). This has helped make programs that can run even more efficiently.

We first consider the BWT matrix, which is an extension of a suffix array, in that it contains not only
all suffixes in sorted (lexicographic) order, but it appends to each suffix starting at position ¢ the prefix
ending at position ¢ — 1, each row thus containing a full rotation of the original string. This enables all the
suffix-array and suffix-tree operations, of finding the position of suffixes in time linear in the query string.

The key difference from Suffix Arrays is space usage, where instead of storing all suffixes in memory,
which even for suffix arrays is very expensive, only the last column of the BWT matrix is stored, based on
which the original matrix can be recovered.

An auxiliary array can be used to speed things even further and avoid having to repeat operations of
finding the first occurrence of each character in the modified suffix array.

Lastly, once the positions of 100,000s of substrings are found in the modified string (the last column of the
BTW matrix), these coordinates can be transformed to the original positions, saving runtime by amortizing
the cost of the transformation across the many many reads.

The BWT has had a very strong impact on short-string matching algorithms, and nearly all the fastest
read mappers are currently based on the Burrows-Wheeler Transform.

3.5.4 Fundamental pre-processing

This is a variation of processing that has theoretical interest but has found relatively little practical use in
bioinformatics. It relies on the Z vector, that contains at each position ¢ the length of the longest prefix of a
string that also matches the substring starting at ¢. This enables computing the L and R (Left and Right)
vectors that denote the end of the longest duplicate substrings that contains the current position 1.

3.5.5 Educated String Matching

The Z algorithm enables an easy computation of both the Boyer-Moore and the Knuth-Morris-Pratt
algorithms for linear-time string matching. These algorithms use information gathered at every comparison

57

6.047/6.878 Lecture 3 - Rapid Sequence Alignment and Database Search

when matching strings to improve string matching to O(n).

The naive algorithm is as follows: it compares its string of length m character by character to the sequence.
After comparing the entire string, if there are any mismatches, it moves to the next index and tries again.
This completes in O(m % n) time.

One improvement to this algorithm is to discontinue the current comparison if a mismatch is found. However,
this still completes in O(m % n) time when the string we are comparing matches the entire sequence.

blalalb[alc]alb]

ss0—a|b|a

blalalblalc]alb]
s=1

bla aba clalb
s=2 EIIEIE

blalalblalclalb]

s=3 abla

Figure 3.14: Educated String Matching

The key insight comes from learning from the internal redundancy in the string to compare, and using
that to make bigger shifts down the target sequence. When a mistake is made, all bases in the current
comparison can be used to move the frame considered for the next comparison further down. As seen below,
this greatly reduces the number of comparisons required, decreasing runtime to O(n).

21?21?21 2]2[2]2]2] 7] 7]
I- |~ - i .
—+a|blc|d

albleTd[21212121717
— = = _.|a|b[c‘d|

(21212171212 212[212]

~lalb[cld]

Figure 3.15: Final String Matching

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

3.6 Probabilistic Foundations of Sequence Alignment

As described above, the BLAST algorithm uses a scoring (substitution) matrix to expand the list of W-mers
in order to look for and determine an approximately matching sequence during seed extension. Also, a scoring
matrix is used in evaluating matches or mismatches in the alignment algorithms. But how do we construct
this matrix in the first place? How do you determine the value of s(z;,y;) in global/local alignment?

The idea behind the scoring matrix is that the score of alignment should reflect the probability that two
similar sequences are homologous i.e. the probability that two sequences that have a bunch of nucleotides in
common also share a common ancestry. For this, we look at the likelihood ratios between two hypotheses.

1. Hypothesis 1: — That the alignment between the two sequence is due to chance and the sequences
are, in fact, unrelated.

2. Hypothesis 2: — That the alignment is due to common ancestry and the sequences are actually
related.

Then, we calculate the probability of observing an alignment according to each hypothesis. Pr(x,y|U) is
the probability of aligning « with y assuming they are unrelated, while Pr(z,y|R) is the probability of the

58

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 3 - Rapid Sequence Alignment and Database Search

AlG | T C
+1|-%%2|-1|-1
+1|-1|-1
1| -1|+1 |-~
Cl1|-1]|-|+1

O >
NS

Figure 3.16: Nucleotide match scores

alignment, assuming they are related. Then, we define the alignment score as the log of the likelihood ratio
between the two:

P(x,y|R)
S = log——7-—=
P(x,y|U)

(3.1)

Since a sum of logs is a log of products, we can get the total score of the alignment by adding up the
scores of the individual alignments. This gives us the probability of the whole alignment, assuming each
individual alignment is independent. Thus, an additive matrix score exactly gives us the probability that the
two sequences are related, and the alignment is not due to chance. More formally, considering the case of
aligning proteins, for unrelated sequences, the probability of having an n-residue alignment between x and y

is a simple product of the probabilities of the individual sequences since the residue pairings are independent.
That is,

x = {z1...2,}
y {y1...z,}
go = P(amino acid a)

P(x,y[U)

n n
[La]1 o
=1 =1

For related sequences, the residue pairings are no longer independent so we must use a different joint
probability, assuming that each pair of aligned amino acids evolved from a common ancestor:

papr = P(evolution gave rise to a in x and b in y)
n
Px,y|lR) = []pew
i=1

Then, the likelihood ratio between the two is given by:

PxylR) _ ITipew
P(x,y|U) 121 a2 T2 9w,
_ H?:l Pz;y;
H?:l ERT

Since we eventually want to compute a sum of scores and probabilities require add products, we take the
log of the product to get a handy summation:

59

6.047/6.878 Lecture 3 - Rapid Sequence Alignment and Database Search

P(x,y|R)
S = lo
P(x,y|U)
Paz;y;
vo= log [—=
; g(q%iqyi>

Il
2
3
=
_‘/

Thus, the substitution matrix score for a given pair a, b is give by

s(a,b) = log(qpaqbb>

The above expression is then used to crank out a substitution matrix like the BLOSUMG62 for amino
acids. It is interesting to note that the score of a match of an amino acid with itself depends on the amino
acid itself because the frequency of random occurrence of an amino acid affects the terms used in calculating
the likelihood ratio score of alignment. Hence, these matrices capture not only the sequence similarity of the
alignments, but also the chemical similarity of various amino acids.

Cc S T P A G N D E O H R K M I L V F Y W

-1 -1 -1-2-1-3 -2 -3 -2 © -2 -1-1|5
-1/-2 -1 -3 -1 -4 -3 -3 -3 -3 |-3 -3 -3 |1
-1-2 -1 -3 -1 -4 -3 -4 -3 2|3 -2 -2 2
-1-2 e -2 -3 -3 -3 -2 -2 -3 -3 -2 1
2 -2 -2 -4 -2 -3 -3 -3 -3 -3 -1-3 -3 8 6
2/-2 -2 -3 -2 3,2 -3 -2-1,2-2-2/-1-1-1-1|3 7

1

F

clo C
s|-1 % S
T(-1 1 5 T
P|-3 -1 -1 7 P
Alo 1 0 -1 4 A
G|-3 @ -2 -2 0 6 G
N[-3 1 0 -2 -2 06 N
D|-3/0 -1 -1 -2 -1 1 6 D
E|-4 © -1 -1 -1 -2/@8 2 5 E
Q-3 @ -1 -1 -1 -2 @ @ 2 5 Q
H|-3|-1 2 -2 -2 -2 1-1 0 0 8 H
R|-3 -1 -1 -2-1-2 0 -2 @ 1 @ 5 R
K|3/e 1 -1 -1 -2 -1 1 1 -1 2 5 K
M M
I I
L L
v v
F F
Y Y
W W

2|3 -2 -4 -3 2|4 43 2|2 -3-3-1-3 -2 -3
C S T P A G NDE Q H R KMTI L V

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 3.17: BLOSUMG62 matrix for amino acids
3.7 Current Research Directions

3.8 Further Reading

BLAST related algorithms: Califino-Rigoutsos’93, Buhler’01, and Indyk-Motwani’98

60

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 3 - Rapid Sequence Alignment and Database Search

3.9 Tools and Techniques
3.10 What Have We Learned?

In this section we explored alignment algorithms beyond global alignment. We began by reviewing our use
of dynamic programming to solve global alignment problems using the Needleman-Wunsch algorithm. We
then the explored alternatives of local (Smith-Waterman) and semi-global alignments. We then discussed
using hash function to match exact strings in linear time (Karp-Rabin) as well as doing a neighborhood
search, investigating similar sequences in probabilistic linear time (pigeonhole principle, combs, 2-hit blast,
random projections). We have also addressed using pre-processing for linear time string matching, as well
as the probabilistic background for sequence alignment.

Bibliography

61

6.047/6.878 Lecture 3 - Rapid Sequence Alignment and Database Search

62

CHAPTER
FOUR

COMPARATIVE GENOMICS I: GENOME ANNOTATION

Quanquan Liu (2013),

Mark Smith,

Yarden Katz

(Partially adapted from notes by:
Angela Yen, Christopher Robde, Timo Somervuo and Saba Gul)

Figures
4.1 Exon conservation from mammalsto fish. 00000000 64
4.2 Comparative identification of functional elements in 12 Drosophila species. 66
4.3 A comparison between two genomic regions with different selection rates w. 66
4.4 Unusual patterns of substitution 0L 67
4.5 Increase in power to detect small constrained elements 68
4.6 HOXB5 conservation across mammalian species. 69
4.7 Modeling mutations using rate matrices.o 69
4.8 Measuring genome-wide excess constraint. 70
4.9 Detecting functional elements from their evolutionary signature. A Distribution of con-
straint for the whole genome against ancestral repeats (background). B Difference between
whole genome and background constraint. C Discovery of functional elements from excess
constraint. Novel elements are shown in red. D Enrichment of elements for regions of
_excess constraint., L e e e e e e 71
4.10 Coverage depth across different sets of elements. 72
4.11 Different mutation patterns in protein—coding and non—protein—coding regions. 72
4.12 Evolutionary signatures of protein-coding genes 73
4.13 RNA with secondary stem—loop structure 74
4.14 Silent point mutations e e e 75
4.15 Protein-coding vs. non-protein-coding conserved regions 76
4.16 Reading frame conservation. L L 7
4.17 Rejected open reading frame. oL Lo 78
4.18 Null and alternate model rate matrices.o 79
4.19 Probability that a region is protein-coding oL 80
4.20 Prediction of new genes and exons using evolutionary signatures. 81
4.21 OPRLI1 neurotransmitter: a novel translational read—through candidate. 82
4.22 Stop codon suppression interpretations. e 83
423 Z—curve for Caki. o e e e 83
4.24 miRNA hairpin structure. L e 84
4.25 miRNA characteristic conservation pattern. 84
4.26 Novel miRNA Evidence 1. o o v o0 ot e 85
4.27 Novel miRNA Evidence 2. e 85

6.047/6.878 Lecture 4: Comparative Genomics I: Genome Annotation

4.28 miRNA detection decision tree. Lo 86
4.29 CG31044 and CG33311 Transcripts. o v v v v v v v e 87
4.30 TAATTA regulatory motif. 87

4.1 Introduction

In this chapter we will explore the emerging field of comparative genomics, primarily through examples of
multiple species genome alignments (work done by the Kellis lab.) One approach to the analysis of genomes
is to infer important gene functions through applying an understanding of evolution to search for expected
evolutionary patterns. Another approach is to discover evolutionary trends by studying genomes themselves.
Taken together, evolutionary insight and large genomic datasets offer great potential for discovery of novel
biological phenomena.

A recurring theme of this work is to take a global computational approach to analyzing elements of genes
and RNAs encoded in the genome and use it to find interesting new biological phenomena. We can do this
by seeing how individual examples “diverge” or differ from the average case. For example, by examining
many protein—coding genes, we can identify features representative of that class of loci. We can then come
up with highly accurate tests for distinguishing protein—coding from non—protein—coding genes. Often, these
computational tests, based on thousands of examples, will be far more definitive than conventional low—
throughput wet lab tests. (Such tests can include mass spectrometry to detect protein products, in cases
where we want to know if a particular locus is protein coding.)

4.1.1 Motivation and Challenge

As the cost of genome sequencing continues to drop, the availability of sequenced genome data has exploded.
However, analysis of the data has not kept up, while there are many interesting biological phenomena lying
undiscovered in the endless strings of ATGCs. The goal of comparative genomics is to leverage the vast
amounts of information available to look for biological patterns.

As the name suggests, comparative genomics does not focus on one specific set of genomes. The problem
with purely focusing on the single genome level is that key evolutionary signatures are missed. Comparative
genomics solves this problem by comparing genomes from many species that evolved from a common ancestor.
As evolution changes a species’s genome, it leaves behind traces of its presence. We will see later in this
chapter that evolution discriminates between portions of a genome on the basis of biological function. By
exploiting this correlation between evolutionary fingerprints and the biological role of a genomic subsequence,
comparative genomics is able to direct wet lab research to interesting portions of the genome and discover
new biological phenomena.

FAQ

Q: Why do mutations only accumulate in certain regions of the genome, whereas other regions are
conserved?

A: In non-functional regions of DNA, accumulated mutations are kept because they do not disturb
the function of the DNA. In functional regions, these mutations can lead to decreased fitness;
these mutations are then discarded from the species by natural selection.

We can glean much information about evolution through studying genomics, and, similarly, we can learn
about the genome through studying evolution. For example, from the principle of “survival of the fittest,”
we can compare related species to discover which portions of the genome are functional elements. The
evolutionary process introduces mutations into any genome. In non-functional regions of DNA, accumulated
mutations are kept because they do not disturb the function of the DNA. However, in functional regions,
accumulated mutations often lead to decreased fitness. Thus, these fitness-decreasing mutations are not
likely to perpetuate to future generations. As time progresses, evolutionarily unfit organisms are likely to

64

6.047/6.878 Lecture 4: Comparative Genomics I: Genome Annotation

not survive and their genes thin out. By comparing surviving species’ genomes with their ancestors’ genomes,
we can see which portions constitute functional elements and which constitute “junk DNA.”

To date various important biological markers and phenomena have been discovered through comparative
genomics methods. For example, CRISPRs (Clustered Regularly Interspaced Short Palindromic Repeats),
found in bacteria and archaea, were first discovered through comparative genomics. Follow—up experiments
revealed that they provide adaptive immunity to plasmids and phages. Another example, which we will look
at later in this chapter, is the phenomenon of stop—codon read-through, where stop codons are occasionally
ignored during the process of translation phase of protein biosynthesis. Without comparative genomics to
guide them, experimentalists might have ignored both of these features for many years.

Without a system for interpreting and identifying important features in genomes, all of the DNA sequences
on earth are just a meaningless sea of data. However, we cannot ignore the importance of both computer
science and biology in comparative genomics. Without knowledge of biology, one might miss the signatures of
synonymous substitutions or frame shift mutations. On the other hand, ignoring computational approaches
would lead to an inability to parse ever larger datasets emerging from sequencing centers. Comparative
genomics require rare multidisciplinary skills and insight.

This is a particularly exciting time to enter the field of comparative genomics, because the field is mature
enough that there are tools and data available to make discoveries. But it is young enough that important
findings will likely continue to be made for many years.

4.1.2 Importance of many closely—related genomes

In order to resolve significant biological features we need both sufficient similarity to enable comparison and
sufficient divergence to identify signatures of change over evolutionary time. This is difficult to achieve in
a pairwise comparison. We improve the resolution of our analysis by extending analysis to many genomes
simultaneously with some clusters of similar organisms and some dissimilar organisms. A simple analogy is
one of observing an orchestra. If you place a single microphone, it will be difficult to decipher the signal
coming from the entire system, because it will be overwhelmed by the local noise from the single point
of observation, the nearest instrument. If you place many microphones distributed across the orchestra at
reasonable distances, then you get a much better perspective not only on the overall signal, but also on the
structure of the local noise. Similarly, by sequencing many genomes across the tree of life we are able to
distinguish the biological signals of functional elements from the noise of neutral mutations. This is because
nature selects for conservation of functional elements across large phylogenetic distances while constantly
introducing noise through mutagenic processes operating at shorter time scales.

In this chapter, we will assume that we already have a complete genome-wide alignment of multiple
closely—related species, spanning both coding and non—coding regions. In practice, constructing complete
genome assemblies and whole—genome alignments is a very challenging problem; that will be the topic of the
next chapter.

FAQ

Q: Why is there more resolving power when the evolutionary distance or branch length between
species increases?

A: If we are comparing two species like human and chimp that are very close to each other, we
expect to see little to no mutations. This gives us little discriminative power because we
see no difference between the number of mutations in functional elements vs. the number of
mutations in non-functional elements. However, as we increase the evolutionary time between
species, we expect to see more mutations, but what we actually see are a notable decrease in
the observed number of mutations in certain regions of the genome. We can conclude that
these regions are functional regions. Therefore, our confidence in perceived functional elements
increases as branch length increases.

65

6.047/6.878 Lecture 4: Comparative Genomics I: Genome Annotation

FAQ

Q: Why is it better to have many closely related species for the same branch length rather than
one distantly related species?

A: As branch length increases between distantly related species, even functional elements are not
conserved. Furthermore, reliably aligning genes from distantly related relatives of the same
species is difficult if not impossible using current technology such as BLAST.

4.1.3 Comparative genomics and evolutionary signatures

Given a genome-wide alignment, we can subsequently analyze the level of conservation of functional elements
in each of the genomes considered. Using the UCSC genome browser, one may see a level of conservation for
every gene in the human genome derived from aligning the genomes of many other species. In Figure 4.1
below, we see a DNA sequence represented on the x—axis, while each “row” represents a different species. The
y—axis within each row represents the amount of conservation for that species in that part of the chromosome
(though other species that are not shown were also used to calculate conservation). Higher bars correspond
with greater conservation.

From this figure, we can see that there are blocks of conservation separated by regions that are not
conserved. The 12 exons (highlighted by red rectangles) are mostly conserved across species, but sometimes,
certain exons are missing; for example, zebrafish is missing exon 9. However, we also see that there is a spike
in some species (as circled in red) that do not correspond to a known protein coding gene. This tells us
that some intronic regions have also been evolutionarily conserved, since DNA regions that do not code for
proteins can still be important as functional elements, such as RNA, microRNA, and regulatory motifs. By
observing how regions are conserved, instead of just looking at the amount of conservation, we can observe
‘evolutionary signatures’ of conservation for different functional elements.

The pattern of mutation/insertion/deletion can help us distinguish different types of functional elements
in the genome. Different functional elements are under different selective pressures and by considering
which selective pressures each element is under, we can develop evolutionary signatures characteristic of
each function. For example, we see the difference in evolutionary signatures as exhibited by protein-coding
genes as opposed to regulatory motifs...etc.

Chromosome Sa3#i21 133535000_[00 | 33545000 | 33550000 [

DBH gene

multiple
conservation

dog
mouse|
rat|
chicken
fugu
zebrafish

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 4.1: Exons (boxed in red) are deeply conserved from mammals to fish. Other elements are also
strongly conserved, such as the circled peak near the center of the graph. This may be a regulatory element
found in mammals but not in aves or fish.

66

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 4: Comparative Genomics I: Genome Annotation

FAQ

Q: Given an alignment of genes from multiple species, what can you measure to determine the
level of conservation of a specific gene(s)?

A: One simple method is just to look at the alignment score for each gene. If one wants to distinguish
between highly conserved protein coding segments from non-protein coding segments, one may
also look at codon conservation. However, in both of these approaches, we have to consider
the position of each species being compared in the phylogenetic tree. A pairwise comparison
score that is lower between two species separated by a greater distance in the phylogenetic tree
than the pairwise score between two closely related species would not necessarily imply lower
conservation.

4.2 Conservation of genomic sequences

4.2.1 Functional elements in Drosophila

In a 2007 paperd, Stark et al. identified evolutionary signatures of different functional elements and predicted
function using conserved signatures. One important finding is that across evolutionary time, genes tend to
remain in a similar location. This is illustrated by Figure 4.2, which shows the result of a multiple alignment
on orthologous segments of genomes from twelve Drosophila species. Each genome is represented by a
horizontal blue line, where the top line represents the reference sequence. Grey lines connect orthologous
functional elements, and it is clear that their positions are generally conserved across the different species.

FAQ

Q: Why is it significant that the position of orthologous elements is conserved?

A: The fact that positions are conserved is what allows us to make comparisons across species.
Otherwise, we would not be able to align non-coding regions reliably.

Drosophila is a great species to study because, in fact, the separation of fruit flies is greater than that
of mammals. This brings us to an interesting side-note, that of which species to select when looking at
conservation signatures. You don’t want to have very similar species (such as humans and chimpanzees,
which share 98% of the genome), because it would be difficult to distinguish regions that are different from
ones that are the same. When comparing species to humans, the right level of conservation to look at is
the mammals. Specifically, most research done in this field is done using 29 eutherian mammals (placental
mammals, no marsupials or monotremes) to study. Another things to take into account is branch-length
differences between two species. Your ideal subjects of study would be a few closely related (short branch-
length) species, to avoid problems of interpretation that arise with a long branch-length mutations, such as
back-mutations.

4.2.2 Rates and patterns of selection

Now that we have established that there is structure to the evolution of genomic sequences, we can begin
analyzing specific features of the conservation. For this section, let us consider genomic data at the level of
individual nucleotides. Later on in this chapter we will see that we can also analyze amino acid sequences.
We may estimate the intensity of a constraint of selection w by making a probabilities model of the
substitution rate inferred from genome alignment data. Using a Maximum Likelihood (ML) estimation of
w can provide us with the rate of selection w as well as the log odds score that the rate is non-natural.

Thttp://www.nature.com/nature/journal/v450/n7167/abs/nature06340.html

67

http://www.nature.com/nature/journal/v450/n7167/abs/nature06340.html

6.047/6.878 Lecture 4: Comparative Genomics I: Genome Annotation
CGi495

D.mel e
D.sim
D.sec T
D.yak
D.ere
D.ana =7

D.pse =wgee=

D.per mogmma

D.Wil sommmssmimen
Dmoj s ==
DVir o e

D.gri

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faqg-fair-use/.

Figure 4.2: Comparative identification of functional elements in 12 Drosophila species. Grey lines indicate
the alignment of orthologous regions. Color indicates direction of transcription.

One property that this measures that we may consider is the rate of nucleotide substitution in a genome.
Figure 4.3 shows two nucleotide sequences from a collection of mammals. One of the sequences is subject to
normal rates of change, while the other demonstrates a reduced rate. Hence we may hypothesize that the
latter sequence is subject to a greater level of evolutionary constraint, and may represent a more biologically
important section of the genome.

= s Neutral sequence ¥ e Decreased rate w

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 4.3: A comparison between two genomic regions with different selection rates w. The sequence on
the left demonstrates normal rates of mutation, while the sequence on the right shows a high conservation
level, as evidenced by the reduced number of mutations.

We can further detect unusual patterns of selection 7 by looking at a probabilistic model of a stationary
distribution that is different from the background distribution. The ML estimation of 7 provides us with
the Probability Weight Matrix (PWM) for each k-mer in the genome as well as the log odds score for
substitutions that are unusual (e.g. one base changing to one and only one other base). As one may see
from Figure 4.4, specific letters matter because some bases selectively change to one (or two other bases),
and the specific base it changes to may suggest what the function of the sequence may be.

We can increase our detection power of constraint elements by looking at more species, as shown in
Figure 4.5 where we see a dramatic increase in the power to detect small constrained elements.

4.3 Excess Constraint
In most regions of the genome where we see conservation across species, we expect there to be at least some

amount of synonymous substitution. These are “silent” nucleotide substitutions that modify a codon in
such a way that the amino acid it encodes is unchanged. In a 2011 paperZ, Lindblad-Toh et al. studied

?http://www.nature.com/nature/journal/v478/n7370/full/nature10530.html

68

http://www.nature.com/nature/journal/v478/n7370/full/nature10530.html
http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 4: Comparative Genomics I: Genome Annotation

o 0 0O 08 05 06| 3.2 0 O
= Wouss A c c T & [T Gh
BF
Chusrweaf o)
Flabsrd L]
2T v
Htwinis
s a
LY ™
Blosrdnbey L]
T 7w Y0 gy
- Hihrew
- H—-].J..r. e A G [#]
Dy G
e
How e L)
LTy
Armapiiehn
[T
Torvec T T Lo]
A G s i -

Unusual patterns

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 4.4: This sequence displays an unusual substitution rate of substituting C with G and vice versa.

evolutionary constraint in the human genome by doing comparative analysis of 29 mammalian species. They
found that among the 29 genomes, the average nucleotide site showed 4.5 substitutions per site.

Given such a high average substitution rate, we do not expect to see perfect conservation across all regions
that are conserved. For example, ignoring all other effects, the probability of a 12—mer remaining fixed across
all 29 species is less than 1072°. Thus, regions which are nearly perfectly conserved across multiple species
stand out as being unique and worthy of further study. One such region is shown in Figure 4.6.

4.3.1 Causes of Excess Constraint

The question is what evolutionary pressures cause certain regions to be so perfectly conserved? The following
were all mentioned in class as possibilities:

e Could it be that there is a special structure of DNA shielding this area from mutation?
e Is there some special error correcting machinery that sits at this spot?

e Can the cell use the methylation state of the two copies of DNA as an error correcting mechanism?
This mechanism would rely on the fact that the new copy of DNA is unmethylated, and therefore the
DNA replication machinery could check the new copy against the old methylated copy.

e Maybe the next generation can’t survive if this region is mutated?

Another possible explanation is that selection is occurring to conserve specific codons. Some codons are
more efficient than others: for example, higher abundant proteins that need rapid translation might select
codons that give the most efficient translation rate, while other proteins might select for codons that give
less efficient translation.

Still, these regions seem too perfectly conserved to be explained by codon usage alone. What else can
explain excess constraint? There must be some degree of accuracy needed at the nucleotide level that keeps
these sequences from diverging.

It could be that we are looking at the same region in two species that have only recently diverged or
that there is a specific genetic mechanism protecting this area. However, it is more likely that so much
conservation is a sign of protein coding regions that simultaneously encode other functional elements. For
example, the HOXB5 gene shows obvious excess constraint, and there is evidence that the 5’ end of the
HOXB5 ORF encodes both protein and an RNA secondary structure.

69

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 4: Comparative Genomics I: Genome Annotation

™ log-odds T log-odds w w
(12mers) (50mers) (12mers) (50mers)
— —_ —

29 mammals 7.1/1.5/4.6 6.8/1.8/41 5.7/1.1/3.8 5.7/1.8/3.0

(HMRD) Human

4.2/0.0/0.0 5.3/0.1/0.3 4.5/0.0/0.0 5.1/0.6/1.7
Mouse Rat Dog

Estimated / kmers detectable at 5% FDR / base pairs detectable at 5% FDR

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Figure 4.5: By increasing the number of mammals studied, we see an increase in the constrained k-mers and
base pairs that are detectable.

Regions that encode more than one type of functional element are under overlapping selective pressures.
There might be pressure in the protein coding space to keep the amino acid sequence corresponding to this
region the same, combined with pressure from the RNA space to keep a nucleotide sequence that preserves
the RNA’s secondary structure. As a result of these two pressures to keep codons for the same amino acids
and to produce the same RNA structure, the region is likely to show much less tolerance for any synonymous
substitution patterns.

The process of estimating evolutionary constraint from genomic alignment data across multiple species
follows the steps below:

e Count the number of edit operations (i.e. the number of substitutions and/or deletions/insertions)
e Estimate the number of mutations including back-mutations

e Incorporate information about the neighborhood elements of the conserved element by looking at
” conservation windows”

e Estimate the probability of a constrained “hidden state” through using Hidden Markov Models

e Use phylogeny to estimate tree mutation rate (i.e. reject substitutions that should occur along the
tree)

e Allow different portions of the tree to have different mutation rates

4.3.2 Modeling Excess Constraint

To better study region of excess constraint, we develop mathematical models to systematically measure the
amount of synonymous and non-synonymous conservation of different regions. We will measure two rates:
codon and nucleotide conservation.

To represent the null model, we can build rate matrices (4 x 4 in the nucleotide case and 64 x 64 for the
codon case) that give the rates of substitutions between either codons or nucleotides for a unit time. We
estimate the rates in the null model by looking at a ton of data and estimating the probabilities of each type
of substitution. See Figure 4.18a in 4.5.2 for an example of a null matrix for the codon case.

e)\,: the rate of synonymous substitutions

70

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 4: Comparative Genomics I: Genome Annotation

T GTAAMC TCC TTC TG GGG C AAT TAT GIGC AGT GEC AG
T ETh AAL TEE TIC TCLSGE ¢ AAT TAT GEC RGT GEE Ad
T GTAAMG TCE TTC TOG GG6 06 &5 TCAG AAT TAT GG AGT GGE AG

STAAAL TEE TTC TCE € ¢ AAT TAT G
AAT TAT GEC AGT GGC AG

AAT TAT GGC AGT BN A G 076 AGT GGC TOT TAS AG
AAT TAT GGC AGT G5 AGH TTG AGE S4C TOT TAS A

STA AAL TEE TTE T &
T GTAAAG TOE TTC TOG 996 05
T GTAAAL TCE TTCTCL 6

GGC AGT GEC AG

TAT GGC AGT GEC AG

AAT TAT GEC RGT GEE AG
AAT TAT GEC AGT GGC AG
AAT TAT GEC RGT GEE AG

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faqg-fair-use/.

Figure 4.6: Many genomic regions, such as HOXB5, show more conservation than we would expect in normal
conserved coding regions. Among the 29 species under study, all but 7 of them had the exact same nucleotide
sequence. The green areas are areas that have undergone evolutionary mutations.

P -

© source unknown. All rights reserved. This content is
excluded from our Creative Commons license. For more
information,see http://ocw.mit.edu/help/faqg-fair-use/.

Figure 4.7: We can model mutations using rate matrices, as shown here for nucleotide substitutions on the
left and codon substitutions on the right. In each matrix, the cell in the mth row and nth column represents
the likelihood that the mth symbol will mutate into the nth symbol. The darker the color, the less likely
the mutation.

e)\,: the rate of nonsynonymous substitutions

For example, if A\; = 0.5, then the rate of synonymous substitutions is half of what is expected from the
null model in that region. We can then evaluate the statistical significance of the rate estimates we obtain,
and find regions where the rate of substitution is much lower than expected.

Using a null model here helps us account for biases in alignment coverage of certain codons and also
accounts for the possibility of codon degeneracy, in which case we would expect to see a much higher rate
of substitutions. We will learn how to combine such models with phylogenic methods when we talk about
phylogenic trees and evolution later on in the course.

Applying this model shows that the sequences in the first translated codons, cassette exons (exons that
are present in one mRNA transcript but absent in an isoform of the transcript), and alternatively spliced
regions have especially low rates of synonymous substitutions.

4.3.3 Excess Constraint in the Human Genome

In this section, we will examine the problem of determining the total proportion of the human genome under
excess constraint. In particular, we will revisit the work of Lindblad—Toh et al. (2011), which compared 29
mammalian genomes. They measured conservation levels throughout the genome by applying the process
described in the previous section to 50-mers. By considering only 50—mers which were part of ancestral
repeats, it is possible to determine a background level of conservation. We can imagine that the intensities of
conservation among the 50-mers are distributed according to a hidden probability distribution, as illustrated
in Figure 4.8. In the figure, the background curve represents the distribution of constraint in the absence

71

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 4: Comparative Genomics I: Genome Annotation

of special mechanisms for excess constraint, as determined by looking at ancestral repeats, while the signal
(foreground) curve represents the actual distribution of the genome. The signal curve has more conservation
overall due to the purifying effects of natural selection.

PDF

Backgroond L} | L 1 __l--- Cutoffs

.~ Excess Constraint

True Positives
Signal (FG)

Conservation

False Positives

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 4.8: Measuring genome-wide excess constraint. See accompanying text for explanation.

We may wish to investigate specific regions of the genome which are under excess constraint by setting
a threshold level of conservation and examining regions which are more conserved. In the illustration, this
corresponds to considering all 50—mers which fall to the right of one of the orange lines. We see that while
this method does indeed give us regions under excess constraint, it also gives us false positives. This is
because even in the absence of purifying selection and other effects, certain regions will be heavily conserved,
simply due to random chance. Setting the threshold higher, such as by using the dotted orange line as
our threshold, reduces the proportion of false positives (FP) to true positives (TP), while also lowering the
number of true positives detected, thus trading higher specificity for lower sensitivity.

However, not all hope is lost. It is possible to empirically measure both the background (BG) and
foreground (FG) signal curves, as described above. Once that is done, the area of the region between them,
which is shaded in gray in Figure 4.8, can be determined by integration. This area represents the proportion
of the genome which is under excess constraint. Because the curves overlap, we cannot detect all conserved
elements but we can estimate the total amount of excess constraint. This number of estimated constraint
turns out to be about 5% of the human genome, depending on how large a window is used. Those regions
are likely to all be functional, but since about 1.5% of the human genome is protein—coding, we can infer
that the remaining 3.5% consists of functional, non—coding elements, most of which probably play regulatory
roles.

We have seen that evolutionary constraint over the whole genome can be estimated by evaluating genomic
constraint against a background distribution. Lindblad-Toh et al. (2011) compare genome conservation
across 29 mammals against a background calculated from ancestral repeat elements to find regions with excess
constraint (Figure 4.9A and B). Annotation of evolutionarily constrained bases reveals that the majority
of discovered regions are intergenic and intronic and demonstrates that going from four (HMRD) to 29
mammalian genomes increases the power of this analysis primarily in non-coding regions (Figure 4.9C). The
most constrained regions in the genome are coding regions (Figure 4.9D).

As shown in Figure 4.9, the increase from HMRD to a 29 genome alignment vastly improves the power

72

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 4: Comparative Genomics I: Genome Annotation

A 045 —— Whole genome C 40
0.4 — Ancestral repeats 35
— Excess constraint &
035 < 3
Py
3
0.3 2 25
3
>
0025 B 2
s c
5} @
32 02 g s
0 2
T 015 8 1
0.1 5
0.05 0
Coding genes ° Py © ©
& £ 5
o o & & o NI S & &
& 3 ¢ ¢ 3 & &
4 3 2 A 0 1 2 3 4 5 6 I) S <§)@° @%@0 & & &
® (normalized 12-mer) <
Annotation
B D 18
16
0054 —— Excess constraint
Purifying (close-up) g W
0.04 selection E 2
3 E 10
g §
S 0.03 s 8
g 9
o 2 6
[N 4
0.02 oy,
0014 Positive 2
' selection o o
ing genes o @ © ©
& & &
0 & & & po 28 & & & F
4 3 2 A 1t 2 3 4 5 6 O S/ &

. & I Q‘c@ € q
 (normalized 12-mer) Y
notation

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 4.9: Detecting functional elements from their evolutionary signature. A Distribution of constraint
for the whole genome against ancestral repeats (background). B Difference between whole genome and
background constraint. C Discovery of functional elements from excess constraint. Novel elements are
shown in red. D Enrichment of elements for regions of excess constraint.

of this analysis. However, while the amount of intergenic elements detected increased significantly, detection
is still limited by the fact that non-functional elements have much lower species coverage depth in multiple
alignments than functional regions (Figure 4.10). For example, ancestral repeats (AR, 4 = 11.4) have a much
lower average coverage depth than exons (p = 20.9). On one hand, this shows evidence of selection against
insertions and deletions in functional elements, which are not examined in the analysis of base constraint.
On the other, it also complicates the analysis of evolutionary constraint, as such work must then handle
varying coverage across the genome.

4.3.4 Examples of Excess Constraint

Examples of excess constraint have been found in the following cases:

e Most Hox genes show overlapping constraint regions. In particular, as mentioned above the first 50
amino acids of HOXB5 are almost completely conserved. In addition, HOXA2 shows overlapping
regulatory modules. These two loci encode developmental enhancers, providing a mechanism for tissue
specific expression.

e ADAR: the main regulator of mRNA editing, has a splice variant where a low synonymous substitution
rate was found at a resolution of 9 codons.

e BRCA1: Hurst and Pal (2001) found a low rate of synonymous substitutions in certain regions of
BRCAL1, the main gene involved in breast cancer. They hypothesized that purifying selection is occur-
ring in these regions. (This claim was refuted by Schmid and Yang (2008) who claim this phenomenon
is the artifact of a sliding window analysis).

e THRA/NRI1D1: these genes, also involved in breast cancer, are part of a dual coding region that codes
for both genes and is highly conserved.

73

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 4: Comparative Genomics I: Genome Annotation

0.189 =—Exons, p=20.9
—AR p=114
0161 — HMRD elements, p = 23.9
0.144 =—29way elements, p =24.3
— New elements, y = 24.4
& 0121 Masked genomic, p = 17.1
c
[} -
g 0.1
8 0081
2
[T
0.06
0.04
0.02 1 /\
0
0 5 10 15 20 25 30

Number of aligned species

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faqg-fair-use/.

Figure 4.10: Coverage depth across different sets of elements.

e SEPHS?2: has a hairpin involved in selenocysteine recoding. Because this region must select codons to
both conserve the protein’s amino acid sequence and the nucleotides to keep the same RNA secondary
structure, it shows excess constraint.

4.3.5 Measuring constraint at individual nucleotides

By measuring evolutionary constraint at individual nucleotides instead of blocks of the sequence, we may find
individual transcription factor binding sites, position-specific bias within motif instances, and reveal motif
consensus among most species. Specifically, we can detect SNPs that disrupt conserved regulatory motifs
and determine the level of evolution by looking at every nucleotide in the gene. By looking at nucleotides
individually, we can find SNPs that are important in the function of a specific sequence.

4.4 Diversity of evolutionary signatures: An Overview of Selec-
tion Patterns

Independently of the substitution rate, we may also consider the pattern of substitutions in a particular
nucleotide subsequence. Consider a sequence of nucleotides which encodes a protein. Due to tRNA wobble,
a mutation in the third nucleotide of a codon is less likely to affect the final protein than a mutation in
the other positions. Hence we expect to see a pattern of increased substitutions on the third position when
looking at protein—coding subsequences of the genome. This is indeed verified experimentally, as shown in
Figure 4.11.

GGAAGTGCT GCCACAATC TAC TACGAR TCCACAGS i T GCTCCTTCT CCACCAGCG ATG CRAAC GLATCACT Characteristic protein-preserving events

GGAAGTGCTGCCACAATC TAC TAC GAA TCTATG CCAGCC TCC GCCTCCACAGECT acc cec err ece icea creere con Gl GOT COTTCT CCA CCAGOG ATG CAAACT TTGCGAATCACT

GEAAGTCCTGCCACARTC TAC TAC GAATCT AT TCCGCCTCCACE TTCIATCATIGACTAEE | Ace coc vt cocli8cea oreBad coa BT B coT corer cenceacoe ATG caaACT TTecaaatcacr | Codon substitution typical of protein-coding regions

GGAAGTECT TecBMcoCaTT CTATCA TTGACTACS | AGe coe ert coc il GERESESITRIRE 4 B o cor TeT B6T CoA GCG ATG CAAACT [Frame-preserving gap (length L a multiple of 3)

GEAAGTECTGCCACAATC TAC TACT TCTATG AGE CGE CTT CCCCCTGRACTCGTC B8 o coT 6T 60T o BGEATG CAR ACT
T I~ 7 TAC TAC GAA TR A

AAC CGC CTT CCCCCTGEACTCETC COA CTC

‘caca nTe TAC TAC GAA [l
CACAATC TAC TACGAR|

o Characteristic non-coding region events
Triplet substitution typical of non-coding regions
[Nonsense mutation introducing a stop codon
Frame-shifting gap (length L not a multiple of 3)

16 [l AT

e e [E ToT 676 T7c [ATT T
17 e [l oTe o Tee 716 Ml AT 1o

» " ®owmomr oErr oroworwrw

Protein-coding exon Non-coding region

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 4.11: Different mutation patterns in protein—coding and non—protein—coding regions. Asterisks in-
dicate that the nucleotide was conserved across all species. Note that within the protein—coding exon,
nucelotides 1 and 2 of each codon tend to be conserved, while codon 3 is allowed to vary more, which is
consistent with the phenomenon of wobble.

74

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 4: Comparative Genomics I: Genome Annotation

FAQ

Q: In Figure 4.11, we also see nucleotide substitutions in groups of three or sixes. Why is this the
case?

A: Insertions and deletions in groups of threes and sixes also contribute to preserving the reading
frame. If all the nucleotides are deleted in one codon, the rest of the codons are unaffected
during amino acid translation. However, if we delete a number of nucleotides that is not a
multiple of three (i.e. we only delete part of some codon), then the translation of the rest of
the codons become nonsensical since the reading frame has been shifted.

In Figure 4.12, we can see one more feature of protein-coding genes. The boundaries of conservation are
very distinct and they lie near splice sites. Periodic mutations (in multiples of three) begin to occur after
the splice site boundary.

Splice

CATARATAAR TTACAACAGTTAGCTG-GTT CAGGCHGARTGTIC TGCGOCCATTACCHTGOGGACGAGCA
CATARATAAM—— TTACARCAGTTAGCTG-GTT CAGGCHGAFTIGTCTGCGOCCATTACCHTGOGGACGRGCA
fCATARATAAM—— TTACARCAGTTAGCTG-GTT CAGGCHGAFTIGTCTGCGOCCATTACCHTGOGGACGRGCA
CATARATAAMF—— TTACARCAGTTAGCTG-GTT CHGAGIGCLTTCTACCATTACCHTGOGGACGRGCH
CATAAATARAl--[=I'TTACAACAGTTAGCTG—CTT, Iole c7Ne INETe| SIS shue 1oy I wiele inele Elcle slerelor
CATARATAAM—— CTACAACATTTAGCTG-GTT CAGGCHGAGIGTCTGCGACCEITCOATE-~—-——ICGGCCG
MCATARAATGAAR-— TTACARCATTTAGCTG-CTT CAGGCEGAAII GGCGOCGTECEITOCCETGOATACGOCCA
CATARATGAAF-— TTACARCATTTAGCTG-CTT CAGGCEGAAIIGCCGOCGTECEITOCCETGOATACGOCCG
CATARATGAA] TTACAACACTTAACT(‘?TT CAAGCCIGAG GCCGC@tCATT&G TGCAA}-\CGACESEg
TATAARCGTAATG G-GTT, CAAGCCGAGQIGGCGOT-—-— TGCCG%GCGT GCtC GT
TATAARATTAAT TAGCTG-GTT, CAGGCEEAALGGL G- -1~ —1GTCCETGOGE GGtTC
TATAARAATAATTCTTTT ACACTTAACTG-ATT, CE&G@L"E& TGTIC GOC==-==1TGCCAIGGGCACEACC]
4 ok * * & Ak hkkk whkk EE & [k e :;-‘* £ @* 4 ¥ /**

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 4.12: In addition to reading frame conservation and substitutions every third nucleotide, we also see
sharp conservation boundaries that pinpoint splice sites.

As we can see with detecting protein-coding genes, it is not only important to consider the substitution
rate but also the pattern of substitutions. By observing how regions are conserved, instead of just looking at
the amount of conservation, we can observe ‘evolutionary signatures’ of conservation for different functional
elements.

4.4.1 Selective Pressures On Different Functional Elements

Different functional elements have different selective pressures (due to their structure and other character-
istics); some changes (insertions, deletions, or mutations) that can be extremely harmful to one functional
element may be innocuous to another. By figuring out what the “signatures” are for different elements, we
can more accurately annotate a region by observing the patterns of conservation it shows.

Such a pattern is called an evolutionary signature: a pattern of change that is tolerated within elements
that still preserve their function. An evolutionary signature is different from the degree of conservation in
that you tolerate mutation, but only specific types of mutations in specific places. Evolutionary signatures
arise because evolution and natural selection are acting on different levels in certain functional elements. For
instance, in a protein-coding gene evolution is acting on the level of amino acids, and so natural selection
willl not filter out nucleotide changes which do not affect the amino acid sequence. Whereas a structural
RNA will have pressure to preserve nucleotide pairs, but not necessarily individual nucleotides.

75

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 4: Comparative Genomics I: Genome Annotation

Importantly, the pattern of conservation has a distinct phylogenetic structure. More similar species
(mammals) group together with shared conserved domains that fish lack, suggesting a mammalian specific
innovation, perhaps for regulatory elements not shared by fish. Meanwhile, some features are globally
conserved, suggesting a universal significance, such as protein coding. Initial approximate annotation of
protein coding regions in the human genome was possible using the simple heuristic that if it was conserved
from human to fish it likely served as a protein coding region.

An interesting idea for a final project would be to map divergences in the multiple alignment and call
these events “births” of new coding elements. By focusing on a particular element (say microRNAs) one
could identify periods of innovation and isolate portions of a phylogenetic tree enriched for certain classes of
these elements.

The rest of the chapter will focus on quantifying the degree to which a sequence follows a given pattern.
Kellis compared the process of evolution to exploring a fitness landscape, with the fitness score of a particular
sequence constrained by the function it encodes. For example, protein coding genes are constrained by
selection on the translated product, so synonymous substitutions in the third base pair of a codon are
tolerated.

Below is a summary of the expected patterns followed by various functional elements:

e Protein—coding genes exhibit particular frequencies of codon substitution as well as reading frame
conservation. This makes sense because the significance of the genes is the proteins they code for;
therefore, changes that result in the same or similar amino acids can be easily tolerated, while a tiny
change that drastically changes the resulting protein can be considered disastrous. In addition to the
error correction of the mismatch repair system and DNA polymerase itself, the redundancy of the
genetic code provides an additional level of intrinsic error correction/tolerance.

e Structural RNA is selected based on the secondary sequence of the transcribed RNA, and thus requires
compensatory changes. For example, some RNA has a secondary stem—loop structure such that sections
of its sequence bind to other sections of its sequence in its “stem”, as shown in figure 4.13.

Courtesy of Sakurambo on wikipedia. Image in the public domain.

Figure 4.13: RNA with secondary stem—loop structure

Imagine that a nucleotide (A) and its partner (T) bind to each other in the stem, and then (A) mutates
to a (C). This would ruin the secondary structure of the RNA. To correct this, either the (C) would
mutate back to an (A), or the (T) would mutate to a (G). Then the (C)-(G) pair would maintain
the secondary structure. This is called a compensatory mutation. Therefore, in RNA structures, the
amount of change to the secondary structure (e.g. stem—loop) is more important than the amount of
change in the primary structure (just the sequence). Understanding the effects of changes in RNA
structure requires knowledge of the secondary structure. The likely secondary structure of an RNA
can be determined by modeling the stability of many possible conformations and choosing the most
likely conformation.

e MicroRNA is a molecule that is ejected from the nucleus into the cytoplasm. Their characteristic trait
is that they also have the hairpin (stem-loop) structure illustrated in Figure 4.13, but a section of the
stem is complementary to a portion of mRNA.

When microRNA binds its complementary sequence to the respective portion of mRNA, it degrades
the mRNA. This means that it is a post—transcriptional regulator, since it’s being used to limit the

76

https://en.wikipedia.org/wiki/Kissing_stem-loop#/media/File:Stem-loop.svg

6.047/6.878 Lecture 4: Comparative Genomics I: Genome Annotation

production of a protein (translation) after transcription. MicroRNA is conserved differently than
structural RNA. Due to its binding to an mRNA target, the region of binding is much more conserved
to maintain target specificity.

e Finally, regulatory motifs are conserved in sequence (to bind particular interacting protein partners)
but not necessarily in location. Regulatory motifs can move around since they only need to recruit a
factor to a particular region. Small changes (insertions and deletions) that preserve the consensus of
the motif are tolerated, as are changes upstream and downstream that move the location of the motif.

When trying to understand the role of conservation in functional class prediction, an important question
is how much of observed conservation can be explained by known patterns. Even after accounting for
“random” conservation, roughly 60% of non-random conservation in the fly genome was not accounted for
— that is, we couldn’t identify it as a protein—coding gene, RNA, microRNA, or regulatory motif. The fact
that they remain conserved however suggests a functional role. That so much conserved sequence remains
poorly understood underscores that many exciting questions remain to be answered. One final project for
6.047 in the past was using clustering (unsupervised learning) to account for the other conservation. It
developed into an M.Eng project, and some clusters were identified, but the function of these clusters was,
and is, still unclear. It’s an open problem!

4.5 Protein—Coding Signatures

In slide 12, we see three examples of conservation: an intronic sequence with poor conservation, a coding
region with high conservation, and a non—coding region with high conservation, meaning it is probably a
functional element. As we saw at the beginning of this section, the important characteristic of protein—
coding regions to remember is that codons (triples of nucleotides) code for amino acids, which make up
proteins. This results in the evolutionary signature of protein—coding regions, as shown in slide 13: (i)
reading—frame conservation and (ii) codon—substitution patterns. The intuition for this signature is relatively
straightforward. Second Lerter

L L c W~ J & |

T TcT TAT TaT T

o 176 e |f 1c6 - me 1 |[1acters 16

T | TCA TAA Stop || TGA Stop [|A

TTG TCG TAG Stop || TGG Trp G

—

ctT coT OAT 1y | o7 T

cTe cce cAC CGC c

I cm}"e“ CGA}P"’ CAA L ain CGA}ME A
gl |ce ccG CAG cGG S El
oM g
£ ATT ACT AAT AGT T|S
R ATC}HE AGC Lo anc)Asn [agclser fc|®

ATA ACA ARy [AGAT g A

ATG Met || ACG AAG AGG G

=

GTT GCT GATY o, | 2T T

all TS Ly || 5SS La | GAC P llaac Lo €

GTA GCA GM} a || Gaa (S fla

GTG GC GAG GGG G

=

© source unknown. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.

Figure 4.14: Some point mutations to DNA sequence do not change protein translation

Firstly, reading frame conservation makes sense, since an insertion or deletion of one or two nucleotides
will “shift” how all the following codons are read. However, if an insertion or deletion happens in a multiple
of 3, the other codons will still be read in the same way, so this is a less significant change. Secondly, it
makes sense that some mutations are less harmful than others, since different triplets can code for the same
amino acids (a conservative substitution, as evident from the matrix below), and even mutations that result
in a different amino acid may be evolutionarily neutral if the substitutions occur with similar amino acids
in a domain of the protein where exact amino acid properties are not required. These distinctive patterns
allow us to “color” the genome and clearly see where the exons are, as shown in Figure 4.15.

When using these patterns in distinguishing evolutionary signatures, we have to make sure to consider
the ideas below:

77

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 4: Comparative Genomics I: Genome Annotation

snoestor ATCACC TCATIC CTCATCCCT TATCCC CATCOC CCACAT CACCTC CACACT COCC ATE TCCATC COC AAY COC CTC CaAT
deve L ATC ACC B BB CTCATCACT TAT CCC CAT BEN CCA CAT BN OTC CAC AQT COC AT TCCATC OOCAAT COC TS GNE
ds1r ATG Acc 8 crc atc oot rar occ cat BB coa oAt B O TC CAG AGT CUC ATE TOC ATS GOC AAT Coc S O
deec At acc I B cc atcoor rarocs car il coa oat Bl 0 TC CAG AGT COC ATG TOC ATG GGC AT Goc TG S

ﬂ'llhﬁ =g 1 B arc-u. CcG CAT BN .u.nt--llm‘ c\.\. ATG

CATEGCT TAT N CAT ooC BB CAT CAC GTCCAG AGT CEC A
nmarfn‘.:;‘crc.n\'ﬂr*'crm:l\e‘crt

~\nmwzru--u. -
A G var O8N C A'ﬂ

A-t.-lurwc-uh‘
TCCATC CEC Mr-ﬂ.-

tonserved non-coding
sequence

ARt OrCTCCCCACTCCATTTCOCC ACACCAGCTTI CATACCACTCTC AAACTACTCATAAAT TCOTTT TTA ATT ACC ACA CAC CAL
Bl cTo BN oA cro ara @l Too TTT TTA ATT Acc Aca [l cac
70 AAA CTA CTa ATA Bl moc TrT Tra ATT Acc AcA [l cac

76 Ans B < ro ara il roc TTT Ta vy acc aca [l cac
craraa@lcroaTa B = oo Bl Acc Aca G0N BRE
CTCATA eTrr reaaTT Acc aca il cac
< ro N N TTT TTAATT ASC ACAGAS

three Bi8B codons

“TT'LA“LC'-LA:
ﬂﬂmﬂllﬂlﬂmlﬂﬂluﬂﬂﬂl

4ir nmmmm---w- 7o 0 I < o ara mnt [T TTA AT AGC O 008 BN 30

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Figure 4.15: By coloring the types of insertions/deletions/substitutions that occur on a sequence, we can see
patterns or evolutionary signatures that distinguish a protein-coding conserved region from a non-protein-
coding conserved region.

e Quantify the distinctiveness of all 642 possible codon substitutions by considering synonymous (frequent
in protein-coding sequences) and nonsense (more frequent in non-coding than coding sequences) regions.

e Model the phylogenetic relationship among the species: multiple apparent substitutions may be ex-
plained by one evolutionary event.

e Tolerate uncertainty in the input such as unknown ancestral sequences and gaps in alignment (missing
data).

e Report the certainty or uncertainty of the result: quantify the confidence that a given alignment is
protein-coding using various units such as p-value, bits, decibans...etc.

4.5.1 Reading—Frame Conservation (RFC)

Now that we know about this pattern of conservation in protein coding genes, we can develop methods to
determine if a gene is protein-coding or if it is not.

By scoring the pressure to stay in the same reading frame we can quantify how likely a region is to be
protein—coding or not. As shown in slide 20, we can do this by having a target sequence (Scer, the genome
of S. cerevisiae), and then aligning a selecting sequence (Spar, S. paradozus) to it and calculating what
proportion of the time the selected sequence matches the target sequence’s reading frame.

Since we don’t know where the reading frame starts in the selected sequence, we align three times to try
all possible offsets:

(Sparg;, Spar,, Spargs)
From these, we choose the alignment where the selected sequence is most often in sync with the target
sequence. For example, we can begin numbering the nucleotides “1, 2, 3...etc.” until we reach a gap that

we do not number. Or we can start numbering the nucleotides “2, 3, 1...etc.” where each triplet of “1,2.3”
represents a codon.

78

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 4: Comparative Genomics I: Genome Annotation

Finally, for the best alignment, we calculate the percentage of nucleotides that are out of frame — if it
is above a cutoff, this selected species “votes” that this region is a protein—coding region , and if it is low,
this species “votes” that this is an intergenic region. The “votes” are tallied from all the species to sum to
the RFC score.

¢

Signature 1: Reading frame conservation

RFC Intergenic RFC
100% 60%
100% 55%
100% 90%
100% 40%
100% 60%
100% 100%
100% 20%
100% 30%
100% : : HH ﬂ

2100%| [l Conserved | |Mutation [|Gap [l Frameshift |260%

Genes Intergenic Separation
Mutations 30% 58% = 2-fold
Gaps 1.3% 14% > 10-fold
Frameshifts 0.14% 10.2% > 75-fold

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Figure 4.16: Two alignments showing conservation pattern differences between gene and intergenic sequences.
Red boxes represent gaps that shift the coding frame, and gray boxes are non-frame-shifting gaps (in multiples
of three). Green regions are conserved, and yellow ones are mutated. Note the pattern of “match, match,
mismatch” in the protein-coding sequence that indicates synonymous mutations.

This method is not robust to sequencing error. We can compensate for these errors by using a smaller
scanning window and observing local reading frame conservation.

The method was shown to have 99.9% specificity and 99% sensitivity when applied to the yeast genome.
When applied to 2000 hypothetical ORFs (open reading frames, or proposed genes)2 in yeast, it rejected 500
of these putative protein coding genes as not being protein coding.

Similarly, 4000 hypothetical genes in the human genome were rejected by this method. This model created
a specific hypothesis (that these DNA sequences were unlikely to code for proteins) that has subsequently
been supported with experimental confirmation that the regions do not code for proteins in vivo.:

This represents an important step forward for genome annotation, because previously it was difficult to
conclude that a DNA sequence was non—coding simply from lack of evidence. By narrowing the focus and
creating a new null hypothesis (that the gene in question appears to be a non—coding gene) it became much
easier to not only accept coding genes, but to reject non—coding genes with computational support. During
the discussion of reading frame conservation in class, we identified an exciting idea for a final project which
would be to look for the birth of new functional proteins resulting from frame shift mutations.

4.5.2 Codon—Substitution Frequencies (CSFs)

The second signature of protein coding regions, the codon substitution frequencies, acts on multiple levels of
conservation. To explore these frequencies, it is helpful to remember that codon evolution can be modeled

3Kellis M, Patterson N, Endrizzi M, Birren B, Lander E. S. 2003. Sequencing and comparison of yeast species to identify
genes and regulatory elements. Science. 423: 241-254.
4Clamp M et al. 2007. Distinguishing protein—coding and noncoding genes in the human genome. PNAS. 104: 19428-19433.

79

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 4: Comparative Genomics I: Genome Annotation

Example of a rejected ORF

Wi Il I 1" QDE I
B2 0111 10I0EE 0 B= |8
I 1.00 1 IEEN 1IN E |
111 1 m

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

ATG

Figure 4.17: Red boxes represent frame-shifting gaps, and gaps in multiples of three are uncolored. Conserved
and mutated regions are green and yellow, respectively.

by conditional probability distributions (CPDs) — the likelihood of a descendant having a codon b where
an ancestor had codon a an amount of time ¢ ago.

The most conservative event is exact maintenance of the codon. A mutation that codes for the same
amino acid may be conservative but not totally synonymous, because of species specific codon usage biases.
Even mutations that alter the identity of the amino acid might be conservative if they code for amino acids
with similar biochemical properties.

We use a CPD in order to capture the net effect of all of these considerations. To calculate these CPDs,
we need a “rate” matrix, @), which measures the exchange rate for a unit time; that is, it indicates how often
codon a in species 1 is substituted for codon b in species 2, for a unit branch length. Then, by using e®*, we
can estimate the frequency of substitution at time .

When the CPD is considered in conjunction with the topology of a network graph representing the
evolutionary tree, it has a approximately (2L — 2) - 642 parameters, where L is the number of leaves in
the tree (species in the evolutionary phylogeny). This number of parameters is derived from the number
of entries in @ and the number of independent branch lengths, t. Estimates of these parameters can be
determined by MLE from training data.

The CPD is defined in terms of e?* as follows:

Pr(child = a|parent = b;t) = [e9"]4, (4.1)

The intuition, is that as time increases, the probability of substitutions increase, while at the “initial”
time (t = 0), e?? is the identity matrix, since every codon is guaranteed to be itself. But how do we get the
rate matrix?

e () is “learned” from the sequences, by using Expectation—-Maximization, for example. Many known
protein-coding sequences are used as training data (or non-coding regions when generating that model).

e Given the parameters of the model, we can use Felsenstein’s algorithm|[1] to compute the probability
of any alignment, while taking into account phylogeny, given the substitution model (the E—step).

Likelihood(Q) = Pr(Training Data; Q, t) (4.2)

e Then, given the alignments and phylogeny, we can choose the parameters (the rate matrix: @, and
branch lengths: t) that maximize the likelihood of those alignments in the M-step; for example, to
estimate QQ, we can count the number of times one codon is substituted for another in the alignment.
The argument space consists of thousands of possibilities for @) and ¢. This space is represented by Q.
Q is the parameter that maximizes the likelihood:

Q = argmazg(Likelihood(Q)) (4.3)

Other maximization strategies include: expectation maximization, gradient ascent, simulated anneal-
ing, spectral decomposition. Branch length, ¢, can be optimized using the same method simultaneously.

80

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 4: Comparative Genomics I: Genome Annotation

FAQ

Q: How does the branch length contribute to determining the rate matrix?

A: The branch lengths specify how much “time” passed between any two nodes. The rate matrix
describes the relative frequencies of codon substitutions per unit branch length.

With two estimated rate matrices, the calculated probabilities of any given alignment is different for

each matrix. Now, we can compare the likelihood ratio, %, that the alignment came from a

protein-coding region as opposed to coming from a non-protein-coding region.

I = L - Rl T
Ot Bl e A 1
| il o T L §j -
et S £ A |
I e e |
e, oS e T . [I !
:II'\.. I_'...-.-’-"|'_."..|_| I.'I‘I-Ll.‘_l: 1
w o AR '_ ','.".LJ.F._”_ lﬂ
Mg ey ot e T |
o :'I i _r—.: iy 'L-lll-'."'l .]
g T S e t
:.‘l I;_ _T||I1|I._|- T _|l|—‘||.:_l-' u¥
e 1
S i i_} ik L a
e e B e Sl '

(b) Rate matrix Q. estimated from

(a) Rate matrix Qp estimated from
known coding regions.

non—coding regions

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 4.18: Rate matrices for the null and alternate models. A lighter color means substitution is more
likely.

Now that we know how to obtain our model, we note that, given the specific pattern of codon substitution
frequencies for protein—coding, we want two models so that we can distinguish between coding and non-—
coding regions. Figures 4.18a and 4.18b show rate matrices for intergenic and genic regions, respectively. A
number of salient features present themselves in the codon substitution matrix (CSM) for genes. Note that
the main diagonal element has been removed, because the frequency of a triplet being exchanged for itself
will obviously be much higher than any other exchange. Nevertheless,

1. it is immediately obvious that there is a strong diagonal element in the protein coding regions.

2. We also note certain high-scoring off diagonal elements in the coding CSM: these are substitutions
that are close in function rather than in sequence, such as 6—fold degenerate codons or very similar
amino acids.

3. We also note dark vertical stripes, which indicate these substitutions are especially unlikely. These
columns correspond to stop codons, since substitutions to this triplet would significantly alter protein
function, and thus are strongly selected against.

On the other hand, in the matrix for intergenic regions, the exchange rates are more uniform. In these
regions, what matters is the mutational prozimity, i.e. the edit distance or number of changes from one
sequence to another. Genetic regions are dictated by selective prozimity, or the similarity in amino acid
sequence of the protein resulting from the gene.

Now that we have the two rate matrices for the two regions, we can calculate the probabilities that each
matrix generated the genomes of the two species. This can be done by using Felsenstein’s algorithm, and
adding up the “score” for each pair of corresponding codons in the two species. Finally, we can calculate the
likelihood ratio that the alignment came from a coding region to a non—coding region by dividing the two

81

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 4: Comparative Genomics I: Genome Annotation

scores — this demonstrates our confidence in our annotation of the sequence. If the ratio is greater than 1,
we can guess that it is a coding region, and if it is less than 1, then it is a non—coding region. For example,
in Figure 4.16, we are very confident about the respective classifications of each region.

It should be noted, however, that although the “coloring” of the sequences confirms our classifications,
the likelihood ratios are calculated independently of the ‘coloring,” which uses our knowledge of synonymous
or conservative substitutions. This further implies that this method automatically infers the genetic code
from the pattern of substitutions that occurs, simply by looking at the high scoring substitutions. In species
with a different genetic code, the patterns of codon exchange will be different; for example, in Candida
albumin, the CTG codes for serine (polar) rather than leucine (hydrophobic), and this can be deduced from
the CSMs. However, no knowledge of this is required by the method; instead, we can deduce this a posteriori
from the CSM.

In summary, we are able to distinguish between non—coding and coding regions of the genome based
on their evolutionary signatures, by creating two separate 64 by 64 rate matrices: one measuring the rate
of codon substitutions in coding regions, and the other in non—coding regions. The rate matrix gives the
exchange rate of codons or nucleotides over a unit time.

We used the two matrices to calculate two probabilities for any given alignment: the likelihood that it
came from a coding region and the likelihood that it came from a non—coding region. Taking the likelihood
ratio of these two probabilities gives a measure of confidence that the alignment is protein—coding as demon-
strated in Figure 4.19. Using this method we can pick out regions of the genome that evolve according to
the protein coding signature.

|

Pr(Leaves; Q¢, t) =

Pr(Leaves; Qy,1) =

1
10276 —
— =102

10254

Pr(Leaves; Q¢,t) =

Pr(Leaves; Qy,t)

This alignment is 102" times less probable under the coding model than the non-coding model.

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 4.19: As we can see in the figure that the likelihood ratio is positive for sequences that are likely to
be protein coding and negative for sequences that are not likely to be protein coding.

We will see later how to combine this likelihood ratio approach with phylogenetic methods to find
evolutionary patterns of protein coding regions.

However, this method only lets us find regions that are selected at the translational level. The key point
is that here we are measuring for only protein coding selection. We will see today how we can look for other
conserved functional elements that exhibit their own unique signatures.

4.5.3 Classification of Drosophila Genome Sequences

We have seen that using these RFC and CSF metrics allows us to classify exons and introns with extremely
high specificity and sensitivity. The classifiers that use these measures to classify sequences can be imple-
mented using a HMM or semi-Markov conditional random field (SMCRF). CRFs allow the integration of
diverse features that do not necessarily have a probabilistic nature, whereas HMMs require us to model ev-

82

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 4: Comparative Genomics I: Genome Annotation

erything as transition and emission probabilities. CRFs will be discussed in an upcoming lecture. One might
wonder why these more complex methods need to be implemented, when the simpler method of checking
for conservation of the reading frame worked well. The reason is that in very short regions, insertions and
deletions will be very infrequent, even by chance, so there won’t be enough signal to make the distinction
between protein—coding and non—protein—coding regions. In the figure below, we see a DNA sequence along
the x—axis, with the rows representing an annotated gene, amount of conservation, amount of protein—coding
evolutionary signature, and the result of Viterbi decoding using the SMCRF, respectively.

cG4495-RA sillHER-- - HEHE——--

CG4496-RA mmm

Protein-Coding
Evolutionary Signatures

SMCRF Viterbidecoding Il H N IENR []]
1

Targeted validation
full-length cDNA!

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 4.20: Evolutionary signatures can predict new genes and exons. The star denotes a new exon, which
was predicted using the three comparative genomics tests, and later verified using cDNA sequencing.

This is one example of how utilization of the protein—coding signature to classify regions has proven very
successful. Identification of regions that had been thought to be genes but that did not have high protein—
coding signatures allowed us to strongly reject 414 genes in the fly genome previously classified as CGid—only
genes, which led FlyBase curators to delete 222 of them and flag another 73 as uncertain. In addition, there
were also definite false negatives, as functional evidence existed for the genes under examination. Finally, in
the data, we also see regions with both conversation, as well as a large protein—coding signature, but had not
been previously marked as being parts of genes, as in Figure 4.20. Some of these have been experimentally
tested and have been show to be parts of new genes or extensions of existing genes. This underscores the
utility of computational biology to leverage and direct experimental work.

4.5.4 Leaky Stop Codons

Stop codons (TAA, TAG, TGA in DNA and UAG, UAA, UGA in RNA) typically signal the end of a gene.
They clearly reflect translation termination when found in mRNA and release the amino acid chain from the
ribosome. However, in some unusual cases, translation is observed beyond the first stop codon. In instances
of single read—through, there is a stop codon found within a region with a clear protein—coding signature
followed by a second stop—codon a short distance away. An example of this in the human genome is given
in Figure 4.21. This suggests that translation continues through the first stop codon. Instances of double
read—through, where two stop codons lie within a protein coding region, have also been observed. In these
instances of stop codon suppression, the stop codon is found to be highly conserved, suggesting that these
skipped stop codons play an important biological role.

Translational read—through is conserved in both flies, which have 350 identified proteins exhibiting stop
codon read—through, and humans, which have 4 identified instances of such proteins. They are observed
mostly in neuronal proteins in adult brains and brain expressed proteins in Drosophila.

The kelch gene exhibits another example of stop codon suppression at work. The gene encodes two ORF's
with a single UGA stop codon between them. T'wo proteins are translated from this sequence, one from the
first ORF and one from the entire sequence. The ratio of the two proteins is regulated in a tissue—specific
manner. In the case of the kelch gene, a mutation of the stop codon from UGA to UAA results in a loss of
function, suggesting that tRNA suppression is the mechanism behind stop codon suppression.

83

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 4: Comparative Genomics I: Genome Annotation

hmm e T 8 1T VB BE A XKL GV LENP?YAEYLSEEETETTLTOVY L
Fromac, ACE TCTGAG ALG GTACI =23 CTGEEC TG BTG 0CT ETCAGEE 2 B COT AAC ACA 07 e oo QAT A°A ECE TESGCE £ A AT A
Thmsuc C ToEETL & oz ks R G o1 wot oot or: I e T OAC AT

TCTGAE RER ETGET TG TG 00T S s s B crc [o oar

e o e sl T idoidendold COCATCT MG 0 2 ¢ B DAR CTC ACACAGTG ACT 601 rcr’-onm---
mcans ACETCTOAG NEK 0T BEK <o i oox Taa TGCOT AT BTG T B o 2 86 oz [llcrra -
w ETRCET TS T T s acT c-rm-muh--

TORETE m-ocrorc s EllcaE T, o [l e T -
degact CTGCOCA B o @ o i cuc o e AT e | -xvnr:umvmcx(mmulﬂﬁ
=TT = L2 Nwsmm—u W e oo W e oo o v (e ear con R Tene s o e ey]
...... arccToan e i ¢ @ caccrc B casorc st B e -mnpgqmmc:cnc.u--
prmsta. = Eﬁ o KE§ s o7 M o 67w 50 Gn N e e oo Tec o R
alehan: o SRR s o s B earcTe BB cas e are BT o .rrc--c-wm n-wr

Protein-coding T Continued protein-coding Soa stop No more
conservation read th@ conservation Qdun conservation

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Figure 4.21: OPRL1 neurotransmitter: one of the four novel translational read—through candidates in the
human genome. Note that the region after the first stop codon exhibits an evolutionary signature similar to
that of the coding region before the stop codon, indicating that the stop codon is “suppressed”.

An additional example of stop codon suppression is Caki, a protein active in the regulation of neurotrans-
mitter release in Drosophila. Open reading frames (ORFs) are DNA sequences which contain a start and
stop codon. In Caki, reading the gene in the first reading frame (Frame 0) results in significantly more ORFs
than reading in Frame 1 or Frame 2 (a 440 ORF excess). Figure 4.22 lists twelve possible interpretations for
the ORF excess. However, because the excess is observed only in Frame 0, only the first 4 interpretations
are likely:

e Stop—codon readthrough: the stop codon is suppressed when the ribosome pulls in tRNA that pairs
incorrectly with the stop codon.

e Recent nonsense: Perhaps some recent nonsense mutation is causing stop codon readthrough.

e A to I editing: Unlike we previously thought, RNA can still be edited after transcription. In some case
the A base is changed to an I, which can be read as a G. This could change a TGA stop codon to a
TGG, which encodes an amino acid. However, this phenomenon is only found in a couple of cases.

e Selenocysteine, the “21st amino acid”: Sometimes when the TGA codon is read by a certain loop which
leads to a specific fold of the RNA, it can be decoded as selenocysteine. However, this only happens
in four fly proteins, so can’t explain all of stop codon suppression.

Among these four, three of them (recent nonsense, A to I editing, and selenocysteine) account for only 17
of the cases. Hence, it seems that read—through must be responsible for most if not all of the remaining cases.
In addition, biased stop codon usage is observed hence ruling out other processes such as alternative splicing
(where RNA exons following transcription are reconnected in multiple ways leading to multiple proteins) or
independent ORF's.

Read—through regions can be determined in a single species based on their pattern of codon usage. The
Z—curve as shown in Figure 4.23 measures codon usage patterns in a region of DNA. From the figure, one
can observe that the read—through region matches the distribution before the regular stop codon. After the
second stop however, the region matches regions found after regular stops.

Another suggestion offered in class was the possibility of ribosome slippage, where the ribosome skips
some bases during translation. This might cause the ribosome to skip past a stop codon. This event occurs
in bacterial and viral genomes, which have a greater pressure to keep their genomes small, and therefore can
use this slipping technique to read a single transcript in each different reading frame. However, humans and
flies are not under such extreme pressure to keep their genomes small. Additionally, we showed above that
the excess we observe beyond the stop codon is frame specific to frame 0, suggesting that ribosome slipping
is not responsible.

Cells are stochastic in general and most processes tolerate mistakes at low frequencies. The system isn’t
perfect and stop codon leaks happen. However, the following evidence suggests that stop codon read—through
is not random but instead subject to regulatory control:

e Perfect conservation of read—through stop codons is observed in 93% of cases, which is much higher
than the 24% found in background.

e Increased conservation is observed upstream of the read—through stop codon.

84

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 4: Comparative Genomics I: Genome Annotation

Frame O Frame 1 Frame 2

Interpretation

Readthrough

Recent nonsense

A== | editing

Selenocysteing

Alternative splicing

Dicistronic

Cryptic promotor

Hopping

Antisense

Chance

Frame shift

CDS overlaps stop
& with PCSF > 0 662

LR AL R0 RS SESL AL AL
Pl e
e e &

Pad
Pl
I
%4}

Figure 4.22: Various interpretations of stop codon suppression. See text for explanation.

b= Frailc el

“==pll - Before Lst Stop
¥ wRT - Before 1st Stop

“=All - After 1st Stop
2w | RT - After 2nd Stop

Fraction of Transcripts
g

oy

~RT - Readthrough Region

3 H

I curve score

Figure 4.23: Z—curve for Caki. Note that the codon usage in the read through region is similar to that in
the region before the first stop codon.

e Stop codon bias is observed. TGAC is the most frequent sequence found at the stop codon in read—

85

6.047/6.878 Lecture 4: Comparative Genomics I: Genome Annotation

through and the least frequent found at normal terminated stop codons. It is known to be a “leaky”
stop codon. TAAA is found almost universally only in non-read-through instances.

e Unusually high numbers of GCA repeats observed through read—through stop codons.

e Increased RNA secondary structure is observed following transcription suggesting evolutionarily con-
served hairpins.

4.6 microRNA (miRNA) Gene Signatures

One example of functional genomic regions subject to high levels of conservation are sequences encoding
microRNAs (miRNAs). miRNAs are RNA molecules that bind to complementary sequences in the 3’ un-
translated region of targeted mRNA molecules, causing gene silencing.

5, MRNA*
= - oM :_s\.(c.

T rnErEEEErerEEr rbiriri T -
Z o et N
> VNgiw

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faqg-fair-use/.

=]

Figure 4.24: The hairpin structure of a microRNA. Note that miRNA* denotes the strand on the opposite
side of the hairpin, which has the same sequence as the mRNA molecules that are suppressed by the miRNA.

How do we find evolutionary signatures for miRNA genes and their targets, and can we use these to gain
new insights on their biological functions? We will see that this is a challenging task, as miRNAs leave a
highly conserved but very subtle evolutionary signal.

4.6.1 Computational Challenge

Predicting the location of miRNA genes and their targets is a computationally challenging problem. We can
look for “hairpin” regions, where we find nucleotide sequences that are complementary to each other and
predict a hairpin structure. But out of 760,355 miRNA-like hairpins found in the cell, only 60-100 were
true miRNAs. So to make any test that will give us regions statistically likely to be miRNAs, we need a test
with 99.99% specificity.

Figure 4.25 is an example of the conservation pattern for miRNA genes. You can see the two hairpin
structures conserved in the red and blue regions, with a region of low conservation in the middle. This

pattern is characteristic of miRNAs.
miRNA miRNA*

D.mel GGGGATGTGGGGAAGGATGCTCTTTTCTGACTCTA! \TCTAGTGCACGGTGG- TTCATGATTAAGTTCGTGACTAGATTTCATGCTCGTCTATTAAGTTGGGTCAGCACA - ACGAAGA - - - -GAGCGGAGCT
D.sim GGGGATGTGGGGAAGGATGCTCTTTTCTGACTCTA! ITCTAGTGCACGGTGG- TTCATGATTAAGTTCGTGACTAGATTTCATGCTCGTCTATTAAGTTGGGTCAGCACA - ACGAAGA
D.sec GGGGATGTGGGGAAGGATGCTCTTTTCTGACTCTAS \TCTAGTGCACGGTGG- TTCATGATTAAGTTCGTGACTAGATTTCATGCTCGTCTATTARGTTGGGTCAGCACA ~-ACGRAGA.
D.yak GGGGATGTGGGGAAGGATGCTCTTTTCTGACTCTATTTTCTCCCCCAACATECATCTAGTGCACGGTGG- TTCATGATTAAGTTCCTGACTAGATTTCATGCTCCTCTATTAAGTTGCGTCAGCACT - ACGRAAGA.

D.ere GGAGAAGTGGGGAAGGATGCTCTTTTCTGACICTATTTICTCECCCAACATCCATCTAGTGCACGGTGG- TTCATGATTAAGTTCGTGACTAGATTTCATCCTCCTCTATTAAGTTCGCTCAGCACT - ACGAAGA - - - -GAG- - - -~ CT
D.ana GABAAAGG- ---ATTTGGGGTCTTTTTCTGACTCTATTTTGTCGEGOGAACATGGATCTAGTGCACGGTGT - TTCATGAT TAAGTTCGTGACTAGATTTCATGCTCGTCTATTAAGTTGGGTCAGCACA - CCARAGAGTCGGATAGTGGAG
D.pse TCTGATCCGGCAGCGTTTGCTCTTCTCTGACTCTATTTTCTCGECGAACATEEATCTAGTGCACGGTTG- TTCATGAT TAAGTTCGTGACTAGATTTCATGCTCGTCTATTARGTTGGCTCARCACA - ACGRACCGARAGAGCAGAGCA
D.pér TCTGATCCOGGCAGCGTTTGCTCTTCTCTGACTCTATTTTGTCGGCEARCATGEATCT AGTGCACGGT TG - TTCATGATTAAGT TCGTGACTAGATTTCATGCTCGTCTATTAAGTTGGGTCAACACA - ACGAACCGARAGAGCAGAGCA

D.wil GAGTCCTTTCTATGTGGCAGCGTCTCTTGACTCTATTTTGTCCEOGAACATGGATCT AGTGCACGGTTTGTTCATGAT TARGT TCGTGACTAGATTTCATGCTCGTCTATTARGTTGGGTCAGCACA - ACAAGAG - - CGCAGCGGAGAG
B. moj ATTTCTTTT----- TTTTGCTCTTCTCTGACTCTATTTIGTCGGCGAACATGGATCTAGTGCACGGTTG - TTCATGATTAAGT TCGTGACTAGATTTCATGCTCGTCTATTAAGTTGGGTCAATACA CACA -GCGAARACATGGCCAAG
D.vir GPTTOGCTC----- TTTTGCTCTTCTCTGACTCTATTTTGTCCGCGAACATGGATCTAGTGCACGGTTG - TTCATGATTAAGTTCGTGACTAGATTTCATGCTCGTCTATTAAGTTGGGTCAACACA CACACACACACACATAAAAGAA

D.gri ACTGCRACTGCAACTGCTGCTCTTTTCTGACTCTATTTICTCEECEAACATGEATCTAGTGCACGET TG - TTCATCAT TAAGTTCCTGACTAGATTTCATGCTCCTCTATTAACTTGGCTCAACACA CA- ACACARARAAA RARGAGGA
COELOO0 OO0 €0 COCCL COCOOOEECE - (CCc

IS TEEE]

'

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 4.25: Characteristic conservation pattern of miRNAs. The number of asterisks below a nucleotide
indicates the number of species where it is conserved. The blue and red highly conserved regions represent
the complementary strands of the miRNA, as in figure 4.24.

By analyzing evolutionary and structural features specific to miRNA, we can use combinations of these
features to pick out regions of miRNAs with >4500-fold enrichment compared to random hairpins. The
following are examples of features that help pick out miRNAs:

86

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 4: Comparative Genomics I: Genome Annotation

e miRNAs bind to highly conserved target motifs in the 3’ UTR

e miRNAs can be found in introns of known genes

Novel-30 Gene cdc2c

o T

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 4.26: Novel miRNA in intron

e miRNAs have a preference for the positive strand of DNA and for transcription factors

e miRNAs are typically not found in exonic and repetitive elements of the genome (counter-example in
Figure 4.29).

e Novel miRNAs may cluster with known miRNAs, especially if they are in the same family or have a
common origin

Novel-29 miR-11 Gene E2f

A A N A

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Figure 4.27: Novel and Known miRNA clustered.

These features of miRNA-coding regions can be grouped into structural families, enabling classifiers to be
built based on known RNAs in each family. Energy considerations for RNA structure can be used to support
this classification into families. Within each family, orthologous conservation(genes in different species for
same function with common ancestral gene) and paralogous conservation (duplicated genes within same
species that evolved to serve different functions) occurs.

Evolutionary Structural

Correlation with conservation profile Hairpin stability (MFE z-score)
MFE of the consensus fold Number of asymmetric loops
Structure conservation index Number of symmetric loops

We can combine several features into one test by using a decision tree, as illustrated in Figure 4.28.
At each node of the tree, a test is applied which determines which branch will be followed next. The tree
is traversed starting from the root until a terminal node is reached, at which point the tree will output a
classification. A decision tree can be trained using a body of classified genome subsequences, after which
it can be used to predict whether new subsequences are miRNAs or not. In addition, many decision trees
can be combined into a “random forest,” where several decision trees are trained. When a new nucleotide
sequence needs to be classified, each tree votes on whether or not it is an miRNA, and then the votes are
aggregated to determine the final classification.

Applying this technique to the fly genome showed 101 hairpins above the 0.95 cutoff, rediscovering 60
of 74 of known miRNAs, predicting 24 novel miRNAs that were experimentally validated, and finding an
additional 17 candidates that showed evidence of diverse function.

4.6.2 Unusual miRNA Genes

The following four “surprises” were found when looking at specific miRNA genes:

87

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 4: Comparative Genomics I: Genome Annotation

MFE<3?

yes no

ProfiIeCorr<8| ‘ StrConslindx>3

yes no yes no

no

NOT miRNA

Stability>4| NoT

yes

NOT

#Loops<5

yes no

miRNA NOT

Figure 4.28: A possible decision tree for miRNA detection. The features used in this tree are minimum free
energy, conservation profile correlation, structure conservation index, number of loops, and stability.

Surprise 1 Both strands might be expressed and functional. For instance, in the miR—iab—4 gene, expression of
the sense and antisense strands are seen in distinct embryonic domains. Both strands score > 0.95 for
miRNA prediction.

Surprise 2 Some miRNAs might have multiple 5’ ends for a single miRNA arm, giving evidence for an imprecise
start site. This could give rise to multiple mature products, each potentially with its own functional
targets.

Surprise 3 High scoring miRNA* regions (the star arm is complementary to the actual miRNA sequence) are
very highly expressed, giving rise to regions of the genome that are both highly expressed and contain
functional elements.

Surprise 4 Both miR-10 and miR-10* have been shown to be very important Hox regulators, leading to the
prediction that miRNAs could be “master Hox regulators”. Pages 10 and 11 of the first set of lecture
5 slides show the importance of miRNAs that form a network of regulation for different Hox genes.

88

6.047/6.878 Lecture 4: Comparative Genomics I: Genome Annotation

4.6.3 Example: Re-examining ’dubious’ protein-coding genes

Two genes, CG31044 and CG33311 were independently rejected because their conservation patterns did not
match those characteristic of a protein evolutionary signatures (see Section 4.5). They were identified as
precursor miRNA based on genomic properties and high expression levels (Lin et al.). This is a rare example
of miRNA being found in previously exonic sequences and illustrates the challenge of identifying miRNA
evolutionary signatures.

miR-279 Novel-7 CG31044

(LG ORI RO, |

Novel-60 Novel-42

CG33311

LAk, TRRGRT A TELL M.

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Figure 4.29: Existing annotations and transcription levels in ’dubious’ protein-coding regions.

4.7 Regulatory Motifs

Another class of functional element that is highly conserved across many genomes contains regulatory motifs.
A regulatory motif is a highly conserved sequence of nucleotides that occurs many times throughout the
genome and serves some regulatory function. For instance, these motifs might characterize enhancers,
promoters, or other genomic elements.

D.mel CAGCT--AGCC-AACTCT CGACTAAGTC-CAAGTC

D.sim CAGCT--AGCC-AACTCT CGACTAAGTC-CAAGTC

D.sec CAGCT--AGCC-AACTCT CGACTAAGTC-CAAGTC

D.yak CAGC--TAGCC-AACTCT CGACTAAGTC-CAAGTC

D.ere CAGCGGTCGCCAAACTCT CGACCAAGTC-CAAGTC

D.ana CACTAGTTCCTAGGCACT CAAGTTAGTCTCTAGAG
* ok * * khkkkhk ok ok ok okEkhk W Tk kk ok kk

Figure 4.30: TAATTA is a hexamer that appears as a conserved element throughout the genome in many
different functional elements, including here. It is an example of a regulatory motif.

4.7.1 Computationally Detecting Regulatory Motifs

Computational methods have been developed to measure conservation of regulatory motifs across the genome,
and to find new unannotated motifs de novo. Known motifs are often found in regions with high conservation,
SO we can increase our testing power by testing for conservation, and then finding signatures for regulatory
motifs.

Evaluating the pattern of conservation for known motifs versus the “null model” of regions without motifs
gives the following signature:

Conservation within: | Gal4 (known motif region) | Controls
All intergenic regions 13% 2%

Intergenic: coding 13%: 3% 2%:7%
Upstream: downstream 12: 0 1:1

89

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 4: Comparative Genomics I: Genome Annotation

So as we can see, regions with regulatory motifs show a much higher degree of conservation in intergenic
regions and upstream of the gene of interest.
To discover novel motifs, we can use the following pipeline:

e Pick a motif “seed” consisting of two groups of three non—degenerate characters with a variable size
gap in the middle.

e Use a conservation ratio to rank the seed motifs

Expand the seed motifs to fill in the bases around the seeds using a hill climbing algorithm.

e Cluster to remove redundancy.

Discovering motifs and performing clustering has led to the discovery of many motif classes, such as tissue
specific motifs, function specific motifs, and modules of cooperating motifs.

4.7.2 Individual Instances of Regulatory Motifs

To look for expected motif regions, we can first calculate a branch—length score for a region suspected to be
a regulatory motif, and then use this score to give us a confidence level of how likely something is to be a
real motif.

The branch length score (BLS) sums evidence for a given motif over branches of a phylogenetic tree.
Given the pattern of presence or absence of a motif in each species in the tree, this score evaluates the total
branch length of the sub—tree connecting the species that contain the motif. If all species have the motif,
the BLS is 100%. Note more distantly related species are given higher scores, since they span a longer
evolutionary distance. If a predicted motif has spanned such a long evolutionary time frame, it is likely it is
a functional element rather than just a region conserved by random chance.

To create a null model, we can choose control motifs. The null model motifs should be chosen to have
the same composition as the original motif, to not be too similar to each other, and to be dissimilar from
known motifs. We can get a confidence score by comparing the fraction of motif instances to control motifs
at a given BLS score.

4.8 Current Research Directions

4.9 Further Reading

1. For more on constraint calculations and identification, refer to Lindblad-Toh’s et. al.’s “A high-resolution
map of human evolutionary constraint using 29 mammals”.

2. For more on translational read—through and evolutionary signature, refer to Lin et. al.’s “Revisiting
the protein-coding gene catalog of Drosophila melanogaster using 12 fly genomes”.

4.10 Tools and Techniques

1. For sequence alignment of proteins, see http://mafft.cbrc.jp/alignment /software/.
2. For prediction of genes through frameshifts in prokaryotes, see GeneTack.

4.11 Bibliography

Bibliography

[1] Joseph Felsenstein. Evolutionary trees from dna sequences: A maximum likelihood approach. Journal
of Molecular Evolution, 17:368-376, 1981. 10.1007/BF01734359.

90

http://mafft.cbrc.jp/alignment/software/

CHAPTER
FIVE

GENOME ASSEMBLY AND WHOLE-GENOME ALIGNMENT

Melissa Gymrek, Liz Tsai, Rebecca Taft (2012), Keshav Dhandhania (2012), Joe Vitti (2013), Matt Fox
(2014)

Figures
5.1 We can use evolutionary signatures to find genomic functional elements, and in turn can
study mechanisms of evolution by looking at patterns of genomic variation and change. . 91
5.2 Here is a quick look at a few platforms that can be used to read genomes. 92
5.3 Shotgun sequencing involves randomly shearing a genome into small fragments so they can
be sequenced, and then computationally reassembling them into a continuous sequence. . 93
5.4 Constructing a sequence from read overlap L oL 93

5.5 We can visualize the process of merging fragments into contigs by letting the nodes in a
graph represent reads and edges represent overlaps. By removing the transitively inferable
edges (the pink edges in this image), we are left with chains of reads ordered to form contigs. 94

5.6 Overcollapsed contigs are caused by repetetive regions of the genome which cannot be
distinguished from one another during sequencing. Branching patterns of alignment that
arise during the process of merging fragments into contigs are a strong indication that one

of the regions may be overcollapsed. 95
5.7 In this graph connecting contigs, repeated region X has indegree and outdegree equal to

2. The target seqence shown at the top can be inferred from the links in the graph. 95
5.8 Mate pairs help us determine the relative order of contigs in order to link them into into

SUPEICONLIgS. 96
5.9 We derive the multiple alignment consensus sequence by weighted voting at each base. . . 96
5.10 Constructing a string graph. L L Lo 97
5.11 Constructing a string graph e 97
5.12 Example of string graph undergoing removal of transitive edges. 98
5.13 Example of string graph undergoing chain collapsing. 98
5.14 Left: Flow resolution concept. Right: Flow resolution example. 99
5.15 The Needleman-Wunsch algorithm for alignments of 2 and 3 genomes. 101

5.16 We can save time when performing a global alignment by first finding all the local align-
ments and then chaining them together along the diagonal with restricted dynamic pro-

rammming. e e 101
5.17 Glocal alignment allows for the possibility of duplications, inversion, and translocations. . 102

5.18 The steps to run the SLAGAN algorithm are A. Find all the local alignments, B. Build a
rough homology map, and C. globally align the consistent parts using the regular LAGAN

algorithm 103
5.19 Using the concepts of glocal alignment, we can discover inversions, translocations, and

other homologous relations between different species such as human and mouse. 103
5.20 Graph of S. cerevisae and S. bayanus gene correspondence. 104

91

6.047/6.878 Lecture 5: Genome Assembly and Whole-Genome Alignment

5.21 Tllustration of gene correspondence for S.cerevisiae Chromosome VI (250-300bp). 104
5.22 Dynamic view of a changing gene. L o 105
5.23 Mechanisms of chromosomal evolution.+« v o v vt e e 106
5.24 Moving further back in evolutionary time for Saccharomyces. 107
5.25 Gene Correspondence for S.cerevisiae chromosomes and K.waltii scaffolds. 108
5.26 Gene interleaving shown by sister regions in K.waltii and S.cerevisae 108
527 STAGAN resullis. . . o« v v v vt e e e e e 109
528 S-TAGAN results for IGF locus. o000 o 109
529 S TAGAN results for IGF locus.« . . o o v vttt 109

92

6.047/6.878 Lecture 5: Genome Assembly and Whole-Genome Alignment

5.1 Introduction

In the previous chapter, we saw the importance of comparative genomics analysis for discovering functional
elements. In “part IV” of this book, we will see how we can use comparative genomics for studying gene
evolution across species and individuals. In both cases however, we assumed that we had access to complete
and aligned genomes across multiple species.

In this chapter, we will study the challenges of genome assembly and whole-genome alignment that are the
foundations of whole-genome comparative genomics methodologies. First, we will study the core algorithmic
principles underlying many of the most popular genome assembly methods available today. Second, we
will study the problem of whole-genome alignment, which requires understanding mechanisms of genome
rearrangement (e.g. segmental duplication and other translocations). The two problems of genome assembly
and whole-genome alignment are similar in nature, and we close by discussing some of the parallels between
them.

Part I: Using evolution to characterize genomic functional elements

Evolution Genomics

Part IT: Using genomic features to discover mechanisms of evolution

Figure 5.1: We can use evolutionary signatures to find genomic functional elements, and in turn can study
mechanisms of evolution by looking at patterns of genomic variation and change.

5.2 Genome Assembly I: Overlap-Layout-Consensus Approach

Many areas of research in computational biology rely on the availability of complete whole-genome sequence
data. Yet the process to sequence a whole genome is itself non-trivial and an area of active research. The
problem lies in the fact that current genome-sequencing technologies cannot continuously read from one end
of a long genome sequence to the other; they can only accurately sequence small sections of base pairs (ranging
from 100 to a few thousand, depending on the method), called reads. Therefore, in order to construct a
sequence of millions or billions of base pairs (such as the human genome), computational biologists must find
ways to combine smaller reads into larger, continuous DNA sequences. Flrst, we will examine aspects of the
experiemental setup for the overlap-layout-consensus approach, and then we will move forward to learning
about how to combine reads and learn information from them

5.2.1 Setting up the experiment

The first challenge that must be tackled when setting up this experiment is that we need to start with
many copies of each chromosome in order to use this approach. This number is on the order of 10°. It is
important to note that the way we obtain these copies is very important and will affect our outcomes later
on as it many of the comparisons we make will depend on consistent data. The first way that we may think
to get this much data is to amplify a given genome. However, amplification does damage which will throw
off our algorithms in later steps and cause worse results. Another possible method would be to inbreed
the genome to get many copies of each chromosome. If you are looking to get rid of polymorphism, this

93

6.047/6.878 Lecture 5: Genome Assembly and Whole-Genome Alignment

may be a good technique, but we also lose valuable data from the polymorphic sites when we inbreed. A
suggested method for obtaining this data is to use one individual, though the organism would need to be
rather large. We could also use techniques such as progeny of one or progeny of two to get as few versions of
each chromosome as possible. This will get high sequencing depth on each chromosome, which is the reason
we want all chromosomes to be as similar as possible.

Next, let’s look as how we could decide on our read lengths given current technology. Looking at (Fig-
ure 5.2), we can see that a cost-benefit analysis must be done to decide which platform to use on a given
project. With current technology, we commonly use HiSeq2500 with a read length of about 250, though this
is rapidly changing.

capability platform read scale | cost other

length

short reads \ HiSeq 2500 | 125 \ high | medium \ high output mode
longer reads HiSeq 2500 | 250 high | medium | rapid run mode
i MiSeq 300 low | high
i : human only
cheap humanreads | HiSeq X 150 high | low min 10 purchase

Figure 5.2: Here is a quick look at a few platforms that can be used to read genomes.

Finally, let’s look at a few sequences that cause trouble when using platforms with short reads. Sequences
with high GC content (e.g. GGCGGCGATC), low GC content (e.g. AAATAATCAA), or low complexity
(e.g. ATATATATA) can cause trouble with short reads. This is still an active area of research, but some
possible explanations include Polymerase slippage and DNA denaturing too easily or not easily enough.

This section will examine one of the most successful early methods for computationally assembling a
genome from a set of DNA reads, called shotgun sequencing (Figure 5.3). Shotgun sequencing involves
randomly shearing multiple copies of the same genome into many small fragments, as if the DNA were shot
with a shotgun. Typically, the DNA is actually fragmented using either sonication (brief bursts from an
ultrasound) or a targeted enzyme designed to cleave the genome at specific sequence motifs. Both of these
methods can be tuned to create fragments of varying sizes.

After the DNA has been amplified and fragmented, the technique developed by Frederick Sanger in 1977
called chain-termination sequencing (also called Sanger sequencing) is used to sequence the fragments. In
brief, fragments are extended by DNA polymerase until a dideoxynucleotriphosphate is incorporated; these
special nucleotides cause the termination of a fragment’s extension. The length of the fragment therefore
becomes a proxy for where a given ddNTP was added in the sequence. One can run four separate reactions,
each with a different ddNTP (A, G, C, T) and then run out the results on a gel in order to determine the
relative ordering of bases. The result is many sequences of bases with corresponding per-base quality scores,
indicating the probability that each base was called correctly. The shorter fragments can be fully sequenced,
but the longer fragments can only be sequenced at each of their ends since the quality diminishes significantly

94

6.047/6.878 Lecture 5: Genome Assembly and Whole-Genome Alignment

genome

VL G ™

plasmids (2 - 10 Kbp) forward-reverse paired

‘ . reads
cosmids (40 Kbp) /~ known dist

>

~500 bp ~500 bp

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 5.3: Shotgun sequencing involves randomly shearing a genome into small fragments so they can be
sequenced, and then computationally reassembling them into a continuous sequence.

after about 500-900 base pairs. These paired-end reads are called mate pairs. In the rest of this section, we
discuss how to use the reads to construct much longer sequences, up to the size of entire chromosomes.

5.2.2 Finding overlapping reads

To combine the DNA fragments into larger segments, we must find places where two or more reads over-
lap, i.e. where the beginning sequence of one fragment matches the end sequence of another fragment. For
example, given two fragments such as ACGTTGACCGCATTCGCCATA and GACCGCATTCGCCATACG-
GCATT, we can construct a larger sequence based on the overlap: ACGTTGACCGCATTCGCCATACGGCATT

(Figure 5.4).

ACGTTGACCGCATTCGCCATA

GACCGCATTCGCCATACGGCATT

Figure 5.4: Constructing a sequence from read overlap

One method for finding matching sequences is the Needleman-Wunsch dynamic programming algorithm,
which was discussed in chapter 2. The Needleman-Wunsch method is impractical for genome assembly,
however, since we would need to perform millions of pairwise-alignments, each taking O(n?) time, in order
to construct an entire genome from the DNA fragments.

A better approach is to use the BLAST algorithm (discussed in chapter 3) to hash all the k-mers (unique
sequences of length k) in the reads and find all the locations where two or more reads have one of the k-mers
in common. This allows us to achieve O(k™) efficiency rather than O(n?) pairwise comparisons. k can be any
number smaller than the size of the reads, but varies depending on the desired sensitivity and specificity. By
adjusting the read length to span the repetitive regions of the genome, we can correctly resolve these regions

95

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 5: Genome Assembly and Whole-Genome Alignment

and come very close to the ideal of a complete, continuous genome. One popular overlap-layout-consensus
assembler called Arachne uses k = 24 [2].

Given the matching k-mers, we can align each of the corresponding reads and discard any matches that
are less than 97% similar. We do not require that the reads be identical since we allow for the possibility of
sequencing errors and heterozygosity (i.e., a diploid organism like a human may have two different variants
at a polymorphic site).

5.2.3 Merging reads into contigs

Using the techniques described above to find overlaps between DNA fragments, we can piece together
larger segments of continuous sequences called contigs. One way to visualize this process is to create a graph
in which all the nodes represent reads, and the edges represent overlaps between the reads (Figure 5.5).
Our graph will have transitive overlap; that is, some edges will connect disparate nodes that are already
connected by intermediate nodes. By removing the transitively inferable overlaps, we can create a chain of
reads that have been ordered to form a larger contig. These graph transformations are discussed in greater
depth in section 5.3.1 below. In order to get a better understanding of the size of contigs, we calculate
something known as N50. Because measures of contig length tend to be highly sensitive to the smallest
contig cutoff, N50 is calculated as the length-weighted median. For a human, N50 is usually close to 125 kb.

Figure 5.5: We can visualize the process of merging fragments into contigs by letting the nodes in a graph
represent reads and edges represent overlaps. By removing the transitively inferable edges (the pink edges
in this image), we are left with chains of reads ordered to form contigs.

In theory, we should be able to use the above approach to create large contigs from our reads as long as
we have adequate coverage of the given region. In practice, we often encounter large sections of the genome
that are extremely repetitive and as a result are difficult to assemble. For example, it is unclear exactly how
to align the following two sequences: ATATATAT and ATATATATAT. Due to the extremely low information
content in the sequence pattern, they could overlap in any number of ways. Furthermore, these repetitive
regions may appear in multiple locations in the genome, and it is difficult to determine which reads come
from which locations. Contigs made up of these ambiguous, repetitive reads are called overcollapsed contigs.

In order to determine which sections are overcollapsed, it is often possible to quantify the depth of coverage
of fragments making up each contig. If one contig has significantly more coverage than the others, it is a
likely candidate for an overcollapsed region. Additionally, several unique contigs may overlap one contig in
the same location, which is another indication that the contig may be overcollapsed (Figure 5.6).

96

6.047/6.878 Lecture 5: Genome Assembly and Whole-Genome Alignment

Unigue Contig
Overcollapsed Contig - —

Merge reads up to potential repeat boundaries

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 5.6: Overcollapsed contigs are caused by repetetive regions of the genome which cannot be distin-
guished from one another during sequencing. Branching patterns of alignment that arise during the process
of merging fragments into contigs are a strong indication that one of the regions may be overcollapsed.

After fragments have been assembled into contigs up to the point of a possible repeated section, the result
is a graph in which the nodes are contigs, and the edges are links between unique contigs and overcollapsed

contigs (Figure 5.7).

Target

Fragments

U-unitig

repeat boundary

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 5.7: In this graph connecting contigs, repeated region X has indegree and outdegree equal to 2. The
target seqence shown at the top can be inferred from the links in the graph.

5.2.4 Laying out contig graph into scaffolds

Once our fragments are assembled into contigs and contig graphs, we can use the larger mate pairs to link
contigs into supercontigs or scaffolds. Mate pairs are useful both to orient the contigs and to place them in
the correct order. If the mate pairs are long enough, they can often span repetitive regions and help resolve
the ambiguities described in the previous section (Figure 5.8).

97

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 5: Genome Assembly and Whole-Genome Alignment

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faqg-fair-use/.

Figure 5.8: Mate pairs help us determine the relative order of contigs in order to link them into into
supercontigs.

Unlike contigs, supercontigs may contain some gaps in the sequence due to the fact that the mate pairs
connecting the contigs are only sequenced at the ends. Since we generally know how long a given mate
pair is we can estimate how many base pairs are missing, but due to the randomness of the cuts in shotgun
sequencing, we may not have the data available to fill in the exact sequence. Filling in every single gap can
be extremely expensive, so even the most completely assembled genomes usually contain some gaps.

5.2.5 Deriving consensus sequence

The goal of genome assembly is to create one continuous sequence, so after the reads have been aligned
into contigs, we need to resolve any differences between them. As mentioned above, some of the overlapping
reads may not be identical due to sequencing errors or polymorphism. We can often determine when there
has been a sequencing error when one base disagrees with all the other bases aligned to it. Taking into
account the quality scores on each of the bases, we can usually resolve these conflicts fairly easily. This
method of conflict resolution is called weighted voting (Figure 5.9). Another alternative is to ignore the
frequencies of each base and take the maximum quality letter as the consensus. Sometimes, you will want
to keep all of the bases that form a polymorphic set because it can be important information. In this case,
we would be unable to use these methods to derive a consensus sequence.

TAGATTACACAGATTACTGA TTGATGGCGTAA CTA
TAGATTACACAGATTACTGACTTGATGGCGTAAACTA
TAG TTACACAGATTATTGACTTCATGGCGTAA CTA
TAGATTACACAGATTACTGACTTGATGGCGTAA CTA
TAGATTACACAGATTACTGACTTGATGGGGTAA CTA

TAGATTACACAGATTACTGACTTGATGGCGTAA CTA

Figure 5.9: We derive the multiple alignment consensus sequence by weighted voting at each base.

In some cases, it is not possible to derive a consensus if, for example, the genome is heterozygous and
there are equal numbers of two different bases at one location. In this case, the assembler must choose a
representative.

Did You Know?

Since polymorphism can significantly complicate the assembly of diploid genomes, some researchers
induce several generations of inbreeding in the selected species to reduce the amount of heterozygosity
before attempting to sequence the genome.

98

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 5: Genome Assembly and Whole-Genome Alignment

In this section, we saw an algorithm to do genome assembly given reads. However, this algorithm works
well when the reads are 500 - 900 bases long or more, which is typical of Sanger sequencing. Alternate
genome assembly algorithms are required is the reads we get from our sequencing methods are much shorter.

5.3 Genome Assembly II: String graph methods

Shotgun sequencing, which is a more modern and economic method of sequencing, gives reads that around
100 bases in length. The shorter length of the reads results in a lot more repeats of length greater than that
of the reads. Hence, we need new and more sophisticated algorithms to do genome assembly correctly.

5.3.1 String graph definition and construction

The idea behind string graph assembly is similar to the graph of reads we saw in section 5.2.2. In short,
we are constructing a graph in which the nodes are sequence data and the edges are overlap, and then trying
to find the most robust path through all the edges to represent our underlying sequence.

QI > —

B

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faqg-fair-use/.

Figure 5.10: Constructing a string graph.

Starting from the reads we get from Shotgun sequencing, a string graph is constructed by adding an edge
for every pair of overlapping reads. Note that the vertices of the graph denote junctions, and the edges
correspond to the string of bases. A single node corresponds to each read, and reaching that node while
traversing the graph is equivalent to reading all the bases upto the end of the read corresponding to the
node. For example, in figure 5.10, we have two overlapping reads A and B and they are the only reads we
have. The corresponding string graph has two nodes and two edges. One edge doesn’t have a vertex at its
tail end, and has A at its head end. This edge denotes all the bases in read A. The second edge goes from
node A to node B, and only denotes the bases in B-A (the part of read B which is not overlapping with A).
This way, when we traverse the edges once, we read the entire region exactly once. In particular, notice that
we do not traverse the overlap of read A and read B twice.

b — =
e _\ |:> G "
f b .S
e f

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 5.11: Constructing a string graph

99

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 5: Genome Assembly and Whole-Genome Alignment

There are a couple of subtleties in the string graph (figure 5.11) which need mentioning;:

e We have two different colors for nodes since the DNA can be read in two directions. If the overlap is
between the reads as is, then the nodes receive same colors. And if the overlap is between a read and
the complementary bases of the other read, then they receive different colors.

e Secondly, if A and B overlap, then there is ambiguity in whether we draw an edge from A to B, or
from B to A. Such ambuigity needs to be resolved in a consistent manner at junctions caused due to
repeats.

/’ r\
© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faqg-fair-use/.

Figure 5.12: Example of string graph undergoing removal of transitive edges.

% Y
> Collapse Chains

O Junction

Compressy | \

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faqg-fair-use/.

Figure 5.13: Example of string graph undergoing chain collapsing.

After constructing the string graph from overlapping reads, we:-

e Remove transitive edges: Transitive edges are caused by transitive overlaps, i.e. A overlap B overlaps
C in such a way that A overlaps C. There are randomized algorithms which remove transitive edges in
O(E) expected runtime. In figure 5.12, you can see the an example of removing transitive edges.

100

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 5: Genome Assembly and Whole-Genome Alignment

e Collapse chains: After removing the transitive edges, the graph we build will have many chains where
each node has one incoming edge and one outgoing edge. We collapse all these chains to a single edge.
An example of this is shown in figure 5.13.

5.3.2 Flows and graph consistency

After doing everything mentioned above we will get a pretty complex graph, i.e. it will still have a number
of junctions due to relatively long repeats in the genome compared to the length of the reads. We will now
see how the concepts of flows can be used to deal with repeats.

First, we estimate the weight of each edge by the number of reads we get corresponds to the edge. If
we have double the number of reads for some edge than the number of DNAs we sequenced, then it is fair
to assume that this region of the genome gets repeated. However, this technique by itself is not accurate
enough. Hence sometimes we may make estimates by saying that the weight of some edge is > 2, and not
assign a particular number to it.

Want a+b+c = x+y+2z

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 5.14: Left: Flow resolution concept. Right: Flow resolution example.

We use reasoning from flows in order to resolve such ambiguities. We need to satisfy the flow constraint
at every junction, i.e. the total weight of all the incoming edges must equal the total weight of all the
outgoing edges. For example, in the figure 5.14 there is a junction with an incoming edge of weight 1, and
two outgoing edges of weight > 0 and > 1. Hence, we can infer that the weights of the outgoing edges are
exactly equal to 0 and 1 respectively. A lot of weights can be inferred this way by iteratively applying this
same process throughout the entire graph.

5.3.3 Feasible flow

Once we have the graph and the edge weights, we run a min cost flow algorithm on the graph. Since larger
genomes may not a have unique min cost flow, we iteratively do the following:

e Add € penalty to all edges in solution

e Solve flow again - if there is an alternate min cost flow it will now have a smaller cost relative to the
previous flow

e Repeat until we find no new edges

101

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 5: Genome Assembly and Whole-Genome Alignment

After doing the above, we will be able to label each edge as one of the following
e Required: edges that were part of all the solutions
e Unreliable: edges that were part of some of the solutions

e Not required: edges that were not part of any solution

5.3.4 Dealing with sequencing errors

There are various sources of errors in the genome sequencing procedure. Errors are generally of two
different kinds, local and global.

Local errors include insertions, deletions and mutations. Such local errors are dealt with when we are
looking for overlapping reads. That is, while checking whether reads overlap, we check for overlaps while
being tolerant towards sequencing errors. Once we have computed overlaps, we can derive a consensus
by mechanisms such as removing indels and mutations that are not supported by any other read and are
contradicted by at least 2.

Global errors are caused by other mechasisms such as two different sequences combining together before
being read, and hence we get a read which is from different places in the genome. Such reads are called
chimers. These errors are resolved while looking for a feasible flow in the network. When the edge corre-
sponding to the chimer is in use, the amount of flow going through this edge is smaller compared to the flow
capacity. Hence, the edge can be detected and then ignored.

Each step of the algorithm is made as robust and resilient to sequencing errors as possible. And the
number of DNAs split and sequenced is decided in a way so that we are able to construct most of the DNA
(i.e. fulfill some quality assurance such as 98% or 95%).

5.3.5 Resources
Some popular genome assemblers using String Graphs are listed below
e Euler (Pevzner, 2001/06) : Indexing — deBruijn graphs — picking paths — consensus

e Valvel (Birney, 2010) : Short reads — small genomes — simplification — error correction

e ALLPATHS (Gnerre, 2011) : Short reads — large genomes — jumping data — uncertainty

5.4 Whole-Genome Alignment

Once we have access to whole-genome sequences for several different species, we can attempt to align them
in order to infer the path that evolution took to differentiate these species. In this section we discuss some
of the methods for performing whole-genome alignments between multiple species.

5.4.1 Global, local, and ’glocal’ alignment

The Needleman-Wunsch algorithm discussed in chapter 2 is the best way to generate an optimal alignment
between two or more genome sequences of limited size. At the level of whole genomes, however, the O(n?)
time bound is impractical. Furthermore, in order to find an optimal alignment between k different species,
the time for the Needleman-Wunsch algorithm is extended to O(n*). For genomes that are millions of bases
long, this run time is prohibitive (Figure 5.15).

102

6.047/6.878 Lecture 5: Genome Assembly and Whole-Genome Alignment

N

MCCTGAC GET GGETC AC ARR ACTTC TG G

2 GARC

T Tt
—

/'y

G EAAGACCCTEACCC TEEETE ACARARC TC X

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 5.15: The Needleman-Wunsch algorithm for alignments of 2 and 3 genomes.

One alternative is to use an efficient local alignment tool such as BLAST to find all of the local alignments,
and then chain them together along the diagonal to form global alignments. This approach can save a
significant amount of time, since the process of finding local alignments is very efficient, and then we only
need to perform the time-consuming Needleman-Wunsch algorithm in the small rectangles between local
alignments (Figure 5.16).

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Figure 5.16: We can save time when performing a global alignment by first finding all the local alignments
and then chaining them together along the diagonal with restricted dynamic programming.

Another novel approach to whole genome alignment is to extend the local alignment search to include
inversions, duplications and translocations. Then we can chain these elements together using the least-cost
transformations between sequences. This approach is commonly called glocal alignment, since it seeks to
combine the best of local and global alignment to create the most accurate picture of how genomes evolve
over time (Figure 5.17).

5.4.2 Lagan: Chaining local alignments

LAGAN is a popular software toolkit that incorporates many of the above ideas and can be used for local,
global, glocal, and multiple alignments between species.

103

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 5: Genome Assembly and Whole-Genome Alignment

AGTECCCTGEARCCC TGRCGGTGEE TCACARRRCT TCTEGER

AGTGACCTGGEAAGACCCTGARCCCTGEETCACRRAACTC

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 5.17: Glocal alignment allows for the possibility of duplications, inversion, and translocations.

The regular LAGAN algorithm consists of finding local alignments, chaining local alignments along the
diagonal, and then performing restricted dynamic programming to find the optimal path between local
alignments.

Multi-LAGAN uses the same approach as regular LAGAN but generalizes it to multiple species alignment.
In this algorithm, the user must provide a set of genomes and a corresponding phylogenetic tree. Multi-
LAGAN performs pairwise alignment guided by the phylogenetic tree. It first compares highly related
species, and then iteratively compares more and more distant species.

Shuffle-LAGAN is a glocal alignment tool that finds local alignments, builds a rough homology map, and
then globally aligns each of the consistent parts (Figure 5.18). In order to build a homology map, the
algorithm chooses the maximum scoring subset of local alignments based on certain gap and transformation
penalties, which form a non-decreasing chain in at least one of the two sequences. Unlike regular LAGAN, all
possible local alignment sequences are considered as steps in the glocal alignment, since they could represent
translocations, inversions and inverted translocations as well as regular untransformed sequences. Once
the rough homology map has been built, the algorithm breaks the homologous regions into chunks of local
alignments that are roughly along the same continuous path. Finally, the LAGAN algorithm is applied to
each chunk to link the local alignments using restricted dynamic programming.

By running Shufflee LAGAN or other glocal alignment tools, we can discover inversions, translocations,
and other homologous relations between different species. By mapping the connections between these rear-
rangements, we can gain insight into how each species evolved from the common ancestor (Figure 5.19).

5.5 Gene-based region alignment

An alternative way for aligning multiple genomes anchors genomic segments based on the genes that
they contain, and uses the correspondence of genes to resolve corresponding regions in each pair of species.
A nucleotide-level alignment is then constructed based on previously-described methods in each multiply-
conserved region.

Because not all regions have one-to-one correspondence and the sequence is not static, this is more difficult:
genes undergo divergence, duplication, and losses and whole genomes undergo rearrangements. To help
overcome these challenges, researchers look at the amino-acid similarity of gene pairs across genomes and
the locations of genes within each genome.

104

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 5: Genome Assembly and Whole-Genome Alignment
VRN Ve <,

N S A /

e

/ Ve
7N Ny f/\\/

S -— ==
/ “{: p,
F--

cl~ !

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 5.18: The steps to run the SLAGAN algorithm are A. Find all the local alignments, B. Build a rough
homology map, and C. globally align the consistent parts using the regular LAGAN algorithm

x 10 Combination (supermap) of two 1-monoltonic maps in homo sapiens chr3, mus musculus chrd
ped
- / :
T =
'{:‘r’- -
-
7 B 1
) Ve |

6 Z B
4
8
2
=
3 5F
8
&
o
=2
g

4

=1 =
=t
o

R == ~_

2 s i i I i L 1 |

145 15 155 16 1865 17 175 18 185

homo sapiens chid x10°

Figure 5.19: Using the concepts of glocal alignment, we can discover inversions, translocations, and other
homologous relations between different species such as human and mouse.

105

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 5: Genome Assembly and Whole-Genome Alignment

S.cerevisiae S.bayanus
ortholog
merge

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 5.20: Graph of S. cerevisae and S. bayanus gene correspondence.

Gene correspondence can be represented by a weighted bipartite graph with nodes representing genes with
coordinates and edges representing weighted sequence similarity (Figure 5.20). Orthologous relationships
are one-to-one matches and paralogous relationships are one-to-many or many-to-many matches. The graph
is first simplified by eliminating spurious edges and then edges are selected based on available information
such as blocks of conserved gene order and protein sequence similarity.

The Best Unambiguous Subgroups (BUS) algorithm can then be used to resolve the correspondence of
genes and regions. BUS extends the concept of best-bidirectional hits and uses iterative refinement with an
increasing relative threshold. It uses the complete bipartite graph connectivity with integrated amino acid
similarity and gene order information.

Did You Know?

A bipartite graph is a graph whose vertices can be split into two disjoint sets U and V such that
every edge connects a vertex in U to a vertex in V.

S.cerevisiae

B opE i
k i= i -1
v

Sparadoxus -4 i

S.mikatae ﬁ'.c B EDEE MG R & 6@ D | B BasaE

i o
Sbhayanus -emEme B EREEpEh))E rs@s i DBaseia

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 5.21: Illustration of gene correspondence for S.cerevisiae Chromosome VI (250-300bp).

106

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 5: Genome Assembly and Whole-Genome Alignment

In the example of a correctly resolved gene correspondence of S.cerevisiae with three other related species,
more than 90% of the genes had a one-to-one correspondence and regions and protein families of rapid change
were identified.

5.6 Mechanisms of Genome Evolution

Once we have alignments of large genomic regions (or whole genomes) across multiple related species, we
can begin to make comparisons in order to infer the evolutionary histories of those regions.

Rates of evolution vary across species and across genomic regions. In S. cerevisiae, for example, 80%
of ambiguities are found in 5% of the genome. Telomeres are repetitive DNA sequences at the end of
chromosomes which protect the ends of the chromosomes from deterioration. Telomere regions are inherently
unstable, tending to undergo rapid structural evolution, and the 80% of variation corresponds to 31 of the
32 telomeric regions. Gene families contained within these regions such as HXT, FLO, COS, PAU, and YRF
show significant evolution in number, order, and orientation. Several novel and protein-coding sequences
can be found in these regions. Since very few genomic rearrangements are found in S. cerevisiae aside from
the telomeric regions, regions of rapid change can be identified by protein family expansions in chromosome
ends.

T=00

Spar 2bb¥ gonos, awvg 909,
I | Srmik: 2032 goenes, avyg 858,
Shay: 3185 gonca, avg G2

1000

s00 —

SO0

Number of genes

400 —

o R . [| JH -iIH M‘I A 5 AN
50 75

25

100
Percent amino acid identity A

a
——

YBR184W MatA2

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 5.22: Dynamic view of a changing gene.

Geness evolve at different rates. For example as illustrated in Figure 5.22, on one extreme, there is
YBR184W in yeast which shows unusually low sequence conservation and exhibits numerous insertions
and deletions across species. On the other extreme there is MatA2, which shows perfect amino acid and nu-
cleotide conservation. Mutation rates often also vary by functional classification. For example, mitochondrial
ribosomal proteins are less conserved than ribosomal proteins.

107

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 5: Genome Assembly and Whole-Genome Alignment

The fact that some genes evolve more slowly in one species versus another may be due to factors such as
longer life cycles. Lack of evolutionary change in specific genes, however, suggests that there are additional
biological functions which are responsible for the pressure to conserve the nucleotide sequence. Yeast can
switch mating types by switching all their A and a genes and MatA2 is one of the four yeast mating-type
genes (MatA2, Mata2, MatAl, Matal). Its role could potentially be revealed by nucleotide conservation
analysis.

Fast evolving genes can also be biologically meaningful. Mechanisms of rapid protein change include:

e Protein domain creation via stretches of Glutamine (Q) and Asparagine (N) and protein-protein inter-
actions,

e Compensatory frame-shifts which enable the exploration of new reading frames and reading/creation
of RNA editing signals,

e Stop codon variations and regulated read-through where gains enable rapid changes and losses may
result in new diversity

e Inteins, which are segments of proteins that can remove themselves from a protein and then rejoin the
remaining protein, gain from horizontal transfers of post-translationally self-splicing inteins.

We now look at differences in gene content across different species (S.cerevisiae, S.paradozus, S.mikatae,
and S.bayanus.) A lot can be revealed about gene loss and conversion by observing the positions of paralogs
across related species and observing the rates of change of the paralogs. There are 8-10 genes unique to
each genome which are involved mostly with metabolism, regulation and silencing, and stress response. In
addition, there are changes in gene dosage with both tandem and segment duplications. Protein family
expansions are also present with 211 genes with ambiguous correspondence. All in all however, there are few
novel genes in the different species.

5.6.1 Chromosomal Rearrangements

These are often mediated by specific mechanisms as illustrated for Saccharomyces in Figure5.23.
[Matt Fox|FigllchromEvolImageissuperblurryas faraslcansee. W hereeverthiswas found, itshouldbereplacedwithahigi

o — T B e]

B = =
sl i s B |
i E. S |

I
I

W | Invarsions | ¥ | Segmental duplication vi (Intein inserticn

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 5.23: Mechanisms of chromosomal evolution.

108

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 5: Genome Assembly and Whole-Genome Alignment

Translocations across dissimilar genes often occur across transposable genetic elements (Ty elements in
yeast for example). Transposon locations are conserved with recent insertions appearing in old locations
and long terminal repeat remnants found in other genomes. They are evolutionarily active however (for
example with Ty elements in yeast being recent), and typically appear in only one genome. The evolution-
ary advantage of such locationally conserved transposons may lie in the possibility of mediating reversible
arrangements. Inversions are often flanked by tRNA genes in opposite transcriptional orientation. This may
suggest that they originate from recombination between tRNA genes.

5.7 Whole Genome Duplication

S.cerevisiae

S.paradoxus
S.mikatae
S.bayanus

K. waltif

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 5.24: Moving further back in evolutionary time for Saccharomyces.

As you trace species further back in evolutionary time, you have the ability to ask different sets of questions.
In class, the example used was K. waltii, which dates to about 95 millions years earlier than S.cerevisiae and
80 million years earlier than S.bayanus.

Looking at the dotplot of S.cerevisiae chromosomes and K.waltii scaffolds, a divergence was noted along
the diagonal in the middle of the plot, whereas most pairs of conserved region exhibit a dot plot with a
clear and straight diagonal. Viewing the segment at a higher magnification (Figure 5.25), it seems that
S.cerevisiae sister fragments all map to corresponding K.waltii scaffolds.

Schematically (Figure 5.26) sister regions show gene interleaving. In duplicate mapping of centromeres,
sister regions can be recognized based on gene order. This observed gene interleaving provides evidence of
complete genome duplication.

5.8 Additional figures

109

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 5: Genome Assembly and Whole-Genome Alignment

vl
KW
] .
wl m
o i 5
E X P .
(=]
W -
g i U 1 S S N S —— proame sty
= o P | = L -
— -J—‘ e et
= x b - C
O -1) e SRCSTEILD TETEE. S l]
% [N e 5 =
I T R el N) S S U N R S R S I S—
-ai v E
= = H - = =
8 " i i [
ml = .i s - T — e —
[|
- ;
n .. i. e
i . .
] = o H
1 e — - i — = —
I i I . i e I
az [F] e P u [T ET] 6] [

K_walti scaffolds

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 5.25: Gene Correspondence for S.cerevisiae chromosomes and K.waltii scaffolds.

e uum. uzsl;: Y-JL wl.cz ALOTBNW VILOZRC TJLIGW FABHIC YALO3R FALIIE
S. corovisiae B @ < B @ e &l
chromesame 10 , L 4 4 *

¢ o

.ﬁ,@i.,.ﬁ.,.,.éa, .a.f.a.,f.

+

“comosme 7 K@%Kwﬁ--xx' X 8 X

YORGMOE YERMI1C VIGRO4SC VEROEW

4 4

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 5.26: Gene interleaving shown by sister regions in K.waltii and S.cerevisae
Bibliography
[1] Embl allextron database - cassette exons.
[2] Batzoglou S et al. Arachne: a whole-genome shotgun assembler. Genome Res, 2002.
[3] Manolis Kellis. Lecture slides 04: Comparative genomics i. September 21,2010.
[4] Manolis Kellis. Lecture slides 05.1: Comparative genomics ii. September 23, 2010.
[5] Manolis Kellis. Lecture slides 05.2: Comparative genomics iii, evolution. September 25,2010.

[6] Nikolaus Rajewsky Kevin Chen. The evolution of gene regulation by transcription factors and micrornas.
Nature Reviews Genetics, 2007.

110

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 5: Genome Assembly and Whole-Genome Alignment

(¢¢SLINN/ST38Y1 SIXY :0Q0L) SLINSIY NYOV1-S

Figure 5.27: S-LAGAN results.

(NOI93Y 491) NVOVT-S

(NOI93Y 491) NVOV1-S

Figure 5.29: S-LAGAN results for IGF locus.

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

[7] Douglas Robinson and Lynn Cooley. Examination of the function of two kelch proteins generated by
stop codon suppression. Development, 1997.

[8] Stark. Discovery of functional elements in 12 drosophila genomes using evolutionary signatures. Nature,
2007.

111

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 5: Genome Assembly and Whole-Genome Alignment

[9] Angela Tan. Lecture 15 notes: Comparative genomics i: Genome annotation. November 4, 2009.

112

CHAPTER
SIX

BACTERIAL GENOMICS- MOLECULAR EVOLUTION AT THE
LEVEL OF ECOSYSTEMS

Guest Lecture by Eric Alm
Scribed by Deniz Yorukoglu (2011)

Figures
6.1 A tree of life displaying rates of gene birth, duplication, loss, and horizontal gene transfer
at each branching point. 113
6.2 Rates of new gene birth, duplication, loss and horizontal gene transfer during Archean
Gene Expansion 114
6.3 Abundance levels of different bacterial groups in control patients, Crohn’s disease patients
and patients with ulcerative colitis. 115
6.4 Gut bacterial abundances plotted through time for the two donors participating in HuGE
Project. e 116
6.5 Description of how to read a horizon plot. oL, 116
6.6 Horizon plot of Donor B in HuGE study. 117
6.7 Horizon plot of Donor A in HuGE study. 118
6.8 Day-to-day bacterial abundance correlation matrices of Donor A and Donor B. 118

6.9 Rate of horizontal gene transfer between different bacterial groups taken from non-human
sites, human sites, same site within human, and different sites within human. 120

6.10 Rate of horizontal gene transfer between bacterial groups sampled from the same continent

and from different continents. e 120
6.11 Rate of horizontal gene transfer between different human and non-human sites (top right)

and the percentage of antiboitic resistance genes among horizonta gene transfers (bottom

left). . . o e 121

6.1 Introduction

With the magnitude and diversity of bacterial populations in human body, human microbiome has many
common properties with natural ecosystems researched in environmental biology. As a field with a large num-
ber of quantitative problems to tackle, bacterial genomics offers an opportunity for computational biologist
to be actively involved in the progress of this research area.

There are approximately 10'* microbial cells in an average human gut, whereas there are only 102 human
cells in a human body in total. Furthermore, there are 102 external microbial cells living on our skin. From
a cell count perspective, this corresponds to 10 times more bacterial cells in our body than our own cells.
From a gene count perspective, there are 100 times more genes belonging to the bacteria living in/on us than
to our own cells. For this reason, these microbial communities living in our bodies are an integral part of

113

6.047/6.878 Lecture 6: Bacterial Genomics — Molecular Evolution at the Level of Ecosystems

what makes us human and we should research upon these genes that are not directly encoded in our genome,
but still have a significant effect on our physiology.

6.1.1 Evolution of microbiome research

Earlier stages of microbiome research were mostly based on data collection and analysis of surveys of bacterial
groups present in a particular ecosystem. Apart from collecting data, this type of research also involved
sequencing of bacterial genomes and identification of gene markers for determining different bacterial groups
present in the sample. The most commonly used marker for this purpose is 16S rRNA gene, which is a
section of the prokaryotic DNA that codes for ribosomal RNA. Three main features of 16S gene that makes
it a very effective marker for microbiome studies are: (1) its short size (~1500 bases) that makes it cheaper
to sequence and analyze, (2) high conservation due to exact folding requirements of the ribosomal RNA it
encodes for, and (3) its specificity to prokaryote organisms that allows us to differentiate from contaminant
protist, fungal, plant and animal DNAs.

A further direction in early microbial research was inferring rules from generated datasets upon microbial
ecosystems. These studies investigated initially generated microbial data and tried to understand rules of
microbial abundance in different types of ecosystems and infer networks of bacterial populations regarding
their co-occurrence, correlation and causality with respect to one another.

A more recent type of microbial research takes a predictive approach and aims to model the change of
bacterial populations in an ecosystem through time making use of differential equations. For example, we
can model the rate of change for the population size of a particular bacterial group in human gut as an
ordinary differential equation (ODE) and use this model to predict the size of the population at a future
time point by integrating over the time interval.

We can further model change of bacterial populations with respect to multiple parameters, such as time
and space. When we have enough data to represent microbial populations temporally and spatially, we can
model them using partial differential equations (PDEs) for making predictions using multivariate functions.

6.1.2 Data generation for microbiome research

Data generation for microbiome research usually follows the following work-flow: (1) a sample of microbial
ecosystem is taken from the particular site being studied (e.g. a patient’s skin or a lake), (2) the DNAs of the
bacteria living in the sample are extracted, (3) 16S rDNA genes are sequenced, (4) conserved motifs in some
fraction of the 16S gene (DNA barcodes) are clustered into operational taxonomic units (OTUs), and
(5) a vector of abundance is constructed for all species in the sample. In microbiology, bacteria are classified
into OTUs according to their functional properties rather than species, due to the difficulty in applying the
conventional species definition to the bacterial world.

In the remainder of the lecture, a series of recent studies that are related to the field of bacterial genomics
and human microbiome studies are described.

6.2 Study 1: Evolution of life on earth

This study [2] is inspired from a quote by Max Delbruck: ”Any living cell carries with it the experience
of a billion years of experimentation by its ancestors”. In this direction, it is possible to find evidence
in the genomes of living organisms for ancient environmental changes with large biological impacts. For
instance, the oxygen that most organisms currently use would have been extremely toxic to almost all life on
earth before the accumulation of oxygen via oxygenic photosynthesis. It is known that this event happened
approximately 2.4 billion years ago and it caused a dramatic transformation of life on earth.

A dynamic programming algorithm was developed in order to infer gene birth, duplication, loss and
horizontal gene transfer events given the phylogeny of species and phylogeny of different genes. Horizontal
gene transfer is the event in which bacteria transfer a portion of their genome to other bacteria from
different taxonomic groups.

Figure 6.1 shows an overview of these inferred events in a phylogenetic tree focusing on prokaryote life.
In each node, the size of the pie chart represents the amount of genetic change between two branches and
each colored slice stands for the rate of a particular genetic modification event. Starting from the root of the

114

6.047/6.878 Lecture 6: Bacterial Genomics — Molecular Evolution at the Level of Ecosystems

tree, we see that almost the entire pie chart is represented by newly born genes represented by red. However,
around 2.5 billion years ago green and blue slices become more prevalent, which represent rate of horizontal
gene transfer and gene duplication events.

Diplemeonadida
® Eith Chromalvaclata
@ Transfer Plantae
@ Duplication . Fungi
O Loss %‘% %%9;&%% J ;j g r\-'::lé;oa

e AN » ; 3 :
|a_$ ‘;&/ %%%\\ \\ :vr_awercmc N
5 % % LY f’ / Neroarchagota
%,%ﬁg‘q,a .\\ o3 &) Crenarcheota
y-protecbacteria e, .qz:is L a® : j_,&’)
;;%k":%\ \‘&l\// Proterazoic s "ja«
B-protesbacteria —_ o S g . = Euryarchae
N %\\ . m_a‘wﬁ' / uryarchaeota
ity i
. T
a-protecbacteria M,h M‘\\ 53 ’ Archean e

E-proteabacteria Firmicutes

G-protecbacteria
Acidobacteria
Chlamydiae
Chiorobi
Bacteroidetes
Planctomycetes

Cyanobacieria
Deinocaccales
Chloroflexi
Aquificae
Thermotogae
Fusobacteria

Spirachaete:

Actinobacteria

© Lawrence David. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 6.1: A tree of life displaying rates of gene birth, duplication, loss, and horizontal gene transfer at
each branching point.

In Figure 6.2, a large spike can be seen during Archean eon representing large amount of genetic change
on earth occurring during this particular time period. This study looked for enzymatic activity of genes that
were born in this eon different from the genes that were already present. On the right hand side of Figure
6.2, logarithmic enrichment levels of different metabolites are displayed. Most enriched metabolites produced
by these genes were discovered to be functional in oxidation reduction and electron transport. Overall, this
study suggests that life invented modern electron transport chain around 3.3 billion years ago and around
2.8 billion years ago organisms evolved to use the same proteins that are used for producing oxygen also to
breathe oxygen.

6.3 Study 2: Pediatric IBD study with Athos Boudvaros

In some diseases such as Inflammatory Bowel Disease (IBD); if the disease is not diagnosed and monitored
closely, the results can be very severe, such as the removal of the patient’s colon. On the other hand, currently
existing most reliable diagnosis methods are very invasive (e.g. colonoscopy). An alternative approach for
diagnosis can be abundance analysis of the microbial sample taken from the patients’ colon. This study aims
to predict the disease state of the subject from bacterial abundances in stool samples taken from the patient.

105 samples were collected for this study among the patients of Dr. Athos Boudvaros; some of them

115

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 6: Bacterial Genomics — Molecular Evolution at the Level of Ecosystems

Gene gain rate [events / genome / 10 Ma]

-6 -4 -2 0 2 i 6 8 10
T T T T T T
| ——
= ———
20 J‘r Archean Gene Expansion
I [log,{enrich)]
1
Ubiguine.
7
25 _Alchean Bfu:nue“:_‘; o
2 " Proterozeic Fe =
Fap. b
— Hziz " e
o] Zn Acowps:
@, 1oy _Caogu
o 20 At .
g Zmr,q dris ngﬁ
= ® Bith r,m.m--'--éa'-:: Fucise
® Transfer i Lo
-151 ® Dupication re He e
Logs Sl | 1?:$

Praterazoic

2 -1 0

2 [Phanerozoic “'
B Redox / e- transter O TCA / Glycolysis
O carbohydrate W Carboxylic Acid
k E Nucleotide W Amino Acid
Oiher
0.0 L Present

-0

o

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: David, Lawrence A., and Eric J. Alm. "Rapid Evolutionary Innovation
during an Archaean Genetic Expansion." Nature 469, no. 7328 (2011): 93-96.

Figure 6.2: Rates of new gene birth, duplication, loss and horizontal gene transfer during Archean Gene
Expansion

displaying IBD symptoms and others different diseases (control group). In Figure 6.3, each row block
represents a set of bacterial groups at a taxonomic level (phylum level at the top and genus level at the
bottom) and each column block represents a different patient group: control patients, Crohn’s disease (CD),
and ulcerative colitis (UC). The only significant single biomarker was E. Coli, which is not seen in control
and CD patients but seen in about a third of the UC patients. There seems to be no other single bacterial
group that gives significant classification between the patient groups from these abundance measures.

Since E. Coli abundance is not a clear-cut single bacterial biomarker, using it as a diagnostic tool would
yield low accuracy classification. On the other hand, we can take the entire bacterial group abundance dis-
tribution and feed them into a random forest and estimate cross-validation accuracy. After the classification
method was employed, it was able to tell with 90% accuracy if the patient is diseased or not. This suggests
that it is a competitive method with respect to other non-invasive diagnotic approaches which are generally
highly specific but not sensitive enough.

One key difference between control and disease groups is the decrease in the diversity of the ecosystem.
This suggests that the disease status is not controlled by a single germ but the overall robustness and the
resilience of the ecosystem. When diversity in the ecosystem decreases, the patient might start showing
disease symptoms.

6.4 Study 3: Human Gut Ecology (HuGE) project

This study aims to identify more than three hundred dietary and environmental factors affecting human
microbiome. The factors, which were regularly tracked by an iPhone App, were the food the subject ate,
how much they slept, the mood they were in etc. Moreover, stool samples were taken from the subjects every
day for a year in order to perform sequence analysis of the bacterial group abundances for a specific day

116

http://dx.doi.org/10.1038/nature09649
http://dx.doi.org/10.1038/nature09649

6.047/6.878 Lecture 6: Bacterial Genomics — Molecular Evolution at the Level of Ecosystems

Cantrol CcD uc | conai |
. phylum

ied |
Proteobacteria ﬁ T 1
1uferruca:‘mic:mbiaj | || 1 || | T
Gammaproteobacteria T am 1
‘errucomicrobias 1
Clostridia TTETITH] 1 1110 |
T'1Th 1
1

Enterobacteriales 4
Veerrucomicrobiales
Coriobacteriales H 1
Clostridiales § TR | RN 1T T T 1 T 1 | [T 10N |
I

Rikenellaceas 4
Enterobacteriaceas 1am 1
Eubacteriaceae - 1
Parphyromonadaceas
Werrucomicrobiaceae 1
Coriobacteriaceas 1
Peptococcaceae 1
Incertae Sedis Xl - |
Ruminococcaceae 1 11 |
Lachnospiraceas - || L T T [| | [| 1l

L]

class

L4

f

A

order

:

b |l

L]

family

pooe
]

Alistipes - I
Subdoligranulum ~ | 1
Butyricicoccus T | |
scillibactar - 1
Anaerovorax - | |
QOdoribacter |
Sporobacter - | | |
Eubacterium 1
Collinsella - |
Ruminococcus - 1
Phascolarctobacterium - |
Parabacteroides 4
Escherichia-Shigella | | 1
Acetivibrio - 1
Akkermansia 1
NA 1
Peptococcus 1
Coprococcus | | | 1
Anagrotruncus i i 1

q-valus 6&- 'E;‘, rel abundance (% of max) | oo | oz | oa |aE 0 REEN RSN

. L]
L]

— g —-
L]

genus

———o-‘——-.—-v—
.®

.+.

goTE -
gV

i

E.

ot i T - el e
—— (I LHET | oo

= HEE NI mmmospeessants

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 6.3: Abundance levels of different bacterial groups in control patients, Crohn’s disease patients and
patients with ulcerative colitis.

relevant to a particular environmental factor. The motivation behind carrying out this study is that, it is
usually very hard to get a strong signal between bacterial abundances and disease status. Exploring dietary
effects on human microbiome might potentially elucidate some of these confounding factors in bacterial
abundance analysis. However, this study analyzed dietary and environmental factors on only two subjects’
gut ecosystems; inferring statistically significant correlations with environmental factors would require large
cohorts of subjects.

Figure 6.4 shows abundance levels of different bacterial groups in the gut of the two donors throughout
the experiment. One key point to notice is that within an individual, the bacterial abundance is very similar
through time. However, bacterial group abundances in the gut significantly differ from person to person.

One statistically significant dietary factor that was discovered as a predictive marker for bacterial popu-
lation abundances is fiber consumption. It was inferred that fiber consumption is highly correlated with the
abundance of bacterial groups such as Lachnospiraceae, Bifidobacteria, and Ruminococcaceae. In Donor B,
10g increase in fiber consumption increased the overall abundance of these bacterial groups by 11%.

In Figure 6.6 and Figure 6.7, a horizon plot of the two donors B and A are displayed respectively. A
legend to read these horizon plots is given in Figure 6.5. For each bacterial group the abundance-time graph
is displayed with different colors for different abundance layers, segments of different layers are collapsed
into the height of a single layer displaying only the color with the highest absolute value difference from the
normal abundance, and finally the negative peaks are switched to positive peaks preserving their original
color.

In Figure 6.6, we see that during the donor’s trip to Thailand, there is a significant change in his gut
bacterial ecosystem. A large number of bacterial groups disappear (shown on the lower half of the horizon
plot) as soon as the donor starts living in Thailand. And as soon as the donor returns to U.S., the abundance

117

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 6: Bacterial Genomics — Molecular Evolution at the Level of Ecosystems

Figures from the David lab removed due to copyright restrictions.

Figure 6.4: Gut bacterial abundances plotted through time for the two donors participating in HuGE project.

Figures from the David lab removed due to copyright restrictions.

Figure 6.5: Description of how to read a horizon plot.

levels of these bacterial groups quickly return back to their normal levels. Moreover, some bacterial groups
that are normally considered to be pathogens (first 8 groups shown on top) appears in the donor’s ecosystem
almost as soon as the donor moves to Thailand and mostly disappears when he returns back to United States.
This indicates that environmental factors (such as location) can cause major changes in our gut ecosystem

118

http://el.ladlab.org:8080/
http://el.ladlab.org:8080/

6.047/6.878 Lecture 6: Bacterial Genomics — Molecular Evolution at the Level of Ecosystems

Figures from the David lab removed due to copyright restrictions.

Figure 6.6: Horizon plot of Donor B in HuGE study.

while the environmental factor is present but can disappear after the factor is removed.

In Figure 6.7, we see that after the donor is infected with salmonella, a significant portion of his gut
ecosystem is replaced by other bacterial groups. A large number of bacterial groups permanently disappear
during the infection and other bacterial groups replace their ecological niches. In other words, the introduc-
tion of a new environmental factor takes the bacterial ecosystem in the donor’s gut from one equilibrium
point to a completely different one. Even though the bacterial population mostly consists of salmonella
during the infection, before and after the infection the bacterial count stays more or less the same. The
scenario that happened here is that salmonella drove some bacterial groups to extinction in the gut and
similar bacterial groups took over their empty ecological niches.

In Figure 6.8, p-values are displayed for day-to-day bacterial abundance correlation levels for Donor A
and B. In Donor A’s correlation matrix, there is high correlation within the time interval a corresponding
to pre-infection and within the time interval b corresponding to post-infection. However, between a and
b there is almost no correlation at all. On the other hand, in the correlation matrix of donor B, we see
that pre-Thailand and post-Thailand time intervals, ¢, have high correlation within and between themselves.
However, the interval d that correspond to the time period of Donor B’s trip to Thailand, we see relatively
little correlation to c¢. This suggests that the perturbations in the bacterial ecosystem of Donor B wasn’t
enough to cause a permanent shift of the abundance equilibrium as in the case with Donor A due to salmonella
infection.

119

http://el.ladlab.org:8080/

6.047/6.878 Lecture 6: Bacterial Genomics — Molecular Evolution at the Level of Ecosystems

Figures from the David lab removed due to copyright restrictions.

Figure 6.7: Horizon plot of Donor A in HuGE study.

Donor A Donor B
— 1.0
Day o ‘ﬂza)‘ 1:‘;5

° ot o il i

0.4

0.3

o2

0.1

0

Courtesy of Lawrence David. Used with permission.

Figure 6.8: Day-to-day bacterial abundance correlation matrices of Donor A and Donor B.

6.5 Study 4: Microbiome as the connection between diet and phe-
notype

In a study by Mozaffarian et al. [4] more than a hundred thousand patients were analyzed with the goal of
discovering the effect of diet and lifestyle choices on long-term weight gain and obesity. This study built a
model to predict the patients’ weights based on the types and amounts of food they consumed over a certain

period of time. They found out that fast-food type of food (processed meats, potato chips, sugar-sweetened

120

http://el.ladlab.org:8080/

6.047/6.878 Lecture 6: Bacterial Genomics — Molecular Evolution at the Level of Ecosystems

beverages) were were most highly correlated with obesity. On the other hand, consumption level of yogurt
was inversely correlated with obesity.

Further experiments with mouse and human cohorts showed that, within both control group and fast-food
group, increased consumption of yogurt leads to weight loss. In the experiment with mice, some female mice
were given Lactobacillus reuteri (a group of bacteria found in yogurt) and allowed to eat as much regular
food or fast-food they wanted to. This resulted in significant weight loss in the group of mice that were given
the purified bacterial extract.

An unexpected phenotypical effect of organic yogurt consumption was discovered to be shinier coat of
the mice and dogs that were given yogurt as part of their diet. A histological analysis of the skin biopsy of
the control and yogurt fed mice proves that the mice that were fed the bacteria in yogurt had hair follicles
that are active, leading to active development of healthier and shiny coat and hair.

6.6 Study 5: Horizontal Gene Transfer (HGT) between bacterial
groups and its effect on antibiotic resistance

A study by Hehemann et al. [3] discovered a specific gene that digests a type of sulfonated carbohydrate
that is only found in seaweed sushi wrappers. This gene is found in the gut microbes of Japanese people
but not North Americans. The study concluded that this specific gene has transferred at some point in
history from the algae itself to the bacteria living on it and then to the gut microbiome of a Japanese person
by horizontal gene transfer. This study also suggests that, even though some bacterial group might live in
our gut for our entire lives, they can gain new functionalities throughout our lives by picking up new genes
depending on the type of food that we eat.

In this direction, a study in Alm’s Laboratory investigated around 2000 bacterial genomes published
in [1] with the aim of detecting genes that are 100% similar but belong to bacteria in different taxonomic
groups. Any gene that is exactly the same between different bacterial groups would indicate a horizontal
gene transfer event. In this study, around 100000 such instances were discovered.

When looked at specific environments, it was discovered that the bacteria isolated from humans share
genes mostly with other bacteria isolated from human sites. If we focus on more specific sites; we see that
bacterial genomes isolated from human gut share genes mostly with with other bacteria that are isolated
from gut, and bacterial genomes isolated from human skin shared gene mostly with other isolated from
human skin. This finding suggests that independent from the phylogeny of the bacterial groups, ecology is
the most important factor determining the amount of gene transfer instances between bacterial groups.

In Figure 6.9, we see that between different bacterial groups taken from human that has at least 3%
16S gene distance, there is around 23% chance that they will share an identical gene in their genome.
Furthermore, there is more than 40% chance that they share an identical gene if they are sampled from the
same site as well.

On the other hand, Figure 6.10 shows that geography is a weak influence on horizontal gene transfer.
Bacterial populations sampled from the same continent and different continents had little difference in terms
of the amount of horizontal gene transfer detected.

Figure 6.11 shows a color coded matrix of the HGT levels between various human and non-human
environments; top-right triangle representing the amount of horizontal gene transfers and the bottom-left
triangle showing the percentage of antibiotic resistance (AR) genes among the transferred genes. In the
top-right corner, we see that there is a slight excess of HGT instances between human microbiome and
bacterial samples taken from farm animals. And when we look at the corresponding percentages of antibiotic
resistance genes, we see that more than 60% of the transfers are AR genes. This result shows the direct
effect of feeding subtherapeutic antibiotics to livestock on the emergence of antibiotic resistance genes in the
bacterial populations living in human gut.

6.7 Study 6: Identifying virulence factors in Meningitis

Bacterial meningitis is a disease that is caused by very diverse bacteria that are able to get into the blood
stream and cross the blood-brain barrier. This study aimed to investigate the virulence factors that can turn

121

6.047/6.878 Lecture 6: Bacterial Genomics — Molecular Evolution at the Level of Ecosystems

Figures removed due to copyright restrictions. See similar figures in this journal article: Smillie, Chris S. et al. "Ecology
drives a global network of gene exchange connecting the human microbiome." Nature 480, no. 7376 (2011): 241-244.

Figure 6.9: Rate of horizontal gene transfer between different bacterial groups taken from non-human sites,
human sites, same site within human, and different sites within human.

Figures removed due to copyright restrictions. See similar figures in this journal article: Smillie, Chris S. et al. "Ecology
drives a global network of gene exchange connecting the human microbiome." Nature 480, no. 7376 (2011): 241-244.

Figure 6.10: Rate of horizontal gene transfer between bacterial groups sampled from the same continent and
from different continents.

bacteria into a type that can cause meningitis.
The study involved 70 bacterial strains isolated from meningitis patients, comprising 175172 genes in
total. About 24000 of these genes had no known function. There could be some genes among these 24000

122

http://dx.doi.org/10.1038/nature10571
http://dx.doi.org/10.1038/nature10571
http://dx.doi.org/10.1038/nature10571
http://dx.doi.org/10.1038/nature10571

6.047/6.878 Lecture 6: Bacterial Genomics — Molecular Evolution at the Level of Ecosystems

Human Non-Human
Air Oral Uro Marine
3 3 -
g " s 8§
= @ £ B
G = 2 = o B All
A2 o 22 0 & , 5
35 3 53 3 o 1%
« | Masopharynx pel J 105
o Other [| g
Gut e
=
g - 4
E 5 G:ng:;ae :j: :
S ther I P
Skin | ow | 2
o Vagina loe | 3 =
il o
= Other . [« £
Hydrothermal [o]
o | Heterotroph i» | g
£ ; k=
g = Other oo g
=
g %)
I o =
5 Soil o |
= 1
Food [3 |
Farm | . > 0
100% | © T T
AR - S © & 9 o ® Samesite
% .
g o & @ L e o Allother
" L . ¥] sites
0 25 50 75 100

% HGT containing antibiotic resistance (AR)

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Smillie, Chris S., et al. "Ecology Drives a Global Network of Gene Exchange
Connecting the Human Microbiome." Nature 480, no. 7376 (2011): 241-4.

Figure 6.11: Rate of horizontal gene transfer between different human and non-human sites (top right) and
the percentage of antiboitic resistance genes among horizonta gene transfers (bottom left).

that might be leading to meningitis causing bacteria and might be good drug targets. Moreover, 82 genes
were discovered to be involved in horizontal gene transfer. 69 of these had known functions and 13 of them
belonged to the 24000 genes that we do not have any functional information. Among the genes with known
function, some of them were related to AR, detoxification, and also some were related to known virulence
factors such as hemalysin that lets the bacteria live in the blood stream and adhesin that helps the bacteria
latch onto the vein and potentially cross blood brain barrier.

6.8 Q/A

Q: Do you think after some time Donor A in Study 3 will have its bacterial ecosystem return back to its
original pre-infection state?

A: The salmonella infection caused certain niches to be wiped out from the bacterial ecosystem of Donor
A which were then filled in by similar type of bacteria and reached to a different ecosystem at a new
equilibrium. Since these niches are dominated by the new groups of bacteria, it would not be possible for
the previous bacterial groups to replace them without a large-scale change in his gut ecosystem.

Q: Is the death of certain bacterial groups in the gut during salmonella infection caused directly by the
infection or is it an immune response to cure the disease?

A: Tt can be both, but it is very hard to tell from the data in Study 3 since it is only a data point that
corresponds to the event that we can observe. A future study that tries to figure out what is happening
in our immune system during the infection can be observed by drawing blood from the patients during the
infection.

123

http://dx.doi.org/10.1038/nature10571
http://dx.doi.org/10.1038/nature10571

6.047/6.878 Lecture 6: Bacterial Genomics — Molecular Evolution at the Level of Ecosystems

Q: Is there a particular connection between an individual’s genome and the dominant bacterial groups
in the bacterial ecosystem? Would twins show more similar bacterial ecosystems?

A: Twins in general have similar bacterial ecosystems independent from whether they live together or
are separated. Even though this seems to be a genetic factor at first, monozygotic and dizygotic twins have
the exact same effect, as well as displaying similarity to their mothers’ bacterial ecosystem. The reason for
this is that starting from birth there is a period of time in which the bacterial ecosystem is programmed.
The similarity effect between twins is based on this more than genetic factors.

6.9 Current research directions
A further extension to HuGE study could observe mice gut microbiome during a salmonella infection and
observe the process of some bacterial groups being driven to extinction and other types of bacteria replacing

the ecological niches that are emptied by them. A higher resolution observation of this phenomenon in mice
could illuminate how bacterial ecosystems shift from one equilibrium to another.

6.10 Further Reading

e Overview of Human Microbiome Project: http://commonfund.nih.gov/hmp/overview.aspx

e Lawrence A. David and Eric J. Alm. (2011). Rapid evolutionary innovation during an Archaean
genetic expansion. Nature, 469(7328):93-96.

e A tutorial on 16S rRNA gene and its use in microbiome research: http://greengenes.lbl.gov/
cgi-bin/JD_Tutorial/nph-Tutorial_2Main2.cgi

e Dariush Mozaffarian, Tao Hao, Eric B. Rimm, Walter C. Willett, and Frank B. Hu. (2011). Changes in
diet and lifestyle and long-term weight gain in women and men. The New England journal of medicine,
364(25):2392-2404.

e JH Hehemann, G Correc, T Barbeyron, W Helbert, M Czjzek, and G Michel. (2010). Transfer of
carbohydrate- active enzymes from marine bacteria to japanese gut microbiota. Nature, 464(5):908-12.

e The Human Microbiome Jumpstart Reference Strains Consortium. (2010). A Catalog of Reference
Genomes from the Human Microbiome. Science, 328(5981):994-999

6.11 Tools and techniques

6.12 What have we learned?

In this lecture, we learned about the field of bacterial genomics in general and how bacterial ecosystems can
be used to verify major environmental changes at early stages of evolution (Study 1), can act as a noninvasive
diagnostic tool (Study 2), are temporarily or permanently affected by different environmental and dietary
factors (Study 3), can act as the link between diet and phenotype (Study 4), can cause antibiotic resistance
genes to be carried between different species’ microbiome through horizontal gene transfer (Study 5), and
can be used to identify significant virulence factors in disease states (Study 6).

Bibliography

[1] The Human Microbiome Jumpstart Reference Strains Consortium. A Catalog of Reference Genomes
from the Human Microbiome. Science, 328(5981):994-999, May 2010.

[2] Lawrence A. David and Eric J. Alm. Rapid evolutionary innovation during an Archaean genetic expan-
sion. Nature, 469(7328):93-96, January 2011.

124

http://commonfund.nih.gov/hmp/overview.aspx
http://greengenes.lbl.gov/cgi-bin/JD_Tutorial/nph-Tutorial_2Main2.cgi
http://greengenes.lbl.gov/cgi-bin/JD_Tutorial/nph-Tutorial_2Main2.cgi

6.047/6.878 Lecture 6: Bacterial Genomics — Molecular Evolution at the Level of Ecosystems

[3] JH Hehemann, G Correc, T Barbeyron, W Helbert, M Czjzek, and G Michel. Transfer of carbohydrate-
active enzymes from marine bacteria to japanese gut microbiota. Nature, 464(5):908-12, 2010 Apr 8.

[4] Dariush Mozaffarian, Tao Hao, Eric B. Rimm, Walter C. Willett, and Frank B. Hu. Changes in diet
and lifestyle and long-term weight gain in women and men. The New England journal of medicine,
364(25):2392-2404, June 2011.

125

6.047/6.878 Lecture 6: Bacterial Genomics — Molecular Evolution at the Level of Ecosystems

126

Part 11

Coding and Non-Coding Genes

127

CHAPTER
SEVEN

HIDDEN MARKOV MODELS I

Anastasiya Belyaeva, Justin Gullingsrud (Sep 26, 2015)
William Leiserson, Adam Sealfon (Sep 22, 2014)
Haoyang Zeng (Sep 28, 2013)

Sumaiya Nazeen (Sep 25, 2012)

Chrisantha Perera (Sep 27, 2011)

Gleb Kuznetsov, Sheida Nabavi (Sep 28, 2010)

Elham Azizi (Sep 29, 2009)

Figures
7.1 Modeling biological sequences Lo e 129
7.2 Prediction Models Using Markov Chain and HMM 130
7.3 Parameterization of HMM Prediction Model 130
7.4 State of a casino die represented by a Hidden Markov model 132
7.5 Potential DNA sources: viral injection vs. normal production 132
7.6 A possible sequence of observed dierolls. Lo 132
7.7 Running the model: probability of a sequence, given path consists of all fair dice 133
7.8 Running the model: probability of a sequence, given path consists of all loaded dice . . . 133
7.9 Partial runs and die switching Lo Lo 134
7.10 HMMS as a generative model for finding GC-rich regions. 135
7.11 Probability of seq, path if all promoter L o 135
7.12 Probability of seq, path if all background L. 136
7.13 Probability of seq, path sequence if mixed, 136
7.14 Some biological applications of HMM, . 137
7.15 The six algorithmic settings for HMMS o oo 138
7.16 The Viterbi algorithm 140
7.17 The Forward algorithm 141
7.18 CpG Islands - Incorporating Memory 142

7.1 Introduction

Hidden Markov Models (HMMs) are a fundamental tool from machine learning that is widely used in
computational biology. Using HMMs, we can explore the underlying structure of DNA or polypeptide
sequences, detecting regions of especial interest. For instance, we can identify conserved subsequences or
uncover regions with different distributions of nucleotides or amino acids such as promoter regions and
CpG islands. Using this probabilistic model, we can illuminate the properties and structural components of
sequences and locate genes and other functional elements.

129

6.047/6.878 Lecture 06: Hidden Markov Models I

This is the first of two lectures on HMMs. In this lecture we will define Markov Chains and HMMs,
providing a series of motivating examples. In the second half of this lecture, we wil discuss scoring and
decoding. We will learn how to compute the probability of the combination of a particular combination of
observations and states. We will introduce the Forward Algorithm, a method for computing the probability
of a given sequence of observations, allowing all sequences of states. Finally, we will discuss the problem of
determining the most likely path of states corresponding to the given observations, a goal which is achieved
by the Viterbi algorithm.

In the second lecture on HMMs, we will continue our discussion of decoding by exploring posterior
decoding, which allows us to compute the most likely state at each point in the sequence. We will then explore
how to learn a Hidden Markov Model. We cover both supervised and unsupervised learning, explaining how
to use each to learn the model parameters. In supervised learning, we have training data available that
labels sequences with particular models. In unsupervised learning, we do not have labels so we must seek to
partition the data into discrete categories based on discovered probabilistic similarities. In our discussion of
unsupervised learning we will introduce the general and widely applicable Expectation Maximization (EM)
algorithm.

7.2 Motivation:

7.2.1 We have a new sequence of DNA, now what?
1. Align it:

e with things we know about (database search).

e with unknown things (assemble/clustering)
2. Visualize it: “Genomics rule #1”: Look at your data!

e Look for nonstandard nucleotide compositions.

e Look for k-mer frequencies that are associated with protein coding regions, recurrent data, high
GC content, etc.

e Look for motifs, evolutionary signatures.
e Translate and look for open reading frames, stop codons, etc.

e Look for patterns, then develop machine learning tools to determine reasonable probabilistic
models. For example by looking at a number of quadruples we decide to color code them to see
where they most frequently occur.

3. Model it:

e Make hypothesis.

e Build a generative model to describe the hypothesis.

e Use that model to find sequences of similar type.
We're not looking for sequences that necessarily have common ancestors. Rather, we’re interested in
sequences with similar properties. We actually don’t know how to model whole genomes, but we can
model small aspects of genomes. The task requires understanding all the properties of genome regions
and computationally building generative models to represent hypotheses. For a given sequence, we

want to annotate regions whether they are introns, exons, intergenic, promoter, or otherwise classifiable
regions.

Building this framework will give us the ability to:
e Emit (generate) sequences of similar type according to the generative model

e Recognize the hidden state that has most likely generated the observation

130

6.047/6.878 Lecture 06: Hidden Markov Models I

Intergenic| | CpG | [Promoter|| First || Intron | Other|| Intron
island exon exon

U U U U UU

GATTATGGGT T T TACAGGATTGTTACAGG

AGBATTATGGGT

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 7.1: Modeling biological sequences

e Learn (train) large datasets and apply to both previously labeled data (supervised learning) and
unlabeled data (unsupervised learning).

In this lecture we discuss algorithms for emission and recognition.

7.2.2 Why probabilistic sequence modeling?

e Biological data is noisy.

Update previous knowledge about biological sequences.

Probability provides a calculus for manipulating models.

Not limited to yes/no answers, can provide degrees of belief.
e Many common computational tools are based on probabilistic models.

Our tools: Markov Chains and HMM.

7.3 Markov Chains and HMMS: From Example To Formalizing

7.3.1 Motivating Example: Weather Prediction

Weather prediction has always been difficult, especially when we would like to forecast the weather many
days, weeks or even months later. However, if we only need to predict the weather of the next day, we can
reach decent prediction precision using some quite simple models such as Markov Chain and Hidden Markov
Model by building graphical models in Figure 7.2.

For the Markov Chain model on the left, four kinds of weather (Sun, Rain, Clouds and Snow) can directly
transition from one to the other. This is a “what you see is what you get” in that the next state only depends
on the current state and there is no memory of the previous state. However for HMM on the right, all the
types of weather are modeled as the emission(or outcome) of the hidden seasons (Summer, Fall, Winter
and Spring). The key insight behind is that the hidden states of the world (e.g. season or storm system)
determines emission probabilities while state transitions are governed by a Markov Chain.

7.3.2 Formalizing of Markov Chain and HMMS

To take a closer look at Hidden Markov Model, let’s first define the key parameters in Figure 7.3. Vector x
represents sequence of observations. Vector 7 represents the hidden path, which is the sequence of hidden
states. Each entry ag; of Transition matrix A denotes the probability of transition from state k to state I.
Each entry eg(x;) of emission vector denotes the probability of observing x; from state k. And finally with
these parameters and Bayes’s rule, we can use p(z;|m; = k) to estimate p(m; = k|x;).

Markov Chains

A Markov Chain is given by a finite set of states and transition probabilities between the states. At every time
step, the Markov Chain is in a particular state and undergoes a transition to another state. The probability
of transitioning to each other state depends only on the current state, and in particular is independent of
how the current state was reached. More formally, a Markov Chain is a triplet (Q, p, A) which consists of:

131

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 06: Hidden Markov Models I

Summer| | Fall || Winter || Spring

hidden
gbsefved
Emissipns
N y N W A W N W
Snow A B ais wé- g

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 7.2: Prediction Models Using Markov Chain and HMM

TN LN W

7= (Summer [| Fall || Winter [| Spring| Transitions: a,=P(xz=l|n, ,=k)
T; Transition probability
from state k to state/

; Emissions: e, (x;)=P(x;|p;=k)
— S S o Emission probability of
symbol x; from state k

X:

L

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 7.3: Parameterization of HMM Prediction Model
e A set of states Q.

e A transition matrix A whose elements correspond to the probability A;; of transitioning from state i
to state j.

e A vector p of initial state probabilities.

The key property of Markov Chains is that they are memory-less, i.e., each state depends only on the
previous state. So we can immediately define a probability for the next state, given the current state:

P(xi\xi,l, ...711,'1) = P(xl\xl,l)
In this way, the probability of the sequence can be decomposed as follows:
P(x)=P(xp,zr—1,..,21) = Pap|zp—1)P(xp_1|xp—2)...P(za|x1) P(21)

132

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 06: Hidden Markov Models I

P(zr) can also be calculated from the transition probabilities: If we multiply the initial state probabilities
at time t = 0 by the transition matrix A, we get the probabilities of states at time ¢t = 1. Multiplying by the
appropriate power AL of the transition matrix, we obtain the state probabilities at time ¢ = L.

Hidden Markov Models

Hidden Markov Models are used as a representation of a problem space in which observations come about
as a result of states of a system which we are unable to observe directly. These observations, or emissions,
result from a particular state based on a set of probabilities. Thus HMMs are Markov Models where the
states are hidden from the observer and instead we have observations generated with certain probabilities
associated with each state. These probabilities of observations are known as emission probabilities.
Formally, a Hidden Markov Model is a 5-tuple (Q, A, p, V, E) which consists of the following parameters:

e A series of states, Q.

A transition matrix, A

e A vector of initial state probabilities , p.

A set of observation symbols, V, for example {A, T, C, G} or the set of amino acids or words in an
English dictionary.

e A matrix of emission probabilities, E: For each s, t, in @, the emission probability is

esk = P(uvg at time t|g; = s)

The key property of memorylessness is inherited from Markov Models. The emissions and transitions
depend only on the current state and not on the past history.

7.4 Apply HMM to Real World: From Casino to Biology

7.4.1 The Dishonest Casino

The Scenario

Imagine the following scenario: You enter a casino that offers a dice-rolling game. You bet $1 and then you
and a dealer both roll a die. If you roll a higher number you win $2. Now there’s a twist to this seemingly
simple game. You are aware that the casino has two types of dice:

1. Fair die: P(1) = P(2) = P(3) = P(4) = P(5) = P(6) =1/6
2. Loaded die: P(1) = P(2) = P(3) = P(4) = P(5) =1/10 and P(6) = 1/2

The dealer can switch between these two dice at any time without you knowing it. The only information
that you have are the rolls that you observe. We can represent the state of the casino die with a simple
Markov model:

The model shows the two possible states, their emissions, and probabilities for transition between them.
The transition probabilities are educated guesses at best. We assume that switching between the states
doesn’t happen too frequently, hence the .95 chance of staying in the same state with every roll.

Staying in touch with biology: An analogy

For comparison, Figure 7.5 below gives a similar model for a situation in biology where a sequence of DNA
has two potential sources: injection by a virus versus normal production by the organism itself:

Given this model as a hypothesis, we would observe the frequencies of C and G to give us clues as to the
source of the sequence in question. This model assumes that viral inserts will have higher CpG prevalence,
which leads to the higher probabilities of C and G occurrence.

133

6.047/6.878 Lecture 06: Hidden Markov Models I

0.05
0.95 0.95

Hidden ' Loaded

(model)
| = |
P(1|Fair) = 1/6 P(1|Loaded) = 1/10
P(2|Fair) = 1/6 P(2|Loaded) = 1/10
Observed/ P(@3|Fair) = 1/6 P(3|Loaded) = 1/10
P(4|Fair) = 1/6 P(4|Loaded) = 1/10
(world) | pisirain = 116 P(5|Loaded) = 1/10
P(6|Fair) = 1/6 P(6|Loaded) = 1/2

Figure 7.4: State of a casino die represented by a Hidden Markov model

0.05
0.95 0.15

Hidden
(model)
l 0.85 l
P(AlSelf) = 1/4 P(AlVirus) = 1/6
Observed< P(TISelf) = 1/4 Pihre) = 18
P(ClSelf) = 1/4 P(C[Virus) =1/3
(world) | pGisern = 114 P(GVirus) = 1/3

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Figure 7.5: Potential DNA sources: viral injection vs. normal production

Running the Model

Say we are at the casino and observe the sequence of rolls given in Figure 7.6. We would like to know whether
it is more likely that the casino is using the fair die or the loaded die.

o) (o] (o) (& Q80 Co) [o] Q0[] B2

Figure 7.6: A possible sequence of observed die rolls.

Let’s look at a particular sequence of rolls.

Therefore, we will consider two possible sequences of states in the underlying HMM, one in which the
dealer is always using a fair die, and the other in which the dealer is always using a loaded die. We consider
each execution path to understand the implications. For each case, we compute the joint probability of an
observed outcome with that sequence of underlying states.

In the first case, where we assume the dealer is always using a fair die, the transition and emission
probabilities are shown in Figure 7.7. The probability of this sequence of states and observed emissions is
a product of terms which can be grouped into three components: 1/2; the probability of starting with the
fair die; (1/ 6)10, the probability of the sequence of rolls if we always use the fair die; and lastly (0.95)9, the

134

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 06: Hidden Markov Models I

12

QIO S-S ARON -+

Figure 7.7: Running the model: probability of a sequence, given path consists of all fair dice

probability that we always continue to use the fair die.
In this model, we assume # = {F,F, F,F,F,F,F,F, F,F}, and we observe z = {1,2,1,5,6,2,1,6,2,4}.
Now we can calculate the joint probability of x and 7 as follows:

P(z,m) = P(x|r)P(r)

% P(1|F) x P(F|F) x P(2|F)--

10

_ % (é) % (0.95)°
5.

2x107°

With a probability this small, this might appear to be an extremely unlikely case. In actuality, the
probability is low because there are many equally likely possibilities, and no one outcome is a prior: likely.
The question is not whether this sequence of hidden states is likely, but whether it is more likely than the
alternatives.

1/2
/

0 1/10 12 1/10 1/10
... ®
(]

Figure 7.8: Running the model: probability of a sequence, given path consists of all loaded dice

1/10 1/10 1/10 1/10 ‘ 11
[.

3

Let us consider the opposite extreme where the dealer always uses a loaded die, as depicted in Figure 7.8.
This has a similar calculation except that we note a difference in the emission component. This time, 8
of the 10 rolls carry a probability of 1/10 because the loaded die disfavors non-sixes. The remaining two
rolls of six have each a probability of 1/2 of occurring. Again we multiply all of these probabilities together
according to principles of independence and conditioning. In this case, the calculations are as follows:

P(z,1) = = x P(1|L) x P(L|L) x P(2|L)--

1
2
% () ()2x(0.95)9
=79

x 10710

Note the difference in exponents. If we make a direct comparison, we can say that the situation in which
a fair die is used throughout the sequence is 52 x 1071° (as compared with 7.9 x 1071 with the loaded die).

135

6.047/6.878 Lecture 06: Hidden Markov Models I

Therefore, it is six times more likely that the fair die was used than that the loaded die was used. This is
not too surprising—two rolls out of ten yielding a 6 is not very far from the expected number 1.7 with the
fair die, and farther from the expected number 5 with the loaded die.

Adding Complexity

Now imagine the more complex, and interesting, case where the dealer switches the die at some point during
the sequence. We make a guess at an underlying model based on this premise in Figure 7.9.

1/10 1/10 12

Figure 7.9: Partial runs and die switching

Again, we can calculate the likelihood of the joint probability of this sequence of states and observations.
Here, six of the rolls are calculated with the fair die, and four with the loaded one. Additionally, not all of the
transition probabilities are 95% anymore. The two swaps (between fair and loaded) each have a probability
of 5%.

P(z,7) = = x P(1|L) x P(L|L) x P(2|L)---

X <110>2 X @)2 X <é)6 x (0.95)7 x (0.05)2

Clearly, our guessed path is far less likely than either of the previous two cases. But if we are looking for
the most likely scenario, we cannot possibly calculate all alternatives in this way. We need new techniques
for inferring the underlying model. In the above cases we more-or-less just guessed at the model, but what
we want is a way to systematically derive likely models. Let’s formalize the models introduced thus far as
we continue toward understanding HMM-related techniques.

7.4.2 Back to Biology

Now that we have formalized HMMs, we want to use them to solve some real biological problems. In fact,
HMMs are a great tool for gene sequence analysis, because we can look at a sequence of DNA as being
emitted by a mixture of models. These may include introns, exons, transcription factors, etc. While we
may have some sample data that matches models to DNA sequences, in the case that we start fresh with
a new piece of DNA, we can use HMMs to ascribe some potential models to the DNA in question. We
will first introduce a simple example and think about it a bit. Then, we will discuss some applications of
HMM in solving interesting biological questions, before finally describing the HMM techniques that solve
the problems that arise in such a first-attempt /native analysis.

A simple example: Finding GC-rich regions

Imagine the following scenario: we are trying to find GC rich regions by modeling nucleotide sequences drawn
from two different distributions: background and promoter. Background regions have uniform distribution
of 0.25 for each of A, T, G, C. Promoter regions have probabilities: A: 0.15, T: 0.13, G: 0.30, C: 0.42. Given
one nucleotide observed, we cannot say anything about the region from which it was originated, because

136

6.047/6.878 Lecture 06: Hidden Markov Models I

either region will emit each nucleotide at some probability. We can learn these initial state probabilities
based in steady state probabilities. By looking at a sequence, we want to identify which regions originate
from a background distribution (B) and which regions are from a promoter model (P).

Promoter

0.85 Region (P) 0.75

A: 025 A:015
T:0.25 T:013

G: 0.25 G: 0.30 g
C:0.25 C: 0.42 g

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 7.10: HMMS as a generative model for finding GC-rich regions.

We are given the transition and emission probabilities based on relevant abundance and average length
of regions where x = vector of observable emissions consisting of symbols from the alphabet {A,T,G,C};
m = vector of states in a path (e.g. BPPBP); 7* = maximum likelihood of generating that path. In our
interpretation of sequence, the max likelihood path will be found by incorporating all emission and transition
probabilities by dynamic programming.

HMMs are generative models, in that an HMM gives the probability of emission given a state (using
Bayes’ Rule), essentially telling you how likely the state is to generate those sequences. So we can always
run a generative model for transitions between states and start anywhere. In Markov Chains, the next state
will give different outcomes with different probabilities. No matter which state is next, at the next state, the
next symbol will still come out with different probabilities. HMMs are similar: You can pick an initial state
based on the initial probability vector. In the example above, we will start in state B with high probability
since most locations do not correspond to promoter regions. You then draw an emission from the P(X|B).
Each nucleotide occurs with probability 0.25 in the background state. Say the sampled nucleotide is a G.
The distribution of subsequent states depends only on the fact that we are in the background state and
is independent of this emission. So we have that the probability of remaining in state B is 0.85 and the
probability of transitioning to state P is 0.15, and so on.

We can compute the probability of one such generation by multiplying the probabilities that the model
makes exactly the choices we assumed. Consider the examples shown in Figures 7.11, 7.12, and 7.13.

S: G 0.30 C 042 A 0.15 A 0.15 A 0.15 T 0.13 G 0.30 c 0.30

P(x,m)=ap"ep(G) “app*ep(G)*app*ep(C) “app*ep(A) *app™...
=ap"’(0.75)7’*'*(0.15)3*(0.13)1*(0.30)2*'*(0.42)2
=9.3*107

Figure 7.11: Probability of seq, path if all promoter

137

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 06: Hidden Markov Models I

. e ®®0eeee

P=P(G|B)P(B,| By)P(C|B)P(B,| B)P(A| B)P(B,| B,)..P(C'| By)
=(0.85)7 » (0.25)

=4.9x10™" A:0.25 0
T:0.25
G:0.25

c:0.25

Figure 7.12: Probability of seq, path if all background

P=P(G \ B)P(BL \ B‘”)P(C| B)P(B2 | 3|)P(A| Ii')P(F; | Bg)...P(C| 37)
=(0.85)° x(0.25)° x(0.75)> x(0.42)? x0.30x0.15
=6.7x107

Figure 7.13: Probability of seq, path sequence if mixed

We can calculate the joint probability of a particular sequence of states corresponding to the observed
emissions as we did in the Casino examples:

P(z,mp) =ap X ep(G) X app X ep(G) X -+ -
=ap x (0.75)7 x (0.15)% x (0.13) x (0.3)% x (0.42)?

=93x10""
P(x,75) = (0.85)7 x (0.25)8
=49x107°
P(x, Tpmizea) = (0.85)% x (0.25)5 x (0.75)% x (0.42)? x 0.3 x 0.15
=6.7x1077

The pure-background alternative is the most likely option of the possibilities we have examined. But

how do we know whether it is the option most likely out of all possibile paths of states to have generated
the observed sequence?

The brute force approach is to examine at all paths, trying all possibilities and calculating their joint

138

6.047/6.878 Lecture 06: Hidden Markov Models I

probabilities P(x,m) as we did above. The sum of probabilities of all the alternatives is 1. For example, if
all states are promoters, P(x,) = 9.3 x 1077, If all emissions are Gs, P(x,7) = 4.9 x 1076, If we have use
the mixture of B’s and P’s as in Figure 7.13, P(x,) = 6.7 x 10~7; which is small because a lot of penalty
is paid for the transitions between B’s and P’s which are exponential in length of sequence. Usually, if you
observe more G’s, it is more likely to be in the promoter region and if you observe more A and Ts, then it
is more likely to be in the background. But we need something more than just observation to support our

belief. We will see how can we mathematically support our intuition in the following sections.

Application of HMMs in Biology

HMMs are used in answering many interesting biological questions. Some biological application of HMMs

are summarized in Figure 7.14.

Detection of Detection of Detection of Detection of

'Applicati on

Detection of

Detection of

GC-rich region | Conserved Protein coding Protein coding Protein coding | chromatin
region exons conservation gene states
structures
Topology / 2 states, 2 states, 2 states, different 2 states, different ~20 states, 40 states,
Transitions different different tri-nucleotide evolutionary different different
nucleotide conservation composition signatures composition / chromatin
composition levels conservation, mark
specific combinations
structure
Hidden States / GC-rich / AT-rich Conserved / Coding (exon) / Coding (exon) / First / last/ Enhancer /
Annotation non-Conserved non-Coding (intron non-Ceoding (intron middle coding Promoter /
or intergenic) or intergenic) exon, UTRs, Transcribed /
intron 1/2/3, Repressed /
intergenic, *(+,-) Repetitive
strand
Emissions / Nucleotides Level of Triplets of 64 x 64 matrix of Codons, Vector of
Observations conservation nucleotides codon substitution nucleotides, chromatin
frequencies splice sites, mark
start/stop frequencies
codons

Figure 7.14: Some biological applications of HMM

7.5 Algorithmic Settings for HMMs

We use HMMs for three types of operation: scoring, decoding, and learning. We will talk about scoring
and decoding in this lecture. These operations can happen for a single path or all possible paths. For the
single path operations, our focus is on discovering the path with maximum probability. However, we are
interested in a sequence of observations or emissions for all path operations regardless of its corresponding
paths.

7.5.1 Scoring
Scoring over a single path

The Dishonest Casino problem and Prediction of GC-rich Regions problem described in section 7.4 are both
examples of finding the probability score corresponding to a single path. For a single path we define the
scoring problem as follows:

e Input: A sequence of observations x = z1s ...z, generated by an HMM M (Q, A, p,V, F) and a path
of states m = mymoy ... T,

e Output: Joint probability, P(x,) of observing « if the hidden state sequence is 7.

139

6.047/6.878 Lecture 06: Hidden Markov Models I

One path All paths
1. Scoring X, one path 2. Scoring x, all paths
O
c
.g P(x,) P(x) = 2. P(x,T)
3 Prob of a path, emissions Prob of emissions, over all paths
- 3. Viterbi decoding 4. Posterior decoding
k=
T ™ = argmax; P(x,m) mh = {m | m=argmax, 2.P(m;=k[x)}
b1 i i
O
8 Most likely path Path containing the most likely
state at any time point.
5. Supervised learning, given 1 6. Unsupervised learning
D A*=argmax, PxTA)
‘e 6. Unsupervised learning. N* = aramax, Z.P(x,1|A)
S A* = argmax, max,P(x,T|A)
3 Viterbi training, best path Baum-Welch training, over all paths

Figure 7.15: The six algorithmic settings for HMMS

The single path calculation is essentially the likelihood of observing the given sequence over a particular
path using the following formula:
P(z,m) = P(z|m)P(r)

We have already seen the examples of single path scoring in our Dishonest Casino and GC-rich region
examples.
Scoring over all paths
We define the all paths version of scoring problem as follows:
e Input: A sequence of observations = z1xs2 ...z, generated by an HMM M(Q, A,p,V, E).
e Output: The joint probability, P(z,) of observing z over all possible sequences of hidden states 7.

The probability over all paths 7 of hidden states of the given sequence of observations is given by the
following formula.

P(z) = ZP(CL‘,?T)
s
We use this score when we are interested in knowing the likelihood of a particular sequence for a given HMM.

However, naively computing this sum requires considering an exponential number of possible paths. Later
in the lecture we will see how to compute this quantity in polynomial time.

7.5.2 Decoding

Decoding answers the question: Given some observed sequence, what path gives us the maximum likelihood
of observing this sequence? Formally we define the problem as follows:

140

6.047/6.878 Lecture 06: Hidden Markov Models I

e Decoding over a single path:

— Input: A sequence of observations x = z1x2 ... zy generated by an HMM M (Q, A, p,V, E).

— Output: The most probable path of states, 7* = 7i75 ... 7Ty
e Decoding over all paths:

— Input: A sequence of observations x = x1xs ...xy generated by an HMM M (Q, A, p, V. E).

— Output: The path of states, 7* = 775 ... 75 that contains the most likely state at each time
point.

In this lecture, we will look only at the problem of decoding over a single path. The problem of decoding
over all paths will be discussed in the next lecture.

For the single path decoding problem, we can imagine a brute force approach where we calculate the joint
probabilities of a given emission sequence and all possible paths and then pick the path with the maximum
joint probability. The problem is that there are an exponential number of paths and using such a brute force
search for the maximum likelihood path among all possible paths is very time consuming and impractical.
Dynamic Programming can be used to solve this problem. Let us formulate the problem in the dynamic
programming approach.

We would like to find out the most likely sequence of states based on the observation. As inputs,
we are given the model parameters e;(s),the emission probabilities for each state, and a;;s, the transition
probabilities. The sequence of emissions x is also given. The goal is to find the sequence of hidden states,
7", which maximizes the joint probability with the given sequence of emissions. That is,

7" = argmax, P(x,)

Given the emitted sequence x we can evaluate any path through hidden states. However, we are looking
for the best path. We start by looking for the optimal substructure of this problem.
For a best path, we can say that, the best path through a given state must contain within it the following:

e The best path to previous state
e The best transition from previous state to this state
e The best path to the end state

Therefore the best path can be obtained based on the best path of the previous states, i.e., we can find a
recurrence for the best path. The Viterbi algorithm is a dynamic programming algorithm that is commonly
used to obtain the best path.

Most probable state path: the Viterbi algorithm

Suppose v (i) is the known probability of the most likely path ending at position (or time instance) ¢ in state
k for each k. Then we can compute the corresponding probabilities at time ¢ + 1 by means of the following
recurrence.

vt +1) = e(rigr1) mgx(akl”k(i))

The most probable path 7*, or the maximum P(z,7), can be found recursively. Assuming we know
v;(i — 1), the score of the maximum path up to time ¢ — 1, we need to increase the computation for the next
time step. The new maximum score path for each state depends on

e The maximum score of the previous states
e The transition probability

e The emission probability.

141

6.047/6.878 Lecture 06: Hidden Markov Models I

In other words, the new maximum score for a particular state at time 4 is the one that maximizes the
transition of all possible previous states to that particular state (the penalty of transition multiplied by their
maximum previous scores multiplied by emission probability at the current time).

All sequences have to start in state 0 (the begin state). By keeping pointers backwards, the actual state
sequence can be found by backtracking. The solution of this Dynamic Programming problem is very similar
to the alignment algorithms that were presented in previous lectures.

The steps of the Viterbi algorithm [2] are summarized below:

1. Initialization (i = 0): vo(0) = 1, vx(0) = 0 for k > 0.
2. Recursion (i = 1... N): v (i) = ex(z;) max;(a;xv;(i — 1)); ptri(l) = arg max; (a;xv;(i — 1)).
3. Termination: P(z,n*) = maxy vi(N); 7 = arg max, v (N).

4. Traceback (i = N...1): w}_; = ptr;(7}).

State 1
2

Vidi)

X1 Xz X3 --- XN
Figure 7.16: The Viterbi algorithm

As we can see in Figure 7.16, we fill the matrix from left to right and trace back. Each position in the
matrix has K states to consider and there are KN cells in the matrix, so, the required computation time is
O(K?N) and the required space is O(K N) to remember the pointers. In practice, we use log scores for the
computation. Note that the running time has been reduced from exponential to polynomial.

7.5.3 Evaluation

Evaluation is about answering the question: How well does our model of the data capture the actual data?
Given a sequence x, many paths can generate this sequence. The question is how likely is the sequence
given the model? In other words, is this a good model? Or, how well does the model capture the exact
characteristics of a particular sequence? We use evaluation of HMMs to answer these questions. Additionally,
with evaluation we can compare different models.

Let us first provide a formal definition of the Evaluation problem.

e Input: A sequence of observations z = z1z3...zy and an HMM M(Q, A,p,V, E).

e Output: The probability that = was generated by M summed over all paths.

We know that if we are given an HMM we can generate a sequence of length n using the following steps:
e Start at state m; according to probability agr, (obtained using vector, p).

e Emit letter x1 according to emission probability e, (x1).

e Go to state my according to the transition probability ar, |,

e Keep doing this until emit .

142

6.047/6.878 Lecture 06: Hidden Markov Models I

Thus we can emit any sequence and calculate its likelihood. However, many state sequence can emit the
same x. Then, how do we calculate the total probability of generating a given x over all paths? That is, our
goal is to obtain the following probability:

P(z|M) = ZP z,m) =Y P(a|r)P(n

The challenge of obtaining this probability is that there are too many paths (an exponential number)
and each path has an associated probability. One approach may be using just the Viterbi path and ignoring
the others, since we already know how to obtain this path. But its probability is very small as it is only
one of the many possible paths. It is a good approximation only if it has high probability density. In other
cases, the Viterbi path will give us an inaccurate approximation. Alternatively, the correct approach for
calculating the exact sum iteratively is through the use of dynamic programming. The algorithm that does
this is known as Forward Algorithm.

The Forward Algorithm

First we derive the formula for forward probability f(7).

fi)) =P(xy...x5,m=1) (7.1)
= Z P(ry...xioq,m, . Mo, i1, = Leg(x;) (7.2)

Z Z P L1y Ty e e s M2, T 1 :k)aklel(xi) (73)

k mi..mi—2

= Z Jre(@ — Dagger(x;) (7.4)
k
= el(mi) Z fk(l - 1)akl (75)
k

The full algorithm|2] is summarized below:

e Initialization (i = 0): fp(0) =1, fx(0) =0 for k£ > 0.
e Iteration (i =1...N): fi(i) = ex(z;) 32, f(i — Dajy.
e Termination: P(z,7*) =", fr(N)

State 1
2

R

X1 X2 X3 --- XN
Figure 7.17: The Forward algorithm

From Figure 7.17, it can be seen that the Forward algorithm is very similar to the Viterbi algorithm. In
the Forward algorithm, summation is used instead of maximization. Here we can reuse computations of the

143

6.047/6.878 Lecture 06: Hidden Markov Models I

previous problem including penalty of emissions, penalty of transitions and sums of previous states. The
required computation time is O(K2N) and the required space is O(KN). The drawback of this algorithm
is that in practice, taking the sum of logs is difficult; therefore, approximations and scaling of probabilities
are used instead.

7.6 An Interesting Question: Can We Incorporate Memory in Our
Model?

The answer to this question is - Yes, we can! But how? Recall that, Markov models are memoryless. In
other words, all memory of the model is enclosed in states. So, in order to store additional information, we
must increase the number of states. Now, look back to the biological example we gave in Section 7.4.2. In
our model, state emissions were dependent only on the current state. And, the current state encoded only
one nucleotide. But, what if we want our model to count di-nucleotide frequencies (for CpG islandsl), or,
tri-nucleotide frequencies (for codons), or di-codon frequencies involving six-nucleotide? We need to expand
number of states.

For example, the last-seen nucleotide can be incorporated into the HMM’s “memory” by splitting the
plus and minus states from our High-GC/Low-GC HMM into multiple states: one for each nucleotide/region
combination, as in Figure 7.18.

-
ONCICICIC
(O) | %&é

),

Figure 7.18: CpG Islands - Incorporating Memory

:

:

Moving from two to eight states allows us to retain memory of the last nucleotide observed, while also
distinguishing between two distinct regions. Four new states now correspond to each of the original two states
in the High/Low-GC HMM. Whereas the transition weights in the smaller HMM were based purely on the
frequencies of individual nucleotides, now in the larger one, they are based on di-nucleotide frequencies.

With this added power, certain di-nucleotide sequences, such as CpG islands, can be modeled specifically:
the transition from C+ to G+ can be assigned greater weight than the transition from A+ to G+. Further,
transitions between + and - can be modeled more specifically to reflect the frequency (or infrequency) of
particular di-nucleotide sequences within one or the other.

The process of adding memory to an HMM can be generalized and more memory can be added to allow
the recognition of sequences of greater length. For instance, we can detect codon triplets with 32 states, or
di-codon sextuplets with 2048 states. Memory within the HMM allows for increasingly tailored specificity
in scanning.

1CpG stands for C-phosphate-G. So, CpG island refers to a region where GC di-nucleotide appear on the same strand.

144

6.047/6.878 Lecture 06: Hidden Markov Models I

7.7 Further Reading
7.7.1 Length Distributions of States and Generalized Hidden Markov Models

Given a Markov chain with the transition from any state to the end state having probability 7, the probability
of generating a sequence of length L (and then finishing with a transition to the end state) is given by:

71— T)Lil

Similarly, in the HMMs that we have been examining, the length of states will be exponentially dis-
tributed, which is not appropriate for many purposes. (For example, in a genomic sequence, an exponential
distribution does not accurately capture the lengths of genes, exons, introns, etc). How can we construct a
model that does not output state sequences with an exponential distribution of lengths? Suppose we want
to make sure that our sequence has length exactly 5. We might construct a sequence of five states with only
a single path permitted by the transition probabilities. If we include a self loop in one of the states, we will
output sequences of minimum length 5, with longer sequences exponentially distributed. Suppose we have
a chain of n states, with all chains starting with state m; and transitioning to an end state after m,. Also
assume that the transition probability between state m; and ;11 is 1 — p, while the self transition probability
of state m; is p. The probability that a sequence generated by this Markov chain has length L is given by:

(i B i)p“"(l —p)"

This is called the negative binomial distribution.

More generally, we can adapt HMMs to produce output sequences of arbitrary length. In a Generalized
Hidden Markov Model [1] (also known as a hidden semi-Markov model), the output of each state is a string
of symbols, rather than an individual symbol. The length as well as content of this output string can be
chosen based on a probability distribution. Many gene finding tools are based on generalized hidden Markov
models.

7.7.2 Conditional random fields

The conditional random field model a discriminative undirected probabilistic graphical model that is used
alternatively to HMMs. It is used to encode known relationships between observations and construct con-
sistent interpretations. It is often used for labeling or parsing of sequential data. It is widely used in gene
finding. The following resources can be helpful in order to learn more about CRFs:

e Lecture on Conditional Random Fields from Probabilistic Graphical Models course: https://class.
coursera.org/pgm/lecture/preview/33. For background, you might also want to watch the two
previous segments, on pairwise Markov networks and general Gibbs distributions.

e Conditional random fields in biology: http://www.cis.upenn.edu/~pereira/papers/crf.pdf

e Conditional Random Fields tutorial: http://people.cs.umass.edu/~mccallum/papers/crf-tutorial.
pdf

7.8 Current Research Directions
7.9 Tools and Techniques
7.10 What Have We Learned?

In this section, the main contents we covered are as following:

e First, we introduced the motivation behind adopting Hidden Markov Models in our analysis of genome
annotation.

145

http://people.cs.umass.edu/~mccallum/papers/crf-tutorial.pdf
http://people.cs.umass.edu/~mccallum/papers/crf-tutorial.pdf

6.047/6.878 Lecture 06: Hidden Markov Models I

e Second, we formalized Markov Chains and HMM under the light of weather prediction example.

e Third, we got a sense of how to apply HMM in real world data by looking at Dishonest Casino and
CG-rich region problems.

e Fourthly, we systematiclly introduced algorithmic settings of HMM and went into detail of three of
them:

— Scoring: scoring over single path
— Scoring: scoring over all paths

— Decoding: Viterbi coding in determing most likely path

e Finally, we discussed the possibility of introducing memory in the analysis of HMM and provided
further readings for interested readers.

Bibliography

[1] Introduction to GHMMSs: www.cs.tau.ac.il/~rshamir/algmb/00/scribe00/html/lec07/node28.
html.

[2] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological sequence analysis. eleventh edition, 2006.

146

www.cs.tau.ac.il/~rshamir/algmb/00/scribe00/html/lec07/node28.html
www.cs.tau.ac.il/~rshamir/algmb/00/scribe00/html/lec07/node28.html

CHAPTER
EIGHT

HIDDEN MARKOV MODELS IT - POSTERIOR DECODING AND
LEARNING

Charalampos Mavroforakis and Chidube Ezeozue (2012)
Thomas Willems (2011)

Amer Fejzic (2010)

Elham Azizi (2009)

Figures
8.1 Genomic applications of HMMs e 146
8.2 The Forward Algorithm e 148
8.3 The Backward Algorithm 152
8.4 HMM for CpG Islands e 155
8.5 Supervised Learning of CpGislands oo 156
8.6 HMM model for alignment with affine gap penalties 159
8.7 State Space Diagram used in GENSCAN 161

8.1 Review of previous lecture

8.1.1 Introduction to Hidden Markov Models

In the last lecture, we familiarized ourselves with the concept of discrete-time Markov chains and Hidden
Markov Models (HMMs). In particular, a Markov chain is a discrete random process that abides by the
Markov property, i.e. that the probability of the next state depends only on the current state; this property
is also frequently called ”memorylessness.” To model how states change from step to step, the Markov chain
uses a matrix of transition probabilities. In addition, it is characterized by a one-to-one correspondence
between the states and observed symbols; that is, the state fully determines all relevant observables. More
formally, a Markov chain is fully defined by the following variables:

o m; € Q, the state at the i step in a sequence of finite states @ of length N that can hold a value from
a finite alphabet ¥ of length K

e aji, the transition probability of moving from state j to state k, P(m; = k|m;—1 = j), for each j, k in Q
e ag; € P, the probability that the initial state will be j

Examples of Markov chains are abundant in everyday life. In the last lecture, we considered the canonical
example of a weather system in which each state is either rain, snow, sun or clouds and the observables of
the system correspond exactly to the underlying state: there is nothing that we don’t know upon making an

147

6.047/6.878 Lecture 7: Hidden Markov Models IT - Posterio Decoding and Learning

observation, as the observation, i.e. whether it is sunny or raining, fully determines the underlying state, i.e.
whether it is sunny or raining. Suppose, however, that we are considering the weather as it is probabilistically
determined by the seasons - for example, it snows more often in the winter than in the spring - and suppose
further that we are in ancient times and did not yet have access to knowledge about what the current
season is. Now consider the problem of trying to infer the season (the hidden state) from the weather (the
observable). There is some relationship between season and weather such that we can use information about
the weather to make inferences about what season it is (if it snows a lot, it’s probably not summer); this
is the task that HMMs seek to undertake. Thus, in this situation, the states, the seasons, are considered
“hidden” and no longer share a one-to-one correspondence with the observables, the weather. These types
of situations require a generalization of Markov chains known as Hidden Markov Models (HMMs).

Did You Know?

Markov Chains may be thought of as WYSIWYG - What You See Is What You Get
HMDMs incorporate additional elements to model the disconnect between the observables of a system and
the hidden states. For a sequence of length N, each observable state is instead replaced by a hidden state
(the season) and a character emitted from that state (the weather). It is important to note that characters
from each state are emitted according to a series of emission probabilities (say there is a 50% chance of snow,

30% chance of sun, and 20% chance of rain during winter). More formally, the two additional descriptors of
an HMM are:

e 2; € X, the emission at the i*" step in a sequence of finite characters X of length N that can hold a
character from a finite set of observation symbols v; € V

e ¢ (v;) € E, the emission probability of emitting character v; when the state is k, P(z; = v|m; = k)
In summary, an HMM is defined by the following variables:

e aji, ex(vy), and ag; that model the discrete random process

e 7;, the sequence of hidden states

e x;, the sequence of observed emissions

8.1.2 Genomic Applications of HMMs

The figure below shows some genomic applications of HMMs

Application Detection of | Detection of | Detection of Detection of | Detection of Detection of
GC-rich Conserved | Protein coding Protein Protein chromatin
region region exons coding coding gene states
conservation structures
~20 states,
2 states, 2 states, 2 states, 2 states, different 40 states,
Topology / different difference different tri- different composition / different
Transitions nucleotide = conservation nucleotide evolutionary = conservation, = chromatin mark
composition levels composition signatures specific combinations
structure
First / last / Enhancer /
Conserved/ Coding (exon) / | Coding (exon) | middle coding Promoter /
Hidden States GC-rich / non-Coding /non-Coding | exon, UTRs, .
. . non- . . . Transcribed /
/ Annotation AT-rich (intron or (intron or intron 1/2/3,
Conserved Repressed /
intergenic) intergenic) intergenic, Repetitive
*(+,-) strand P
64 x 64 matrix Codops,
- . nucleotides, Vector of
Emissions / . Level of Triplets of of codon L .
. Nucleotides . . o splice sites, chromatin mark
Observations conservation nucleotides substitution .
. start/stop frequencies
frequencies
codons

Figure 8.1: Genomic applications of HMMs

148

6.047/6.878 Lecture 7: Hidden Markov Models IT - Posterio Decoding and Learning

Niceties of some of the applications shown in figure 8.1 include:

e Detection of Protein coding conservation
This is similar to the application of detecting protein coding exons because the emissions are also not
nucleotides but different in the sense that, instead of emitting codons, substitution frequencies of the
codons are emitted.

¢ Detection of Protein coding gene structures

Here, it is important for different states to model first, last and middle exons independently, because
they have distinct relevant structural features: for example, the first exon in a transcript goes through
a start codon, the last exon goes through a stop codon, etc., and to make the best predictions, our
model should encode these features. This differs from the application of detecting protein coding exons
because in this case, the position of the exon is unimportant.

It is also important to differentiate between introns 1,2 and 3 so that the reading frame between one
exon and the next exon can be remembered e.g. if one exon stops at the second codon position, the
next one has to start at the third codon position. Therefore, the additional intron states encode the
codon position.

e Detection of chromatin states
Chromatin state models are dynamic and vary from cell type to cell type so every cell type will have
its own annotation. They will be discussed in fuller detail in the genomics lecture including strategies
for stacking/concatenating cell types.

8.1.3 Viterbi decoding

Previously, we demonstrated that when given a full HMM (Q, A, X, E, P), the likelihood that the discrete
random process produced the provided series of hidden states and emissions is given by:

P(zy,...,oN,T1,...,TN) = Qon, H e (Ti)m;mi sy (8.1)

(2

This corresponds to the total joint probability, P(x, 7). Usually, however, the hidden states are not
given and must be inferred; we’re not interested in knowing the probability of the observed sequence given
an underlying model of hidden states, but rather want to us the observed sequence to infer the hidden
states, such as when we use an organism’s genomic sequence to infer the locations of its genes. One solution
to this decoding problem is known as the Viterbi decoding algorithm. Running in O(K2N) time and
O(KN) space, where K is the number of states and N is the length of the observed sequence, this algorithm
determines the sequence of hidden states (the path 7*) that maximizes the joint probability of the observables
and states, i.e. P(z,7). Essentially, this algorithm defines V(i) to be the probability of the most likely
path ending at state m; = k, and it utilizes the optimal substructure argument that we saw in the sequence
alignment module of the course to recursively compute Vi (i) = ex(x;) x max;(V;(i — 1)ax) in a dynamic
programming algorithm.

8.1.4 Forward Algorithm

Returning for a moment to the problem of ’scoring’ rather than ’decoding,” another problem that we might
want to tackle is that of, instead of computing the probability of a single path of hidden state emitting the
observed sequence, calculating the total probability of the sequence being produced by all possible paths. For
example, in the casino example, if the sequence of rolls is long enough, the probability of any single observed
sequence and underlying path is very low, even if it is the single most likely sequence-path combination.
We may instead want to take an agnostic attitude toward the path and assess the total probability of the
observed sequence arising in any way.
In order to do that, we proposed the Forward algorithm, which is described in Figure 8.2

149

6.047/6.878 Lecture 7: Hidden Markov Models IT - Posterio Decoding and Learning

State
1

|~

Input: x=21... 2N

Initialization:

— i) fo(0)=1,f,(0) =0, forallk>0

Iteration:

/ fu(@) = ex(zi) x 32, ajnfi(i —1)

. R . Termination:
1 2 N

Pa,m) =3 fr(N)

Figure 8.2: The Forward Algorithm

The forward algorithm first calculates the joint probability of observing the first ¢ emitted characters and
being in state k at time t. More formally,

fe(t) =Plme =k, x1,...,2¢) (8.2)

Given that the number of paths is exponential in ¢, dynamic programming must be employed to solve this
problem. We can develop a simple recursion for the forward algorithm by employing the Markov property
as follows:

fe(®) = ZP(xl,...,xt,m =k,m_=1)= ZP(xl,...,xt_l,m_l =1) % Pz, m|m—1) (8.3)
1 1

Recognizing that the first term corresponds to f;(t — 1) and that the second term can be expressed in
terms of transition and emission probabilities, this leads to the final recursion:

Felt) = en(z) Y filt — 1) * an (8.4)
l

Intuitively, one can understand this recursion as follows: Any path that is in state k at time ¢ must have
come from a path that was in state [at time ¢ — 1. The contribution of each of these sets of paths is then
weighted by the cost of transitioning from state [to state k. It is also important to note that the Viterbi
algorithm and forward algorithm largely share the same recursion. The only difference between the two
algorithms lies in the fact that the Viterbi algorithm, seeking to find only the single most likely path, uses a
maximization function, whereas the forward algorithm, seeking to find the total probability of the sequence
over all paths, uses a sum.

We can now compute fi(t) based on a weighted sum of all the forward algorithm results tabulated
during the previous time step. As shown in Figure 8.2, the forward algorithm can be easily implemented in
a KxN dynamic programming table. The first column of the table is initialized according to the initial state
probabilities a;p and the algorithm then proceeds to process each column from left to right. Because there
are KN entries and each entry examines a total of K other entries, this leads to O(K2N) time complexity
and O(K N) space.

In order now to calculate the total probability of a sequence of observed characters under the current
HMM, we need to express this probability in terms of the forward algorithm gives in the following way:

P(z1,....xn) =Y P(z1,...,z0, 7y =1)=Y_ fi(N) (8.5)
l l

Hence, the sum of the elements in the last column of the dynamic programming table provides the total
probability of an observed sequence of characters. In practice, given a sufficiently long sequence of emitted
characters, the forward probabilities decrease very rapidly. To circumvent issues associated with storing small
floating point numbers, logs-probabilities are used in the calculations instead of the probabilities themselves.
This alteration requires a slight adjustment to the algorithm and the use of a Taylor series expansion for the
exponential function.

150

6.047/6.878 Lecture 7: Hidden Markov Models IT - Posterio Decoding and Learning

8.1.5 This lecture

This lecture will discuss posterior decoding, an algorithm which again will infer the hidden state
sequence 7w that maximizes a different metric. In particular, it finds the most likely state at every
position over all possible paths and does so using both the forward and backward algorithm.

Afterwards, we will show how to encode “memory” in a Markov chain by adding more states to search
a genome for dinucleotide CpG islands.

We will then discuss how to use Maximum Likelihood parameter estimation for supervised learning
with a labelled dataset

We will also briefly see how to use Viterbi learning for unsupervised estimation of the parameters of
an unlabelled dataset

Finally, we will learn how to use Expectation Maximization (EM) for unsupervised estimation of
parameters of an unlabelled dataset where the specific algorithm for HMMs is known as the Baum-
Welch algorithm.

151

6.047/6.878 Lecture 7: Hidden Markov Models IT - Posterio Decoding and Learning

8.2 Posterior Decoding

8.2.1 Motivation

Although the Viterbi decoding algorithm provides one means of estimating the hidden states underlying
a sequence of observed characters, another valid means of inference is provided by posterior decoding.

Posterior decoding provides the most likely state at any point in time. To gain some intuition for posterior
decoding, let’s see how it applies to the situation in which a dishonest casino alternates between a fair and
loaded die. Suppose we enter the casino knowing that the unfair die is used 60 percent of the time. With
this knowledge and no die rolls, our best guess for the current die is obviously the loaded one. After one
roll, the probability that the loaded die was used is given by

P(die = loaded) * P(roll = k|die = loaded)

P(die = loaded|roll = k) = P(roll = k)
roll =

. (8.6)

If we instead observed a sequence of N die rolls, how do perform a similar sort of inference? By allowing
information to flow between the N rolls and influence the probability of each state, posterior decoding is
a natural extension of the above inference to a sequence of arbitrary length. More formally, instead of
identifying a single path of maximum likelihood, posterior decoding considers the probability of any path
lying in state k at time ¢ given all of the observed characters, i.e. P(m; = k|z1,...,2,). The state that
maximizes this probability for a given time is then considered as the most likely state at that point.

It is important to note that in addition to information flowing forward to determine the most likely state
at a point, information may also flow backward from the end of the sequence to that state to augment or
reduce the likelihood of each state at that point. This is partly a natural consequence of the reversibility
of Bayes’ rule: our probabilities change from prior probabilities into posterior probabilities upon observing
more data. To elucidate this, imagine the casino example again. As stated earlier, without observing any
rolls, the statey is most likely to be unfair: this is our prior probability. If the first roll is a 6, our belief that
state; is unfair is reinforced (if rolling sixes is more likely in an unfair die). If a 6 is rolled again, information
flow backwards from the second die roll and reinforces our state; belief of an unfair die even more. The more
rolls we have, the more information that flows backwards and reinforces or contrasts our beliefs about the
state thus illustrating the way information flows backward and forward to affect our belief about the states
in Posterior Decoding.

Using some elementary manipulations, we can rearrange this probability into the following form using

Bayes’ rule:
Py =k,z1,...,2,)

m; = argmaxy P(my = klx, ..., x,) = argmazxy, Plor, o) (8.7)
Because P(x) is a constant, we can neglect it when maximizing the function. Therefore,
m; = argmaxp P(my =k, 21, ..., x¢) % P(Tya1,. .. Tp|m =k, @1, ..., Ty) (8.8)
Using the Markov property, we can simply write this expression as follows:
m; = argmazpP(my = k,x1,...,x¢) * P(T411,..., 25| = k) = argmazxy fi(t) * by (t) (8.9)

Here, we've defined fi(t) = P(m = k,21,...,2¢) and bip(t) = P(xi41,...,2n|m = k). As we will
shortly see, these parameters are calculated using the forward algorithm and the backward algorithm
respectively. To solve the posterior decoding problem, we merely need to solve each of these subproblems.
The forward algorithm has been illustrated in the previous chapter and in the review at the start of this
chapter and the backward algorithm will be explained in the next section.

8.2.2 Backward Algorithm

As previously described, the backward algorithm is used to calculate the following probability:
bi(t) = P(Tt41,- -, 2n|me = k) (8.10)

152

6.047/6.878 Lecture 7: Hidden Markov Models IT - Posterio Decoding and Learning

We can begin to develop a recursion n by expanding into the following form:

b(t) = ZP(JctH, ey Ty T = U = k) (8.11)
1

From the Markov property, we then obtain:

bk(t) = ZP(l‘tJrg, oy T |Tg41 = l) * P(7Tt+1 = l|7Tt = k) * P($t+1|’ﬂ't+1 = k) (812)
l

The first term merely corresponds to b;(t+1). Expressing in terms of emission and transition probabilities
gives the final recursion:

b (t) = Zbl(z’ + 1) * ap * e (Te41) (8.13)
1

Comparison of the forward and backward recursions leads to some interesting insight. Whereas the
forward algorithm uses the results at ¢ — 1 to calculate the result for ¢, the backward algorithm uses the
results from ¢ 4 1, leading naturally to their respective names. Another significant difference lies in the
emission probabilities; while the emissions for the forward algorithm occur from the current state and can
therefore be excluded from the summation, the emissions for the backward algorithm occur at time t + 1
and therefore must be included within the summation.

Given their similarities, it is not surprising that the backward algorithm is also implemented using a KxN
dynamic programming table. The algorithm, as depicted in Figure 8.3, begins by initializing the rightmost
column of the table to unity. Proceeding from right to left, each column is then calculated by taking a
weighted sum of the values in the column to the right according to the recursion outlined above. After
calculating the leftmost column, all of the backward probabilities have been calculated and the algorithm
terminates. Because there are KN entries and each entry examines a total of K other entries, this leads to
O(K?N) time complexity and O(KN) space, bounds identical to those of the forward algorithm.

Just as P(X) was calculated by summing the rightmost column of the forward algorithm’s DP table,
P(X) can also be calculated from the sum of the leftmost column of the backward algorithm’s DP table.
Therefore, these methods are virtually interchangeable for this particular calculation.

153

6.047/6.878 Lecture 7: Hidden Markov Models IT - Posterio Decoding and Learning

/
/
by ()T
N
\
K

* Input: X = Xq.....Xp
* Initialization: b, (N) = a,, for all k
* Iteration: by (i) = 3, e (Xi41) a by (i+1)

Termination: P(x) = 3,aq € (X;) b, (1)

Figure 8.3: The Backward Algorithm

Did You Know?

Note that even when executing the backward algorithm, forward transition probabilities are used
i.e if moving in the backward direction involves a transition from state B — A, the probability of
transitioning from state A — B is used. This is because moving backward from state B to state A
implies that state B follows state A in our normal, forward order, thus calling for the same transition
probability.

8.2.3 The Big Picture

Why do we have to make both forward and backward calculations for posterior decoding, while the algorithms
that we have discussed previously call for only one direction? The difference lies in the fact that posterior
decoding seeks to produce probabilities for the underlying states of individual positions rather than whole
sequences of positions. In seeking to find the most likely underlying state of a given position, we need to take
into account the entire sequence in which that position exists, both before and after it, as befits a Bayesian
approach - and to do this in a dynamic programming algorithm, in which we compute recursively and end
with a maximizing function, we must approach our position of interest from both sides.

Given that we can calculate both fi(t) and by (t) in 0(K2N) time and §(K N) space for all t = 1...n, we
can use posterior decoding to determine the most likely state 7} for ¢t = 1...n. The relevant expression is

154

6.047/6.878 Lecture 7: Hidden Markov Models IT - Posterio Decoding and Learning

given by
Jr (@) * by (i)
P(x)
With two methods (Viterbi and posterior) to decode, which is more appropriate? When trying to classify
each hidden state, the Posterior decoding method is more informative because it takes into account all
possible paths when determining the most likely state. In contrast, the Viterbi method only takes into
account one path, which may end up representing a minimal fraction of the total probability. At the same
time, however, posterior decoding may give an invalid sequence of states! By selecting for the maximum
probability state of each position independently, we’re not considering how likely the transitions between
these states are. For example, the states identified at time points ¢ and ¢ + 1 might have zero transition
probability between them. As a result, selecting a decoding method is highly dependent on the application
of interest.

FAQ

(8.14)

m = argmax,P(m; = klx) =

Q: What does it imply when the Viterbi algorithm and Posterior decoding disagree on the path?

A: In a sense, it is simply a reminder that our model gives us what it’s selecting for. When we seek
the maximum probability state of each independent position and disregard transitions between
these max probability states, we may get something different than when we seek to find the
most likely total path. Biology is complicated; it is important to think about what metric
is most relevant to the biological situation at hand. In the genomic context, a disagreement
might be a result of some ’funky’ biology; alternative splicing, for instance. In some cases,
the Viterbi algorithm will be close to the Posterior decoding while in some others they may
disagree.

8.3 Encoding Memory in a HMM: Detection of CpG islands

CpG islands are defined as regions within a genome that are enriched with pairs of C and G nucleotides on
the same strand. Typically, when this dinucleotide is present within a genome, it becomes methylated, and
when deamination of the cytosine occurs, as it does at some base frequency, it becomes a thymine, another
natural nucleotide, and thus cannot as easily be recognized by the cell as a mutation, causing a C to T
mutation. This increased mutation frequency at CpG islands depletes CpG islands over evolutionary time
and renders them relatively rare. Because the methylation can occur on either strand, CpGs usually mutate
into a TpG or a CpA. However, when situated within an active promoter, methylation is suppressed, and
CpG dinucleotides are able to persist. Similarly, CpGs in regions important to cell function are conserved
due to evolutionary pressure. As a result, detecting CpG islands can highlight promoter regions, other
transcriptionally active regions, or sites of purifying selection within a genome.

Did You Know?

CpG stands for [C]ytosine - [pJhosphate backbone - [G]uanine. The ’p’ implies that we are referring
to the same strand of the double helix, rather than a G-C base pair occurring across the helix.
Given their biological significance, CpG islands are prime candidates for modelling. Initially, one may
attempt to identify these islands by scanning the genome for fixed intervals rich in GC. This approach’s
efficacy is undermined by the selection of an appropriate window size; while too small of a window may not
capture all of a particular CpG island, too large of a window would result in missing many smaller but bona
fide CpG islands. Examining the genome on a per codon basis also leads to difficulties because CpG pairs
do not necessarily code for amino acids and thus may not lie within a single codon. Instead, HMMs are
much better suited to modelling this scenario because, as we shall shortly see in the section on unsupervised
learning, HMMs can adapt their underlying parameters to maximize their likelihood.

Not all HMMs, however, are well suited to this particular task. An HMM model that only considers the
single nucleotide frequencies of C’s and G’s will fail to capture the nature of CpG islands. Consider one such
HMM with the two following hidden states :

155

6.047/6.878 Lecture 7: Hidden Markov Models IT - Posterio Decoding and Learning

e '+’ state representing CpG islands

e '’ state: representing non-islands

Each of these two states then emits A, C, G and T bases with a certain probability. Although the CpG
islands in this model can be enriched with C’s and G’s by increasing their respective emission probabilities,
this model will fail to capture the fact that the C’s and G’s predominantly occur in pairs.

Because of the Markov property that governs HMM'’s, the only information available at each time step
must be contained within the current state. Therefore, to encode memory within a Markov chain, we need
to augment the state space. To do so, the individual '+’ and ’-’ states can be replaced with 4 *+’ states and
4 -7 states: A+, C+, G+, T+, A-, C-, G-, T- (Figure 8.4). Specifically, there are 2 ways to model this, and
this choice will result in different emission probabilities:

e One model suggests that the state A+, for instance, implies that we are currently in a CpG island and
the previous character was an A. The emission probabilities here will carry most of the information
and the transitions will be fairly degenerate.

e Another model suggests that the state A+, for instance, implies that we are currently in a CpG island
and the current character is an A. The emission probability here will be 1 for A and 0 for all other
letters and the transition probabilities will bear most of the information in the model and the emissions
will be fairly degenerate. We will assume this model from now on.

Did You Know?

The number of transitions is the square of the number of states. This gives a rough idea of how
increasing HMM “memory” (and hence states) scale.

The memory of this system derives from the fact that each state can only emit one character and therefore
“remembers” its emitted character. Furthermore, the dinucleotide nature of the CpG islands is incorporated
within the transition matrices. In particular, the transition frequency from C to G states is significantly
higher than from C_ to a G_ states, demonstrating that these pairs occur more often within the islands.

FAQ

Q: Since each state emits only one character, can we then say this reduces to a Markov Chain
instead of a HMM?

A: No. Even though the emissions indicate the letter of the hidden state, they do not indicate if
the state is a CpG island or not: both an A- and an A+ state emit only the observable A.

FAQ

Q: How do we incorporate our knowledge about the system while training HMM models eg. some
emission probabilities of 0 in the CpG island detection case?

A: We could either force our knowledge on the model by setting some parameters and leaving others
to vary or we could let the HMM loose on the model and let it discover those relationships.
As a matter of fact, there are even methods that simplify the model by forcing a subset of
parameters to be 0 but allowing the HMM to choose which subset.

Given the above framework, we can use posterior decoding to analyze each base within a genome and
determine whether it is most likely a constituent of a CpG island or not. But having constructed the
expanded HMM model, how can we verify that it is in fact better than the single nucleotide model? We
previously demonstrated that the forward or backward algorithm can be used to calculate P(x) for a given

156

6.047/6.878 Lecture 7: Hidden Markov Models IT - Posterio Decoding and Learning

A:1 [[A:0 [[A:0 [[A:0
C:0 ||C:1 |]|C:0 || C:0
G:0||G:0||G:1]|G:0
T: 0 T: 0 T: 0 T: 1

A:1 [[A:0 [[A:0 [[A:0
C:0 ||C:1 |]|C:0 || C:0
G:0||G:0||G:1]|G:0
T: 0 T: 0 T: 0 T: 1

Figure 8.4: HMM for CpG Islands

model. If the likelihood of our dataset is higher given the second model than the first model, it most likely
captures the underlying behavior more effectively.

However, there is one risk in complicating the model, which is overfitting. Increasing the number of
parameters for an HMM makes the HMM more likely to overfit the data and be less accurate in capturing
the underlying behavior. A common solution to this in machine learning is to use regularization, which is
essentially using fewer parameters. In this case, it is possible to reduce number of parameters to learn by
constraining all +/- transition probabilities to be the same value and all -/+ transition probabilities to be
the same value, as the transitions back and forth from the + and - states are what we are interested in
modeling, and the actual bases where the transition occurred are not that important to our model. Thus
for this constrained model we have to learn fewer parameters which leads to a simpler model and can help
to avoid overfitting.

FAQ

Q: Are there other ways to encode the memory for CpG island detection?

A: Other ideas that may be experimented with include

- Emit dinucleotides and figure out a way to deal with overlap.
- Add a special state that goes from C to G.

8.4 Learning

We saw how to score and decode an HMM-generated sequence in two different ways. However, these methods
assumed that we already knew the emission and transition probabilities. While we are always free to hazard
a guess at these, we may sometimes want to use a more data-driven, empirical approach to deriving these
parameters. Fortunately, the HMM framework enables the learning of these probabilities when provided a
set of training data and a set architecture for the model.

When the training data is labelled, estimation of the probabilities is a form of supervised learning. One
such instance would occur if we were given a DNA sequence of one million nucleotides in which the CpG
islands had all been experimentally annotated and were asked to use this to estimate our model parameters.

In contrast, when the training data is unlabelled, the estimation problem is a form of unsupervised
learning. Continuing with the CpG island example, this situation would occur if the provided DNA sequence
contained no island annotation whatsoever and we needed to both estimate model parameters and identify

157

6.047/6.878 Lecture 7: Hidden Markov Models IT - Posterio Decoding and Learning

T

P

Figure 8.5: Supervised Learning of CpG islands

A

the islands.

8.4.1 Supervised Learning

When provided with labelled data, the idea of estimating model parameters is straightforward. Suppose that
you are given a labelled sequence z1,...,xyx as well as the true hidden state sequence 71, ..., 7x. Intuitively,
one might expect that the probabilities that maximize the data’s likelihood are the actual probabilities that
one observes within the data. This is indeed the case and can be formalized by defining A; to be the number
of times hidden state k transitions to [and Fj(b) to be the number of times b is emitted from hidden state
k. The parameters 6 that maximize P(x|0) are simply obtained by counting as follows:

At
Qg = S A (8.15a)
ex(b) = —2x(0) (8.15h)

> Er(e)

One example training set is shown in Figure 8.5. In this example, it is obvious that the probability of
transitioning from B to P is 4= = % (there are 3 B to B transitions and 1 B to P transitions) and the

341
probability of emitting a G from the B state is % (there are 2 G’s emitted from the B state, 2 C’s
and 1 A)

Notice, however, that in the above example the emission probability of character T from state B is 0
because no such emissions were encountered in the training set. A zero probability, either for transitioning
or emitting, is particularly problematic because it leads to an infinite log penalty. In reality, however, the
zero probability may merely have arisen due to over-fitting or a small sample size. To rectify this issue and
maintain flexibility within our model, we can collect more data on which to train, reducing the possibility
that the zero probability is due to a small sample size. Another possibility is to use 'pseudocounts’ instead
of absolute counts: artificially adding some number of counts to our training data which we think more

accurately represent the actual parameters and help counteract sample size errors.

2 —
2+2+1

o Al = Ay + i
o Ei(b)* = Ex(b) +ri(b)

Larger pseudocount parameters correspond to a strong prior belief about the parameters, reflected in the
fact that these pseudocounts, derived from your priors, are comparatively overwhelming the observations,
your training data. Likewise, small pseudocount parameters (r << 1) are more often used when our priors
are relatively weak and we are aiming not to overwhelm the empirical data but only to avoid excessively
harsh probabilities of 0.

8.4.2 Unsupervised Learning

Unsupervised learning involves estimating parameters based on unlabelled data. This may seem impossible
- how can we take data about which we know nothing and use it to "learn”? - but an iterative approach

158

6.047/6.878 Lecture 7: Hidden Markov Models IT - Posterio Decoding and Learning

can yield surprisingly good results, and is the typical choice in these cases. This can be thought of loosely
as an evolutionary algorithm: from some initial choice of parameters, the algorithm assesses how well the
parameters explain or relate to the data, uses some step in that assessment to make improvements on the
parameters, and then assesses the new parameters, producing incremental improvements in the parameters at
every step just as the fitness or lack thereof of a particular organism in its environment produces incremental
increases over evolutionary time as advantageous alleles are passed on preferentially.

Suppose we have some sort of prior belief about what each emission and transition probability should be.
Given these parameters, we can use a decoding method to infer the hidden states underlying the provided
data sequence. Using this particular decoding parse, we can then re-estimate the transition and emission
counts and probabilities in a process similar to that used for supervised learning. If we repeat this procedure
until the improvement in the data’s likelihood remains relatively stable, the data sequence should ultimately
drive the parameters to their appropriate values.

FAQ

Q: Why does unsupervised learning even work? Or is it magic?

A: Unsupervised learning works because we have the sequence (input data) and this guides every
step of the iteration; to go from a labelled sequence to a set of parameters, the later are guided
by the input and its annotation, while to annotate the input data, the parameters and the
sequence guide the procedure.

For HMMs in particular, two main methods of unsupervised learning are useful.

Expectation Maximization using Viterbi training

The first method, Viterbi training, is relatively simple but not entirely rigorous. After picking some initial
best-guess model parameters, it proceeds as follows:

E step: Perform Viterbi decoding to find 7*
Calculate A}, Ej(b)* using pseudocounts based on the transitions and emissions observed in 7* states
given the latest parameters and observed sequence (Expectation step)

M step: Calculate the new parameters ay, eg(b) using the simple counting formalism in supervised learning
(Maximization step)

Iteration: Repeat the E and M steps until the likelihood P(x|@) converges

Although Viterbi training converges rapidly, its resulting parameter estimations are usually inferior to
those of the Baum-Welch Algorithm. This result stems from the fact that Viterbi training only considers
the most probable hidden path instead of the collection of all possible hidden paths.

Expectation Maximization: The Baum-Welch Algorithm

The more rigorous approach to unsupervised learning involves an application of Expectation Maximization
to HMM’s. In general, EM proceeds in the following manner:

Init: Initialize the parameters to some best-guess state

E step: Estimate the expected probability of hidden states given the latest parameters and observed sequence
(Expectation step)

M step: Choose new maximum likelihood parameters using the probability distribution of hidden states (Max-
imization step)

Iteration: Repeat the E and M steps until the likelihood of the data given the parameters converges

159

6.047/6.878 Lecture 7: Hidden Markov Models IT - Posterio Decoding and Learning

The power of EM lies in the fact that P(x|6) is guaranteed to increase with each iteration of the algorithm.
Therefore, when this probability converges, a local maximum has been reached. As a result, if we utilize
a variety of initialization states, we will most likely be able to identify the global maximum, i.e. the best
parameters 6. The Baum-Welch algorithm generalizes EM to HMM’s. In particular, it uses the forward and
backward algorithms to calculate P(xz]f) and to estimate Ay, and Fy(b). The algorithm proceeds as follows:

Initialization 1. Initialize the parameters to some best-guess state

Iteration 1. Run the forward algorithm

2. Run the backward algorithm

3. Calculate the new log-likelihood P(z|0)

4. Calculate Ay; and Ej(b)

5. Calculate ay; and e (b) using the pseudocount formulas
6

. Repeat until P(x|0) converges
Previously, we discussed how to compute P(x|f) using either the forward or backward algorithm’s final

results. But how do we estimate Ay, and Fjx(b)? Let’s consider the expected number of transitions from
state k to state [given a current set of parameters §. We can express this expectation as

P(my =k, ma1=1,x|0
t t

Exploiting the Markov property and the definitions of the emission and transition probabilities leads to
the following derivation:

P(l‘l e L, T = k?,TFt_;,_l = l,$t+1 . ZEN|0)
Ay = 1
=2 P(x0) (8.172)
P(ZL’l e Ly, T = k) *P(ﬂ't+1 = l7l't+1 ...(EN"]Tt,g)
= 17b
2 P(f) (470)
- Z fk(t) * P(7Tt+1 = l‘ﬂ't = I{/’) * P(.’I}t+1|71't+1 = l) * P($t+2 o IN|T41 = 1,9)
= (8.17¢)
P(x|0)
fe(t) x apy * ep(zepr) xby(t+ 1)
Ay = .1
= A Z P(l’|9) (8 7d)
A similar derivation leads to the following expression for Ej(b):
fi(t) * by (t)
1
= > B (8.18)

i|z;=b

Therefore, by running the forward and backward algorithms, we have all of the information necessary
to calculate P(x|f) and to update the emission and transition probabilities during each iteration. Because
these updates are constant time operations once P(z|f), fi(t) and by (t) have been computed, the total time
complexity for this version of unsupervised learning is §(K2N.S), where S is the total number of iterations.

FAQ

Q: How do you encode your prior beliefs when learning with Baum-Welch?

A: Those prior beliefs are encoded in the initializations of the forward and backward algorithms

160

6.047/6.878 Lecture 7: Hidden Markov Models IT - Posterio Decoding and Learning

Figure 8.6: HMM model for alignment with affine gap penalties

8.5 Using HMMs to align sequences with affine gap penalties

We can use HMM to align sequences with affine gap penalties. Recall that affine gap penalties penalizes
more to open/ start the gap than to extend it, thus the penalty of a gap of length g is r(g) = -d -(g-1)*e,
where d is the penalty to open the gap and e is the penalty to extend an already open gap.

We will look into aligning two sequences with the affine gap penalty. We are given two sequences are
X and Y, the scoring matrix S (S(xi,yj) = score of matching xi with yj), gap opening penalty of d and
gap extension penalty of e. We can map this problem into an HMM problem by using the following states,
transition probabilities and emission probabilities.

States:

There are three states involves: M (matching xi with yj), X (aligning xi with a gap), Y (aligning yj with
a gap). Also, alongside each transition, there’s an update of the i,j indices. Whenever we are in state M,
(i,j) = (i,j) + (1,1). In state X, (i,j) = (i,j) + (1,0). In state Y, (i,j) = (i,j) + (0,1).

Transition probabilities:

There are 7 transition probabilities to consider as shown in figure 6.

P(next State = M | current = M) = S(xi,yj)

P(next State = X | current = M) = d

P(next State =Y | current =M) = d

P(next State = X | current = X) = e

P(next State = M | current = X) = S(xi,yj)

P

p(

next State =Y | current = Y) = e
next State = M | current = Y) = S(xi,yj)

We can also save the transition probabilities in a transition matrix A = [aij], where aij = P(next State
=j | current = i) and > Aij =1

Emission probabilities:

The emission probabilities are:

From state M: pgiyi = p(x; aligned to y;)

From state X: q,; = p(x; aligned to gap)

From state Y: qy;= p(yjaligned to gap)

Example:

X = "VLSPADK’

161

6.047/6.878 Lecture 7: Hidden Markov Models IT - Posterio Decoding and Learning

Y = "HLAESK’

The alignment generated by the model is:
MMXXMYM

Which corresponds to:

X =’VLSPAD K’

Y ="HL_ _AESK’

Did You Know?

For classification purposes, Posterior decoding 'path’ is more informative than Viterbi path as it is a
more refined measure of which hidden states generated x. However, it may give an invalid sequence
of states, for example when not all j $->$ k transitions may be possible, it might have state(i) = j
and state(i+1) =k

8.6 Current Research Directions

e HMM’s have been used extensively in various fields of computational biology. One of the first such
applications was in a gene-finding algorithm known as GENSCAN written by Chris Burge and Samuel
Karlin [1]. Because the geometric length distribution of HMM’s does not model exonic regions well,
Burge et. al used an adaptation of HMM’s known as hidden semi-Markov models (HSMM’s). These
types of models differ in that whenever a hidden state is reached, the length of duration of that state
(d;) is chosen from a distribution and the state then emits exactly d; characters. The transition from
this hidden state to the next is then analogous to the HMM procedure except that agr = 0 for all k,
thereby preventing self-transitioning. Many of the same algorithms that were previously developed for
HMM’s can be modified for HSMM’s. Although the details won’t be discussed here, the forward and
backward algorithms can be modified to run in O(K2N?) time, where N is the number of observed
characters. This time complexity assumes that there is no upper bound on the length of a state’s
duration, but imposing such a bound reduces the complexity to O(K2N D?), where D is the maximum
possible duration of a state.

The basic state diagram underlying Burge’s model is depicted in Figure 8.7. The included diagram
only lists the states on the forward strand of DNA, but in reality a mirror image of these states is also
included for the reverse strand, resulting in a total of 27 hidden states. As the diagram illustrates, the
model incorporates many of the major functional units of genes, including exons, introns, promoters,
UTR’s and poly-A tails. In addition, three different intronic and exonic states are used to ensure that
the total length of all exons in a gene is a multiple of three. Similar to the CpG island example, this
expanded state-space enabled the encoding of memory within the model.

e A recent effort has been made to make an HMM-based approach to homology searches, called HMMER,
a viable alternative to BLAST in terms of computational efficiency. Unlike most other homology search
algorithms, HMMER, written by Sean Eddy, uses the Forward algorithm’s average over alignment un-
certainty, rather than only reporting the maximum likelihood alignment (a la Viterbi); this approach is
often better for detecting more remote homologies, as as divergence times increase, there may become
more viable ways of aligning sequences, each of them individually not sufficiently strong to be differenti-
ated from noise but together giving evidence for homology. A particularly exciting recent development is
that HMMER is now available as a web server; it can be found at http://www.ebi.ac.uk/Tools/hmmer/.

e An interesting subject that may be explored also concerns the agreement of Viterbi and Posterior
decoding paths; not just for CpG island detection but even for chromatin state detection. One may
look at multiple paths by sampling, asking questions such as:

— What is the maximum a posteriori vs viterbi path? Where do they differ?

— Can complete but maximally disjoint (from Viterbi) paths be found?

162

http://www.ebi.ac.uk/Tools/hmmer/

6.047/6.878 Lecture 7: Hidden Markov Models IT - Posterio Decoding and Learning

intergenic

region

Figure 8.7: State Space Diagram used in GENSCAN

163

6.047/6.878 Lecture 7: Hidden Markov Models IT - Posterio Decoding and Learning

8.7 Further Reading
8.8 Tools and Techniques
8.9 What Have We Learned?

Using the basic computational framework provided by Hidden Markov Models, we’ve learned how to infer the
most likely set of hidden states underlying a sequence of observed characters. In particular, a combination
of the forward and backward algorithms enabled one form of this inference, i.e. posterior decoding, in
O(KN?) time. We also learned how either unsupervised or supervised learning can be used to identify
the best parameters for an HMM when provided with an unlabelled or labelled dataset. The combination
of these decoding and parameter estimation methods enable the application of HMM’s to a wide variety
of problems in computational biology, of which CpG island and gene identification form a small subset.
Given the flexibility and analytical power provided by HMM’s, these methods will play an important role in
computational biology for the foreseeable future.

Bibliography

[1] Christopher B Burge and Samuel Karlin. Finding the genes in genomic dna. Current Opinion in Structural
Biology, 8(3):346 — 354, 1998.

164

CHAPTER
NINE

GENE IDENTIFICATION: GENE STRUCTURE, SEMI-MARKOV, CRFS

Tim Helbig (2011)
Jenny Cheng (2010)

Figures
9.1 Intergenic DNA 164
9.2 Intron/Exon Splicing 164
9.3 Delineation of Exons and Open Reading Frames 165
9.4 Hidden Markov Model Utilizing GT Donor Assumption 165
9.5 Multiple lines of evidence for gene identification 0oL 165
9.6 HMMs with composite emissions L 166
9.7 State diagram that considers direction of RNA translation 166
9.8 Conditional random fields: a discriminative approach conditioned on the input sequence . 167
9.9 Examples of feature functions L L Lo 167
9.10 Conditional probability score of an emitted sequence 167
9.11 A comparison of HMMs and CRFs 168

9.1 Introduction

After a genome has been sequenced, a common next step is to attempt to infer the functional potential of the
organism or cell encoded through careful analysis of that sequence. This mainly takes the form of identifying
the protein coding genes within the sequence as they are thought to be the primary units of function within
living systems; this is not to say that they are the only functional units within genomes as things such as
regulatory motifs and non-coding RNAs are also imperative elements.

This annotation of the protein coding regions is too laborious to do by hand, so it is automated in a
process known as computational gene identification. The algorithms underlying this process are often based
on Hidden Markov Models (HMMs), a concept discussed in previous chapters to solve simple problems such
as knowing whether a casino is rolling a fair versus a loaded die. Genomes, however, are very complicated
sets of data, replete with long repeats, overlapping genes (where one or more nucleotides are part of two or
more distinct genes) and pseudogenes (non-transcribed regions that look very similar to genes) among many
other obfuscations. Thus, experimental and evolutionary data often needs to be included into HMMs for
greater annotational accuracy, which can result in a loss of scalability or a reliance on incorrect assumptions
of independence. Alternative algorithms have been utilized to address the problems of HMMs including those
based on Conditional Random Fields (CRFs), which rely on creating a distribution of the hidden states of
the genomic sequence in question conditioned on known data. Use of CRFs has not phased out HMMs as
both are used with varying degrees of success in practice.-

1 R. Guigo (1997). “Computational gene identification: an open problem.” Computers Chem. Vol. 21.

165

6.047/6.878 Lecture 09: Gene Identification: Gene Structure, Semi-Markov, CRF's

9.2 Overview of Chapter Contents

This chapter will begin with a discussion of the complexities of the Eukaryotic gene. It will then describe
how HMMSs can be used as a model to parse Eukaryotic genomes into protein coding genes and regions that
are not; this will include reference to the strengths and weaknesses of an HMM approach. Finally, the use
of CRFs to annotate protein coding regions will be described as an alternative.

9.3 Eukaryotic Genes: An Introduction

Within eukaryotic genomes, only a small fraction of the nucleotide content actually consists of protein coding
genes (in humans, protein coding regions make up about 1%-1.5% of the entire genome). The rest of the DNA
is classified as intergenic regions (See Figure 9.1) and contains things such as regulatory motifs, transposons,
integrons and non-protein coding genes.Z

Intergenic DA

Figure 9.1: Intergenic DNA

Further, of the small fraction of the DNA that is transcribed into mRNA, not all of it is translated into
protein. Certain regions known as introns, are removed or “spliced” out of the precursor mRNA. This now
processed mRNA, containing only “exons” and some other additional modifications discussed in previous
chapters, is translated into protein. (See Figure 9.2) The goal of computational gene identification is thus
not only to pick out the few regions of the entire Eukaryotic genome that encode for proteins but also to
parse those protein coding regions into identities of exon or intron so that the sequence of the synthesized
protein can be known.

Enhancers -,
Promoter

DNA T
l Transcription
Intrans
Exon Exan Exon Exon Exon
pre-mRNA — - ?_ -
J' Splicing \’\
dice vites
Open reading
5 UTR frame 3' UTR
mRNA UTR: untramlated reglas ¥
l Translation
protein m

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 9.2: Intron/Exon Splicing

9.4 Assumptions for Computational Gene Identification

The general assumptions for computational gene identification are that exons are delineated by a sequence
AG at the start of the exon and a sequence of GT at the end of the exon. For protein-coding genes, the
start codon (ATG) and the end codons (TAA, TGA, TAG) delineate the open reading frame. (Most of these
ideas can be seen in Figure 9.3) These assumptions will be incorporated into more complex HMMs described
below.

2 “Intergenic region.” http://en.wikipedia.org/wiki/Intergenic_region

166

http://en.wikipedia.org/wiki/Intergenicregion
http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 09: Gene Identification: Gene Structure, Semi-Markov, CRF's

Locate the splice sites at the boundaries of each exon.

.]
7

For protein-coding genes: locate the start and stop
codens delineating the open reading frame.

ae

T

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 9.3: Delineation of Exons and Open Reading Frames

9.5 Hidden Markov Models

A toy Hidden Markov Model is a generative approach to model this behavior. Each emission of the HMM
is one DNA base/letter. The hidden states of the model are intergenic, exon, intron. Improving upon this
model would involve including hidden states DonorG and DonorT. The DonorG and DonorT states utilize
the information that exons are delineated by GT at the end of the sequence before the start of an intron.
(See Figure 9.4 for inclusion of DonorG and DonorT into the model)

1. intergenic e T—
a=laaeicecen)

N
4. DonorG 5. DonorT
ey =[0010] es=[0001]
desired parse

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 9.4: Hidden Markov Model Utilizing GT Donor Assumption

The e in each state represents emission probabilities and the arrows indicate the transition probabilities.
Aside from the initial assumptions, additional evidence such as evolutionary conservation and experi-
mental mRNA data can help create an HMM to better model the behavior. (See Figure 9.5)

Multiple lines of evidence for gene identification

i

Scan 2k} |
o1z | teaasnol soeioml enssonl seasool seassool esswno| eeansool esemool esersool eeanocol sbansool
GAPDH - 5N -1

o GE Pavsird in 5-Bass Wisdows

I Pl N i, A ot o 0 i gt P s i e e
o
Cpll lancs {slands < 300 Bases am Light Groen)
cea: 122

4 Placentsl Marmma! Basswess Conssrastion try Pyl
[PTRENSY W BT T SRR R T
"

Your Saguance frem Biat Saarch

sl - -

Each line of evidence has pros and cons:
*Primary sequence signals and compaositional properties
*Applicable to almost all genes; no additional data needed
sLimited power to distinguish individual exons
*Evolutionary conservation
*Much better resolution, plus evidence of biclogical function
*MNot all genes are conserved, not all conserved regions are genes
*Experimental evidence: mRNA sequences, etc.
*Can provide highly precise structures
+Difficult/expensive to obtain; gene may be rarely/lowly expressed

Henee, we'd like to combing all of these lines of evidence.

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faqg-fair-use/.

Figure 9.5: Multiple lines of evidence for gene identification

167

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 09: Gene Identification: Gene Structure, Semi-Markov, CRF's

Combining all the lines of evidence discussed above, we can create an HMM with composite emissions in
that each emitted value is a “tuple” of collected values. (See Figure 9.6)

HMMs with composite emissions
transition
probabilities

eyoz = Prizily)
in our toy model:
z; € {A,C.G, T}
= [Py: & Py Py s Py «]

wom
emission
probabilicies

However, it's perfectly OK for 2 to take on ‘tuple’ values.
Z; = {DNA letter at position i,
1 if the same letter appears in the mouse genome / 0 otherwise
1 if an mRNA from heart tissue aligns / 0 otherwise)
c A @ T A € T 6 T A
el 0 @ 1 1 .- 0 1 0 0 0 -
I O T 11 0 0 0

W¥e just need to specify Pr(z, i)

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 9.6: HMMs with composite emissions

A few assumptions of this composite model are that each new emission “feature” is independent of the
rest. However, this creates the problem that with each new feature, the tuple increases in length, and the
number of states of the HMM increases exponentially, leading to a combinatorial explosion, which thus means
poor scaling. (Examples of more complex HMMs that can result in poor scaling can be found in Figure 9.7)

More realistic state diagrams

4 geneprediction.org/book Nmn

Burge & Karlin 1997

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 9.7: State diagram that considers direction of RNA translation

9.6 Conditional Random Fields

Conditional Random Fields, CRFs, are an alternative to HMMs. Being a discriminative approach, this type
of model doesnt take into account the joint distribution of everything, as does a poorly scaling HMM. The
hidden states in a CRF are conditioned on the input sequence. (See Figure 9.8)%

3Conditional Random Field. Wikipedia. http://en.wikipedia.org/wiki/Conditional random_field

168

http://en.wikipedia.org/wiki/Conditionalrandom�eld
http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 09: Gene Identification: Gene Structure, Semi-Markov, CRF's

(X, Y,i) = exp (Z ."\.'cfk{.ls'i—'.-y:: i,X
Pr{¥|X) o [w(X.Y.d)

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 9.8: Conditional random fields: a discriminative approach conditioned on the input sequence

A feature function is like a score, returning a real-valued number as a function of its inputs that reflects
the evidence for a label at a particular position. (See Figure 9.9) The conditional probability of the emitted
sequence is its score divided by the total score of the hidden state. (See Figure 9.10)

1 if y; = exon and position i is conserved in mouse

Silgion e, X) = {

0 otherwise

1 if g = exon and position i is conscrved in rat
0 otherwise

J'z(.\‘,r._:=r;-=f.-x}—{

Falwior. w1, X) = # of mRNA sequences aligning to position i (if y; = exon; 0 otherwise)

Figure 9.9: Examples of feature functions

1 2 P
Pr(Y|X) = 7% [[v(X.Y,i) where Z(Xx)=> [[v(X,Y", i)
i ¥+ i
Figure 9.10: Conditional probability score of an emitted sequence

Each feature function is weighted, so that during the training, the weights can be set accordingly.

The feature functions can incorporate vast amounts of evidence without the Naive Bayes assumption of
independence, making them both scalable and accurate. However, training is much more difficult with CRF's
than HMMs.

9.7 Other Methods

Besides HMMs and CRFs, other methods do exist for computational gene identification. Semi-markov models
generate variable sequence length emissions, meaning that the transitions are not entirely memory-less on
the hidden states.

Max-min models are adaptations of support vector machines. These methods have not yet been applied

to mammalian genomes.

4For better understanding of SVM: http://dspace.mit.edu/bitstream/handle/1721.1/39663/6-034Fall-
2002/OcwWeb/Electrical-Engineering-and-Computer-Science/6-034 Artificial-IntelligenceFall2002/ Tools /detail /svmachine.htm

169

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 09: Gene Identification: Gene Structure, Semi-Markov, CRF's

9.8 Conclusion

Computational gene identification, because it entails finding the functional elements encoded within a
genome, has a lot of practical significance as well as theoretical significance for the advancement of bio-
logical fields.

The two approaches described above are summarized below in Figure 9.11:

A comparison

HMM CRF
Tff"(Xr Y'T'} = Oy Cyiaag ’!)DEX, Y.!.) = Exp Z)‘kfk(yi—l_-'yé,i,X}
k=1

Pr(X,Y) = [[v(X,Y4)

| BREYS
e
Pr(Y|X) = ﬁﬂw(x, Y,4) Pr(Y|X) = ﬁﬂp(}f Y, i)
Pr(X) =) [Ju(x,v,9) z(x) =) [[vx.v,9)
S Y Y 4

Q: How do we compute this efficiently?
A: Forward algorithm. CRFs have a direct analog (Viterbi too)

/\1 = 1: fl(yf—llyisis :L') = IOg (a'?-!i—l 'Eyi:-l‘u) = {HMM} < {CR‘F}

Figure 9.11: A comparison of HMMs and CRFs

9.8.1 HMM

e generative model

e randomly generates observable data, usually with a hidden state
e specifies a joint probability distribution

o P(z,y) = P(zly)P(y)

e sometimes hard to model dependencies correctly

e hidden states are the labels for each DNA base/letter

e composite emissions are a combination of the DNA base/letter being emitted with additional evidence

9.8.2 CRF

e discriminative model
e models dependence of unobserved variable y on an observed variable x

* Pylz)

hard to train without supervision

e more effective for when the model doesnt require joint distribution

170

6.047/6.878 Lecture 09: Gene Identification: Gene Structure, Semi-Markov, CRF's

In practice, the resulting gene specification using CONTRAST, a CRF implementation, is about 46.2%
at its maximum. This is because in biology, there are a lot of exceptions to the standard model, such as
overlapping genes, nested genes, and alternative splicing. Having models include all of those exceptions
sometimes yields worse predictions; this is a non-trivial tradeoff. However, technology is improving and
within the next five years, there will be more experimental data to fuel the development of computational
gene identification, which in turn will help generate a better understanding of the syntax of DNA.

9.9 Current Research Directions
9.10 Further Reading

9.11 Tools and Techniques

9.12 What Have We Learned?

Bibliography
1.R. Guigo (1997). “Computational gene identification: an open problem.”
2. “Intergenic region.” http://en.wikipedia.org/wiki/Intergenic_region
3.Conditional Random Field. Wikipedia. http://en.wikipedia.org/wiki/Conditional random_field
4.http://dspace.mit.edu/bitstream /handle/1721.1/39663/6-034Fall-2002/OcwWeb /Electrical-Engineering-
and-Computer-Science/6-034 Artificial-IntelligenceFall2002/ Tools/detail /svmachine.htm

171

http://en.wikipedia.org/wiki/Intergenicregion
http://en.wikipedia.org/wiki/Conditionalrandom�eld

6.047/6.878 Lecture 09: Gene Identification: Gene Structure, Semi-Markov, CRF's

172

CHAPTER
TEN

RNA FOLDING

Guest Lecture by

Stefan Washietl

Scribed by Sam Sinaei (2010)
Scribed by Archit Bhise (2012)
Scribed by Eric Mazumdar (2014)

Figures

10.1 Graphical representation of the hierarchy of RNA strucure complexity 175

10.2 The typical representation of RNA secondary structure in textbooks. It clearly shows the
secondary substructure in RNA. 175

10.3 Graph drawing where the back-bone is a circle and the base pairings are the arcs within
the circle. Note that the graph is outer-planar, meaning the arcs do not cross. 175

10.4 A machine readable dot-bracket notation, in which for each paired nucleotide you open a
bracket(and close it when you reach its match) and for each unpaired element you have a

10.5 A matrix representation, in which you have a dot for each pair. 176

10.6 Mountain plot, in which for pairs you go one step up in the plot and if not you go one step

totheright. 176
10.7 Example of a scoring scheme for base pair matches. Note that G-U can form a wobble pair
dn RNA L e 176
10.8 The recursion formula for Nussinov algorithm, along with a graphical depiction of how it
CWOTKS. . . e e e 177

10.9 The diagonal is initialized to 0. Then, the table is filled bottom to top, left to right
according to the recurrence relation. In this example, complimentary base pairings are
scored as -1 and non-complementary pairings are scored as 0. The optimal score for the
entire sequence is found in the upper right corner. 178

10.10The traceback matrix K;;, filled during the recursion, holds the optimal secondary structure
when k is paired with 4 for a subsequence [4, j]. If ¢ is unpaired in the optimal structure,

Kii =0, . o 178
10.11Stacking between neighboring base pairs in RNA. The flat aromatic structure of the base
causes quantum interactions between stacked bases and changes its physical stability. . . . 178

10.12Various internal substructures in a folded RNA. A hairpin is consisted of a terminal loop
connected to a paired region, an internal loop is an unpaired region within the paired
region. A Bulge is a special case of an interior loop with a single mis-pair. a Multi loop is
a loop which consists of multiple of these components (in this example two hairpins and a
paired region, all connected to aloop). oo Lo 179

6.047/6.878 Lecture 08: RNA Structure

10.13F describes the unpaired case, C' is described by one of the three conditions : hair-
pin,interior loop, or a composition of structures i.e. a multi loop. M' is a multi loop
with only one component, where are M might have multiple of them. The | icon is nota-
tion for “or”. L e e 179

10.14A) Single sequence: Terminal symbols are bases or base-pairs, Emission probabilities are
base frequencies in loops and paired regions B) Phylo-SCFG: Terminal symbols are single
or paired alignment columns, Emission probabilities calculated from phylogenetic model
and tree using Felsenstein’s algorithmWe to try to better understand RNA-RNA interactions.183

10.15We can study kinetics and folding pathways in further depth. 184
10.16 We can investigate pseudoknots. L L Lo L Lo 184
10.17We can try to better understand RNA-RNA interactions. 185

10.1 Motivation and Purpose

RNA (Ribonucleic acid) as a molecule has been posited as being the origin of life. Though it was long
considered nothing more than an intermediary between the code in the DNA and the functional proteins,
RNA has been shown to serve many different functions, spanning the entire realm of genomics. Part of the
cause for its versatility is the many possible conformations that RNA can be found in. Being made up of a
more flexible backbone than DNA, RNA exhibits interesting and varied structures that can inform us on its
many purposes. Certain structures of RNA, for example, lend themselves to catalytic activities while others
serve as the tRNA, and mRNA that are so important during the process of converting the DNA’s code
into proteins The aim for this chapter is to learn methods that can explain, or even predict the secondary
structure of RNA in the hope that they will shed light on the many properties of this versatile molecule.

To accomplish this, we first look at RNA from a biological perspective and explain the known biological
roles of RNA. Then, we study the different methods that exist to predict RNA structure. There are two
main approaches to the RNA folding problem: 1) predicting the RNA structure based on thermodynamic
stability of the molecule, and looking for a thermodynamic optimum 2) probabilistic models which try to
find the states of the RNA molecule in a probabilistic optimum.

Finally, we can use evolutionary data in order to increase the confidence of our predictions by these
methods.

10.2 Chemistry of RNA

RNA consists of a 5-carbon sugar, ribose, which is attached to an organic base (either adenine, uracil,
cytosine or guanine). There are two biochemical differences between DNA and RNA:

1. the 5-carbon sugar has no hydroxyl group in the 5 position

2. the uracil presence in the RNA which is the non-methylated form of thymine instead of just thymine.
The presence of ribose in RNA makes its structure more flexible than DNA, letting the RNA molecule fold
and make bonds within itself which makes the single stranded RNA more than single stranded DNA.

174

6.047/6.878 Lecture 08: RNA Structure

10.3 Origin and Functions of RNA

People initially believed that RNA only acted as an intermediate between the DNA code and the protein,
however, in early 80s, the discovery of catalytic RNAs (ribozymes) expanded the perspective on what this
molecule can actually do in living things. Sidney Altman and Thomas Cech discovered the first ribozyme,
RNase P which is able to cleave off the head of tRNA. Self-splicing introns (group I introns) were also one
of the first ribozymes that were discovered. They do not need any protein as catalysts to splice. Single or
double stranded RNA also serves as the information storage and replication agent in some viruses.

The RNA World Hypothesis, proposed by Walter Gilbert in 1986, suggests that RNA was the precur-
sor to modern life. It relies on the fact that RNA can have both information storage, and catalytic activity
at the same time, both of which are fundamental characteristics of a living system. In short, the RNA World
hypothesis says that, because RNA can have a catalytic role in cells and there is evidence that RNA can
self-replicate without depending on other molecules, an RNA World is a plausible precursor of today’s DNA
and protein based world. Although to this day, there are no natural self-replicating RNA found in vivo, self-
replicating RNA molecules have been created in lab via artificial selection. For example, a chimeric construct
of a natural ligase ribozyme with an in vitro selected template binding domain has been shown to be able
to replicate at least one turn of an RNA helix. For this reason, Gilbert proposed RNA as a plausible origin
for life. The theory suggests that through evolution, RNA has passed its information storage role to DNA, a
more stable molecule and one less prone to mutation. RNA then assumed the role of intermediate between
DNA and proteins, which took over some of RNA’s catalytic role in the cell. Thus, scientists sometimes
refer to RNA as molecular fossils. Even though RNA has lost a lot of its information-storage functionality
to DNA and its functional properties to proteins, RNA still plays an integral role in the living organisms.
For instance, the catalytic portion of the ribosome i.e. the main functional part of the ribosomal complex
consists of RNA. RNA also has regulatory roles in the cell, and basically serves as an agent for the cell to
sense and react to the environment.

10.3.1 Riboswitches

Regulatory RNAs have different families, and one of the most important ones are riboswitches. Ri-
boswitches are involved in different levels of gene regulation. In some bacteria, important regulations are
done by simple RNA families. One example is the thermosensor in Listeria, a riboswitch that blocks the
ribosomes at low temperature (since the hydrogen bonds are more stable). The RNA then forms a semi-
double stranded conformation which does not bind to the ribosome and turns the ribosome off. At higher
temperatures (37 C), the double strand opens up and allows ribosome to attach to a certain region in the
riboswitch, making translation possible once again. Another famous Riboswitch is the adenine Riboswitch
(and in general purine riboswitches) , which regulate protein synthesis. For example the ydhl mRNA which
has a terminator stem at the end and blocks it from translation, but when the Adenine concentration in-
creases in the cell, it binds to the mRNA and changes its conformation such that the terminator stem
disappears.

10.3.2 microRNAs

There are other sorts of RNAs such as microRNAs, a more modern variant of RNA (relatively). Their
discovery unveiled a novel non-protein layer of gene regulation (e.g. the EVF-2 and HOTAIR miRNAs).
EVF-2 is interesting because its transcribed from an ultra conserved enhancer, and separates from the
transcription string by forming a hairpin, and thereafter returns to the very same enhancer (along with a
protein DIx-2) and regulates its activity. HOTAIR RNA induces changes in chromatin state, and regulates

175

6.047/6.878 Lecture 08: RNA Structure

the methylation of Histones, which in turn silences the HOX-D cluster.

10.3.3 Other types of RNA

We can also look at types of noncoding RN As.

piRNAs are the largest class of small non-coding RNA molecules in animals. They are primarily involved
in the silencing of transposons, but likely have a lot of functions. They are also involved in epigenetic
modications, and post-transcriptional gene silencing.

IncRNAs are long transcripts produced that operate functionally as RNAs and are not translated into
proteins. Many studies implicate IncRNAs in epigenetic modications, maybe acting as a targeting mechanism
or as a molecular scaffold for Polycomb proteins. IncRNAs are likely to possess numerous functions, many
are nuclear, many are cytoplasmic.

10.4 RNA Structure

We have learned about different functions of RNA, and it should be clear by now how fundamental the role of
RNA in living systems is. Because it is impossible to understand how RNA actually does all these activities
in the cell, without knowing what its structure is, in this part we will look into the structure of RNA.

RNA structure can be studied in three different levels 10.1:

1. Primary structure: the sequence in which the bases (U, A, C, G) are aligned.

2. Seconary structure: the 2-D analysis of the [hydrogen] bonds between different parts of RNA. In other
words, where RNA becomes double-stranded, where RNA forms a hairpin or a loop or other similar
forms.

3. Tertiary structure: the complete 3-D structure of RNA, i.e. how the string bends, where it twists and
such.

As mentioned before, the presence of ribose in RNA enables it to fold and create double-helixes with
itself. The primary structure is fairly easy to obtain through sequencing the RNA. We are mainly interested
in understanding the secondary structure for RNA: where the loops and hydrogen bonds form and create
the functional attributes of RNA. Ideally, we would like to study the tertiary structure because this is the
final state of the RNA, and what gives it its true functionality. However, the tertiary structure is very hard
to compute and beyond the scope of this lecture.

Even though studying the secondary structure can be tricky, there are some simple ideas that work quite
well in predicting it. Unlike proteins, in RNA, most of the stabilizing]free energy for the molecule comes from
its secondary structure (rather than tertiary in case of proteins). RNAs initially fold into their secondary
structure and then form their tertiary structure, and therefore there are very interesting facts that we can
learn about a certain RNA molecule by just knowing its secondary structure.

Finally, another great property of the secondary structure is that it is usually well conserved in evolution,
which helps us improve the secondary structure predictions and also to find ncRNA (non-coding RNA)s.
There are widely used representations for the secondary structure of RNA:

176

6.047/6.878 Lecture 08: RNA Structure

)
B

7)

&
¢ o C;:"f:"’-i‘j) ?@@3‘@@@)
- t«(i) e E @

=
=2
=
o

Primary Secondary Tertiary

© Stefan Washietl. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 10.1: Graphical representation of the hierarchy of RNA strucure complexity

o6,

Y

o4

Ak

© Stefan Washietl. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 10.2: The typical representation of RNA secondary structure in textbooks. It clearly shows the
secondary substructure in RNA.

© Stefan Washietl. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 10.3: Graph drawing where the back-bone is a circle and the base pairings are the arcs within the
circle. Note that the graph is outer-planar, meaning the arcs do not cross.

Formally: A secondary structure is a vertex labeled graph on n vertices with an adjacency matrix A = (a;;)
fulfilling:

e a; ;41 =1forl <i<nl (continuous backbone)

e For each 4,1 < i < N there is at most one a;; = 1 where j = i + / — 1(a base only forms a pair with
one other at the time)

o If a;; = ap = landi < k < jtheni < 1 < j (ignore pseudo knots)

177

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 08: RNA Structure

ACACCACCUCAUAUAAUCY AUTAUG JAAGUUUCUAC CCGUAAP A CUAUGCAGGCAAGUGA
RTORTTITTIIRNON St [isetbbatn e SIS RTINS
© Stefan Washietl. All rights reserved. This content is excluded from our Creative

Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 10.4: A machine readable dot-bracket notation, in which for each paired nucleotide you open a
bracket(and close it when you reach its match) and for each unpaired element you have a dot.

AFCO167

© Stefan Washietl. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 10.5: A matrix representation, in which you have a dot for each pair.

I —

© Stefan Washietl. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 10.6: Mountain plot, in which for pairs you go one step up in the plot and if not you go one step to
the right.

10.5 RNA Folding Problem and Approaches

Finally, we get to the point where we want to study the RNA structure. The goal here is to predict the
secondary structure of the RNA, given its primary structure (or its sequence). The good news is we can
find the optimal structure using dynamic programming. Now in order to set up our dynamic programming
framework we would need a scoring scheme, which we would create using the contribution of each base pairing
to the physical stability of the molecule. In other words, we want to create a structure with minimum free
energy, in in our simple model we would assign each base pair an energy value. 10.7

| A C G U
AT+10 +10 +10 -2
C|+10 +10 -3 +10
G|+10 -3 +10 -1
Ul -2 +10 -1 +10

Figure 10.7: Example of a scoring scheme for base pair matches. Note that G-U can form a wobble pair in
RNA.

The optimum structure is going to be the one with a minimum free energy and by convention negative
energy is stabilizing, and positive energy is non-stabilizing. Using this framework, we can use dynamic
programming (DP) to calculate the optimal structure because 1) this scoring scheme is additive 2) we
disallowed pseudo knots, which means we can divide the RNA into two smaller ones which are independent,
and solve the problem for these smaller RNAs.

We want to find a DP matrix F;;, in which we calculate the minimum free energy for subsequence i to

178

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 08: RNA Structure

4. The first approach to this is Nussinov’s algorithm.

10.5.1 Nussinov’s algorithm

The recursion formula for this problem was first described by Nussinov in 1978.

The intuition behind this algorithm is as follows: given a subsequence [i,j], there is either no edge
connecting to the ith base (meaning it is unpaired) or there is some edge connecting the ith base to the
kth base where i < k < j (meaning the ith base is paired to the kth base). In the case were the ith base is
unpaired, the energy of the subsequence, F; ;, simply reduces to the energy of the subsequence from 7 + 1
to j, Eiy1,;. This is the first term of the Nussinov recurrence relation. If the ith base is paired to the kth
base, however, then E; ; reduces to the energy contribution of the ¢, k pairing, 8; i, plus the energy of the
subsequences formed by dividing [i + 1, j] around k, E;11 ,—1 and Ejt1,5. Choosing the £ which minimizes
that value yields the second term of the Nussinov recurrence relation. The optimal subsequence energy,
therefore, is the minimum of the subsequence energy when the ith base is paired with the optimal kth base
and when the ith base is unpaired. This produces the overall relation described in figure 10.8.

Ejj = min {E‘+”’kﬁ”"1 {Eivtuk—1 + B+ .34.‘(}}
M=

» Ej ...Minimum energy of subsequence i...j
» By ...Energy contribution of pair (i,j)
» [is 1if bases / and j can pair and 0 otherwise.

Figure 10.8: The recursion formula for Nussinov algorithm, along with a graphical depiction of how it works.

From this recurrence relation, we can see that the DP matrix will contain entries for all 7,5 where
1<i<nandi<j<nand n is the length of the RNA sequence. In other words, the matrix will be
n *n and only contain entries in the upper right triangle. The matrix is first initialized such that all values
on the diagonal are equal to zero. We then iterate over ¢ = n — 1...1 and j = i + 1...n (bottom to top, left
to right) and fill each entry according to the recurrence relation. The overall score is the score of the [1,n]
subsequence, which is the upper right corner of the matrix. Figure 10.9 illustrates this procedure.

When we calculate the minimum free energy, we are often interested in the corresponding fold. In order
to recover the optimal fold from the DP algorithm, a traceback matrix is used to store pointers from each
entry to its parent entry. Figure 10.10 describes the backtracking algorithm.

This model is very simplistic and there are some limitations to it. Nussinov’s algorithm, as implemented
naively, does not take into account some of the limiting aspects of RNA folding. Most importantly, it does
not consider stacking interactions between neighboring pairs, a vital factor (even more so than hydrogen

bonds) in RNA folding. Figure 10.11

Therefore, it is desirable to integrate biophysical factors into our prediction. One improvement, for
instance, is to assign energies to graph faces (structural elements in figure 10.12), rather than single base
pairs. The total energy of the structure then becomes the sum of the energies of the substructures. The
stacking energies can be calculated by melting oligonucleotides experimentally.

179

6.047/6.878 Lecture 08: RNA Structure

- Minimum free energy

Anno oo
L

» Folding the sequence AGGGCCCTTTAAA

» Simple energy model with §; = —1 for all base-pairs (i.e.
finds maximum matching structure)

» Backtracking finds the following optimal structure:

R(ONI{(B)]

© Stefan Washietl. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 10.9: The diagonal is initialized to 0. Then, the table is filled bottom to top, left to right ac-
cording to the recurrence relation. In this example, complimentary base pairings are scored as -1 and
non-complementary pairings are scored as 0. The optimal score for the entire sequence is found in the upper
right corner.

function Backtrack(i.j)
begin
if ¢ j then return
if K O then Backtrack(i+ 1.5) else

i K

Figure 10.10: The traceback matrix Kj;, filled during the recursion, holds the optimal secondary structure
when k is paired with ¢ for a subsequence [z, j]. If 7 is unpaired in the optimal structure, K;; = 0.

G-C

G
Cunmc)

Single base-pair Stacking between
neigboring pairs

© Stefan Washietl. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 10.11: Stacking between neighboring base pairs in RNA. The flat aromatic structure of the base
causes quantum interactions between stacked bases and changes its physical stability.

10.5.2 Zuker Algorithm

Therefore, we use a variant which includes stacking energies to calculate the RNA structure. This is called the
Zuker algorithm. Like Nussinovs, it assumes that the optimal structure is the one with the lowest equilibrium
free energy. Nevertheless, it includes the total energy contributions from the various substructures which is
partially determined by the stacking energy. Some modern RNA folding algorithms use this algorithm for
RNA structure predictions.

In the Zuker algorithm, we have four different cases to deal with. Figure 10.13 shows a graphical outline
of the decomposition steps. The procedure requires four matrices. Fj; contains the free energy of the overall
optimal structure of the subsequence z;;. The newly added base can be unpaired or it can form a pair. For

180

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 08: RNA Structure

® Slacked bases
4 H Hairpin loop
=3 | Interior locp

3 Bulge

ML Multi loop

i —

TP

© Stefan Washietl. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 10.12: Various internal substructures in a folded RNA. A hairpin is consisted of a terminal loop
connected to a paired region, an internal loop is an unpaired region within the paired region. A Bulge is a
special case of an interior loop with a single mis-pair. a Multi loop is a loop which consists of multiple of
these components (in this example two hairpins and a paired region, all connected to a loop).

the latter case, we introduce the helper matrix Cj;, that contains the free energy of the optimal substructure
of z;; under the constraint that ¢ and j are paired. This structure closed by a base-pair can either be a
hairpin, an interior loop or a multi-loop.

The hairpin case is trivial because no further decomposition is necessary. The interior loop case is also
simple because it reduces again to the same decomposition step. The multi-loop step is more complicated.
The energy of a multi loop depends on the number of components, i.e. substructures that emanate from the
loop. To implicitly keep track of this number, there is a need for two additional helper matrices. M;; holds
the free energy of the optimal structure of x;; under the constraint that x;; is part of a multi loop with at
least one component. Milj holds the free energy of the optimal structure of ;; under the constraint that xz;;
is part of a multi-loop and has exactly one component closed by pair (i, k) with i < k < j. The idea is to
decompose a multi loop in two arbitrary parts of which the first is a multi-loop with at least one component
and the second a multi-loop with exactly one component and starting with a base-pair.

These two parts corresponding to M and M' can further be decomposed into substructures that we
already know, i.e. unpaired intervals, substructures closed by a base-pair,or (shorter) multi-loops. (The
recursions are also summarized in 10.13.

F F C £
i i il i k k+lf

—t L .| St—0- | .
[

[R R P

i i i k
AaAMa M, M
= € e [e
i i iow ot Powowtl gy
M M e
L e e - ——»
i i1 i
Fy = min {r, e M0 Gy + Fy 1,}
c, =min { WS, min Gy £ ISk), min Mg M) a}
! ekl i<u<y urld
My _mu‘{ min (4 —i+1)6+Cyoqy+b, min M, +Cyq,+b M, 4+ '3}
! ieu) <o))

y =min{M!,_, +c. Cj+b}

© Stefan Washietl. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 10.13: F describes the unpaired case, C' is described by one of the three conditions : hairpin,interior
loop, or a composition of structures i.e. a multi loop. M is a multi loop with only one component, where
are M might have multiple of them. The | icon is notation for “or”.

In reality, however, at room temperature (or cell temperature), RNA is not actually in one single state,
but rather varies in a Thermodynamic ensemble of structure. Base pairs can break their bonds quite easily,
and although we might find an absolute optimum in terms of free energy, it might be the case that there is
another sub-optimal structure which is very different from what e predicted and has an important role in

181

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 08: RNA Structure

the cell. To fix the problem we can calculate the base pair probabilities to get the ensemble of structures,
and then we can have a much better idea of what the RNA structure probably looks like. In order to do
this, we utilize the Boltzman factor:

Prob(s) — B ACS)/RT)

This gives us the probability of a given structure, in a thermodynamic system. We need to normalize
the temperature using the partition function Z,which is the weighted sum of all structures, based on their
Boltzman factor:

Z = exp(-AG(S)/RT)
S

We can also represent this ensemble graphically, using a dot plot to visualize the base pair probabilities.
To calculate the specific probability for a base pair (4,5) , we need to calculate the partition function, which
is given by the following formula :

_ ’Z\rjzfﬂ,,,q EXP(*»@U/RT)
Pj = Z

To calculate Z (the partition function over the whole structure), we use the recursion similar to the
Nussinovs Algorithm (known as McCaskill Algorithm).The inner partition function is calculated using the
formula:

ZU = ZJJru' + Z Z;+1‘_k71zk+1.; exD(fﬁik/RT)
1<k
Ny =i

With each of the additions corresponding to a different split in our sequence as the next figure illustrates.
Note that the addition are multiplied to the energy functions since it is expressed as a exponential.

7N
| "y -
i+

J i i+l kI k k+f i

Similarly the outer partition function is calculated with a the same idea using the formula:

2ﬁ=l\r}j+1 + 0y fk4'+1exp(_ﬁk.j+1/RT)zk+L{—1
HK::T(;L

+ Y Zigexp(—Brja1/RT)Z 241
et

corresponding to different splits in the area outside the base pairs (i, 7).

182

6.047/6.878 Lecture 08: RNA Structure

10.6 Evolution of RNA

It is useful to understand the evolution of RNA structure, because it unveils valuable data, and can also give
us hints to refine our structure predictions. When we look into functionally important RNAs over time, we
realize their nucleotides have changed at some parts, but their structure is well-conserved.

In RNA there are a lot of compensatory mutations and consistent mutations. In a consistent
mutation, the structure doesnt change e.g. an AU pair mutates to form a G pair. In a compensatory
mutation there are actually two mutations, one disrupts the structure, but the second mutation restores
it, for example an AU pair changes to a CU which does not pair well, but in turn the U mutates to a G
to restore a CG pair. In an ideal world, if we have this knowledge, this is the be the key to predict the
RNA structure, because evolution never lies. We can calculate the mutual information content for two
different RNAs and compare it. In other words, you compare the probabilities of two base pair structures
agreeing randomly vs. if they have evolved to be conserve the structure.

The mutual information content is calculated via this formulas:

fi(XY)
Mi;j = ; fi(XY)log 7 6(])

If we normalize these probabilities, and store the MI in bits, we can plot it in a 3D model and track the
evolutionary signatures. In fact, this was the method for determining the structure of ribosomal RNAs long
before they were found by crystallography.

The real problem is that we dont have so much information, so what we usually do is combine the folding
prediction methods with phylogenetic information in order to get a reliable prediction. The most common
way to do this is to combine to Zuker algorithm with some covariance scores. For example, we add stabilizing
energy if we have a compensatory mutation, and destabilizing energy if we have a single nucleotide mutation.

10.7 Probabilistic Approach to the RNA Folding Problem

RNA-coding sequence inside the genome Finding RNA-coding sequences inside the genome is a very
hard problem. However there are ways to do it. One way is to combine the thermodynamic stability
information, with a normalized RN Afold score and then we can do a Support Vector Machine (SVM)
classification, and compare the thermodynamic stability of the sequence to some random sequences
of the same GC content and the same length and see how many standard deviations is the given
structure more stable that the expected value.

We can combine it with the evolutionary measure and see if the RNA is more conserved or not. This
gives us (with relative accuracy) an idea if the genomic sequence is actually coding an RNA.

We have studied only half of the story. Although the thermodynamic approach is a good way (and the
classic way) of folding the RNAs, some part of the community like to study it from a different aspect.

Lets assume for now that we dont know anything about the physics of RNA or the Boltzman factor.
Instead, we look into the RNA as a string of letters for which we want to find the most probable structure.
We have already learned about the Hidden Markov Models in the previous lectures. They are a nice way
to make predictions about the hidden states of a probabilistic system. The question is can we use Hidden
Markov models for the RNA folding problem? The answer is yes.

183

6.047/6.878 Lecture 08: RNA Structure

We can represent RNA structure as a set of hidden states of dots and brackets (recall the dot-bracket
representation of RNA in part 3). There is an important observation to make here: the positions and the
pairings inside the RNA are not independent, so we cannot simply have a state of an opening bracket without
any considerations of the events that are happening downstream.

Therefore we need to extend the HMM framework to allow for nested correlations. Fortunately, the
probabilistic framework to deal with such a problem already exists. It is known as stochastic context-free
grammar (SCFG).

Context Free Grammar in a nutshell
You have:

e Finite set of non-terminal symbols (states) e.g. {4, B, C'} and terminal symbols e.g. {a,b,c}
e Finite set of Production rules. e.g. {A — aB,B — AC, B — aa,— ab}
e An initial (start) nonterminal

You want to find a way to get from one state to another (or to a terminal). A — aB — aAC —
aaaC — aaaab

In a stochastic CFG, the only difference is that each relation has a certain probability.e.g. P(B —
AC) =0.25 P(B — aa) = 0.75

Phylogenetic evaluation is easily combined with SCFGs, since there are many probabilistic models for
phylogenetic data. The Probabilistic models are not discussed in detail in this lecture but the following
picture basically gives an analogy between the Stochastic models and the methods that we have see so far
in the class.

Analogies to thermodynamic folding:

— CYK <+ Minimum Free energy (Nussinov/Zuker)
— Inside/outside algorithm <« Partition functions (McCaskill)

Analogies to Hidden Markov models:

— CYK Minimum <> Viterbi’s algorithm

— Inside/outside algorithm < Forward/backwards algorithm

e Given a parameterized SCFG (0,) and a sequence z, the Cocke-Younger-Kasami (CYK) dynamic
programming algorithm finds an optimal (maximum probability) parse tree @:

= argmaz Prob(m, z|0, Q)

The Inside algorithm, is used to obtain the total probability of the sequence given the model summed
ovver all parse trees,

Prob(z|©,Q) = X Prob(x, 7|0, Q)

10.7.1 Application of SCFGs

e Consensus secondary structure prediction: Pfold

— First Phylo-SCFG

184

6.047/6.878 Lecture 08: RNA Structure

S

Structure Parse Tree

CUGUACGG

Y

ACCG

AACAG
.,____..‘_/-ACHG CUGUACGG ACCG
___:"“ :“'--ACAG CUGUACGG ACCG
.. "ACAG CUGUACGG ACCG
EI"'“‘ACBG CUGUACGG ACCG
[) T O A O | 1Y)}

© Stefan Washietl. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 10.14: A) Single sequence: Terminal symbols are bases or base-pairs, Emission probabilities are base
frequencies in loops and paired regions B) Phylo-SCFG: Terminal symbols are single or paired alignment
columns, Emission probabilities calculated from phylogenetic model and tree using Felsenstein’s algorithmWe
to try to better understand RNA-RNA interactions.

e Structural RNA gene nding: EvoFold

— Uses Pfold grammar
— Two competing models:

* Non-structural model with all columns treated as evolving independently

* Structural model with dependent and independent columns

— Sophisticated parametrization

10.8 Advanced topics

There still remain a host of other problems that need to be solved by studying RNA structure. This section
will profile some of them.

10.8.1 Other problems

Observe some of the problems depicted graphically below:

185

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 08: RNA Structure

"Barrier tree"

Folding pathway of a small toy RNA

e
T

popdation probabling

‘
&
e

o S
oo o et
time

© Stefan Washietl. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 10.15: We can study kinetics and folding pathways in further depth.

Three knot

© Stefan Washietl. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faqg-fair-use/.

Figure 10.16: We can investigate pseudoknots.

186

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 08: RNA Structure

© Stefan Washietl. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 10.17: We can try to better understand RNA-RNA interactions.

10.8.2 Relevance

There are plenty of RNAs inside the cell aside from mRNAs, tRNAs and rRNAs. The question is what is
the relevance of all this non-coding RNA? Some believe it is noise resulted through experiment, some think
its just biological noise that doesnt have a meaning in the living organism. On the other hand some believe
junk RNA might actually have an important role as signals inside the cell and all of it is actually functional,

the truth probably lies somewhere in between.

10.8.3 Current research

There are conserved regions in the genome that do not code any proteins, and now Stefans et al.
are looking into them to see if they have structures that are stable enough to form functional RNAs.
It turns out that around 6% of these regions have hallmarks of good RNA structure, which is still
30000 structural elements. The group has annotated some of these elements, but there is still a long
way to go. a lot of miRNA, snowRNAs have been found and of course lots of false positives. But
there exciting results coming up in this topic! so the final note is, it’s a very good area to work in!

10.9 Summary and key points

1. The functional spectrum of RNAs is practically unlimited

(a) RNAs similar to contemporary Ribozymes and Riboswitches might have existed in an RNA world.
Some of them still exist as living fossils in current cells.

(b) Evolutionarily younger RNAs including miRNAs and many long ncRNAs form a non-protein
based regulatory layer.

187

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 08: RNA Structure

2. RNA structure is critical for their function and can be predicted computationally

(a) Nussinov/Zuker: Minimum Free Energy structure
(b) McCaskill: Partition function and pair probabilities
(¢) CYK/Inside-Outside: probabilistic solution to the problem using SCFGs

3. Phylogenetic information can improve structure prediction

4. Computational biology of RNAs is an active eld of research with many hard algorithmic problems still
open

10.10 Further reading

e Overview

— Washietl S, Will S. et al. Computational analysis of noncoding RNAs. Wiley Interdiscip Rev
RNA. 2012, 10.1002/wrna.1134

e RNA function: review papers by John Mattick
e Single sequence RNA folding
— Nussinov R, Jacobson AB, Fast algorithm for predicting the secondary structure of single-stranded

RNA.Proc Natl Acad Sci U S A. 1980 Nov; 77:(11)6309-13

— Zuker M, Stiegler P Optimal computer folding of large RNA sequences using thermodynamics
and auxiliary information. Nucleic Acids Res. 1981 Jan; 9:(1)133-48

— McCaskill JS The equilibrium partition function and base pair binding probabilities for RNA
secondary structure. Biopolymers. 1990; 29:(6-7)1105-19

— Dowell RD, Eddy SR, Evaluation of several lightweight stochastic context-free grammars for RNA
secondary structure prediction. BMC Bioinformatics. 2004 Jun; 5:71

— Do CB, Woods DA, Batzoglou S, CONTRAfold: RNA secondary structure prediction without
physics-based models. Bioinformatics. 2006 Jul; 22:(14)e90-8
e Consensus RNA folding
— Hofacker 1L, Fekete M, Stadler PF, Secondary structure prediction for aligned RNA sequences. J
Mol Biol. 2002 Jun; 319:(5)1059-66
— Knudsen B, Hein J, RNA secondary structure prediction using stochastic context-free grammars
and evolutionary history. Bioinformatics. 1999 Jun; 15:(6)446-54
e RNA gene finding

— Pedersen JS, Bejerano G, Siepel A, Rosenbloom K, Lindblad-Toh K, Lander ES, Kent J, Miller
W, Haussler D Identication and classication of conserved RNA secondary structures in the human
genome. PLoS Comput Biol. 2006 Apr; 2:(4)e33

— Washietl S, Hofacker IL, Stadler PF, Fast and reliable prediction of noncoding RNAs. Proc Natl
Acad Sci U S A. 2005 Feb; 102:(7)2454-9

188

6.047/6.878 Lecture 08: RNA Structure

Bibliography

[1] R Durbin. Biological Sequence Analysis.
[2] W. Gilbert. ”origin of life: The rna world”. Nature., 319(6055):618, 1986.
[3] Rachel Sealfon, 2012. Extra information taken from Recitation 5 slides.

[4] Z. Wang, M. Gestein, and M. Snyder. Rna-seq: a revolutionary tool for transcriptomics. Nat Rev Genet.,
10(1):57-63, 2009.

[5] Stefan Washietl, 2012. All pictures/formulas courtesy of Stefan’s slides.

[6] R. Weaver. Molecular Biology. 3rd edition.

189

6.047/6.878 Lecture 08: RNA Structure

190

CHAPTER

ELEVEN

RNA MODIFICATIONS

Figures
11.1 mRNA is not always an appropriate proxy for protein levels. 190
11.2 Discrepancy between mRNA levels and protein abundance. 190

11.3 The genetic signals which amino acids are mapped to specific three nucleotide sequences. 190

11.4 Depiction of ribosome profiles when Cyclohexamide (elongation freeze) or Harringtonine
are used (initiation freeze). L. Lo 192

11.5 Ribosome profile when harringtonine is used vs. no drug. The red peaks show the different
places initiation of translation can start, depicting the different possible isoforms. 192

11.6 Ribosome profile when harringtonine is used vs. no drug. The red peaks previously un-

ddentified ORFES. o o 193

11.7 Ribosome profile when during rich conditions and starvation conditions. This images shows
the dramatic decrease in translation of proteins during starvation. The mRNA profile is
not indicative of this. L 193

11.1 Introduction

Many ideas in biology rely on knowing the protein levels in a cell. Protein abundance is often extrapolated
from corresponding mRNA levels. This extrapolation is made as it is relatively easy to measure mRNA levels.
In addition, for a long time, it was thought that all of the regulation of expression occurred prior to mRNA
formation. Now, it is known that expression continues to be regulated at the translation stage. Figure 1
shows that the data available for post-transcriptional regulation is minimal and illustrates an example of
how mRNA levels are not indicative of protein abundance.

191

6.047/6.878 Lecture 9: RNA Modifications

y -

Figure 11.1: mRNA is not always an appropriate proxy for protein levels.

There are many factors that may be affecting how mRNA is translated, causing mRNA level to not be
directly related to protein levels. These factors include:

1. Translation elongation rates
- depends on codon usage bias, tRNA adaptation, and RNA editing

2. Translation initiation rates
- depends on AUG frequency, TOP presence, type of initiation (cap-dependent/IRES), and secondary
structures

3. Translation termination rates
- depends on termination codon identity

4. mRNA degradation rates
- depends on polyA tail length, capping, mRNA editing, and secondary structure

5. Protein degradation rates
- depends on PEST sequences, protein stability, unstructured regions, and the presence of polar amino
acids

6. Cis and Trans regulatory elements
- depends on AU-rich elements, miRNAs, ncRNAs, and RNA-binding proteins

Figure 11.2: Discrepancy between mRNA levels and protein abundance.

11.2 Post-Transcriptional Regulation

11.2.1 Basics of Protein Translation

For the basics of transcription and translation, refer to Lecture 1, sections 4.3 - 4.5.

images/GenetifCode. png

Figure 11.3: The genetic signals which amino acids are mapped to specific three nucleotide sequences.

The genetic code is almost universal.

192

6.047/6.878 Lecture 9: RNA Modifications

FAQ

Q: Why is genetic code so similar across organisms?

A: Genomic material is not only transmitted vertically (from parents) but also horizontally between
organisms. This gene interaction creates an evolutionary pressure for an universal genetic code.

FAQ

Q: What accounts for the slight differences in the genetic code across organisms?

A: Late/early evolutionary arrival of amino acids can account for the differences. Also, certain
species (e.g. bacteria in deep sea vents) have more resources to synthesize specific amino
acids, thus they will favor those in the genetic code.

Did You Know?

Threonine and Alanine are often accidentally interchanged by tRNA sythetase because they origi-
nated from one amino acid.

11.2.2 Measuring Translation

Translation efficiency is defined as,

We are interested in seeing just how much of our mRNA is translated to protein, i.e. the efficiency. However,
specifically measuring how much mRNA becomes protein is a difficult task, one that requires a bit of

[mRNA]

T = -
off [protein]

creativity. There are a variety of ways to tackle this problem, but each has its own downfalls:

w

N

. Measure mRNA and protein levels directly

Pitfall: Does not consider rates of synthesis and degradation. This method measures the protein

levels for the ’old’ mRNA since there is a time lag from mRNA to protein.

Use drugs to inhibit transcription and translation
Pitfall: Drugs have side effects altering translation

. Artificial fusion of proteins with tags
Pitfall: Protein tags can affect protein stability

. Pulse label with radioactive nucleosides or amino acids (SILAC) **in use today**

Pitfall: Offers no information on dynamic changes: it is simply a snapshat of the resulting
mRNA and protein levels after X hours

193

6.047/6.878 Lecture 9: RNA Modifications

Another common technique is using ‘ribosome profiling’ to measure protein translation at subcodon res-
olution. This is done by freezing ribosomes in the process of translation and degrading the non-ribosome
protected sequences. At this point, the sequences can be pieced back together and the frequency with which
a region is translated can be interpolated. The disadvantage to using these ribosome footprints, to see
which regions are being translated, is that regions in between ribosomes are lost. This technique requires an
RNA-seq in parallel.

The question remains, why is Ribosome profiling advantageous? This technique is a better approach to
measuring protein abundance as it:

1. Is a better measure of protein abundance
2. Is independent of protein degradation (compared to the protein abundance/mRNA ratio)

3. Allows us to measure codon-specific translation rates

Using ribosome profiling, it is possible to see which codon is being decoded: this is done by mapping
ribosome footprints and then deciphering the translating codon based on footprint length. We can the verify
our prediction by mapping translated codon profiles based on periodicity (three bases in a codon). The
technique can be improved even further by using anti-translation drugs such as harringtonine and cyclohez-
amide. Cyclohexamide blocks elongation and Harringtonine inhibits initiation. The later can be used to find
the starting points (which genes are about to be translated). Figure 4 shows the effects of the drugs on the
ribosome profiles.

images/TranslptionDrugs.png

Figure 11.4: Depiction of ribosome profiles when Cyclohexamide (elongation freeze) or Harringtonine are
used (initiation freeze).

This technique has much more to offer than simply quantifying translation. Ribosome profiling allows
for:

1. Prediction of alternative isoforms (different places where translation can start)

images/AltIsofforms. png

Figure 11.5: Ribosome profile when harringtonine is used vs. no drug. The red peaks show the different
places initiation of translation can start, depicting the different possible isoforms.

2. Prediction of un-indentified ORFs (open reading frames)

194

6.047/6.878 Lecture 9: RNA Modifications

images/uORFs . png

Figure 11.6: Ribosome profile when harringtonine is used vs. no drug. The red peaks previously un-identified
ORFs.

3. Comparing translation across different environmental conditions

images/Conditfions.png

Figure 11.7: Ribosome profile when during rich conditions and starvation conditions. This images shows the
dramatic decrease in translation of proteins during starvation. The mRNA profile is not indicative of this.

4. Comparing translation across life stages

Thus, we see that ribosome profiling is a very powerful tool with lots of potential to reveal previously
elusive information about the translation of a genome.

11.2.3 Codon Evolution

Basic concepts

Something to make clear is that codons are not used with equal frequencies. In fact, which codons can
be considered optimal differs across different species based on RNA stability, strand-specific mutation bias,
transcriptional efficacy, GC composition, protein hydropathy, and translational efficiency. Likewise, tRNA
isoacceptors are not used with equal frequencies within and across species. The motivation for the next
section is to determine how we may measure this codon bias.

Measures of Codon Bias

There are a few methods to accomplish this task:

a) Calculate the frequency of optimal codons, which is defined as “optimal” codons/ sum of “optimal”
and “non-optimal” codons. The limitations to this method are that this requires knowing which codon is
recognized by each tRNA and it assumes that tRNA abundance is highly correlated with tRNA gene copy
number.

b) Calculate a codon bias index. This measures the rate of optimal codons with respect to the total codons

encoding for that same amino acid. However, in this case the number of optimal codons are normalized with
respect to the expected random usage. CBI = (0opt — €rand)/(0tot — €rand)- The limitation of this method

195

6.047/6.878 Lecture 9: RNA Modifications

is that it requires a reference set of proteins, such as highly expressed ribosomal proteins.

¢) Calculate a codon adaptation index. This measures the relative adaptiveness or deviation of the codon us-
age of a gene towards the codon usage of a reference set of proteins, i.e. highly expressed genes. It is defined
as the geometric mean of the relative adaptiveness values, measured as weights associated to each codon
over the length of the gene sequence (measured in codons). Each weight is computed as the ratio between
the observed frequency of a given codon and the frequency of its corresponding amino acid. The limita-
tion to this approach is that it requires the definition of a reference set of proteins, just as the last method did.

d) Calculate the effective number of codons. This measures the total number of different codons used
in a sequence, which measures the bias toward the use of a smaller subset of codons, away from equal use
of synonymous codons. N, = 20 if only one codon is used per amino acid, and N, = 61 when all possible
synonymous codons are used equally. The steps to the process are to compute the homozygosity for each
amino acid as estimated from the squared codon frequencies, obtain effective number of codons per amino
acid, and compute the overall number of effective codons. This method is advantageous because it does
not require any knowledge of tRNA-codon pairing, and it does not require any reference set However, it is
limited in that it does not take into account the tRNA pool.

e) Calculate the tRNA adaptation index. Assume that tRNA gene copy number has a high positive correla-
tion with tRNA abundance within the cell. This then measures how well a gene is adapted to the tRNA pool.

It is important to distinguish among when to use each index. The situation in which a certain index is
favorable is very context-based, and thus it is often preferable to use one index above all others when the
situation calls for it. By carefully choosing an index, one can uncover information about the frequency by
which a codon is translated to an amino acid.

RNA Modifications

The story becomes more complicated when we consider modifications that can occur to RNA. For instance,
some modifications can expand or restrict the wobbling capacity of the tRNA. Examples include insosine
modifications and x0®U modifications. These modifications allow tRNAs to decode a codon that they could
not read before. One might ask why RNA modification was positively selected in the context of evolution,
and the rationale is that this allows for the increase in the probability that a matching tRNA exists to decode
a codon in a given environment.

Examples of applications

There are a few natural applications that result form our understanding of codon evolution.

a) Codon optimization for heterologous protein expression

b) Predicting coding and non-coding regions of a genome

¢) Predicting codon read-through

d) Understanding how genes are decoded - studying patterns of codon usage bias along genes

196

6.047/6.878 Lecture 9: RNA Modifications

11.2.4 Translational Regulation

There are many known means of regulation at the post-transcriptional level. These include modulation of
tRNA availability, changes in mRNA, and cis -and trans-regulatory elements. First, tRNA modulation has
a large impact. Changes in tRNA isoacceptors, changes in tRNA modifications, and regulation at tRNA
aminoacylation levels. Changes in mRNA that affect translation include changes in mRNA modification,
polyA tail, splicing, capping, and the localization of mRNA (importing to and exporting from nucleus). Cis-
and trans- regulatory elements include RNA interference (i.e. siRNA and miRNA), frameshift events, and
riboswitches. Additionally, many regulatory elements are still yet to be discovered!

11.3 Current Research Directions

11.4 Further Reading

11.5 Tools and Techniques

11.6 What Have We Learned?

Hopefully at the end of this chapter we have come to realize the importance in transcriptional regulation.
We see that mRNA levels are not 1:1 with protein levels. Additionally, we saw that the genetic code is
not universal, and what are considered preferred tRNA-codon pairs are dynamic. Likewise, synonymous
mutations are not equivalent across species. We have seen how powerful the technique of ribosome profiling
is, as it allows us to measure translation with subcodon resolution. Despite all this, it is possible to model
translation and codon evolutions using tools to help increase translation efficiency /folding of proteins in
heterologous systems, predict coding regions, understand cell type-specific translation patterns, and compare
translation between healthy and disease states. Finally, by analyzing translational regulation, we see how
protein levels are tuned, and we see that there are many different ways to achieve post-transcriptional
regulation. Perhaps we may come to realize that there is more interconnection between these different
regulation strategies than we originally thought.

Bibliography

197

6.047/6.878 Lecture 9: RNA Modifications

198

CHAPTER

TWELVE

LARGE INTERGENIC NON-CODING RNAS

Guest lecture by John Rinn
Scribed by Eli Stickgold (2010)

Figures
12.1 Tuxedo Tools o L e 200
12.2 How spaced seeds indexing works 200
12.3 How Burrows-Wheeler indexing works L oL 201
12.4 An example of a gap in alignment L Lo 201
12.5 An example of how to use the graph to find transcripts. 202
12.6 F1 . o o o 202
12.7 Fo o o 203
12.8 Technical variability follows a Poisson distribution 204

12.9 Human fibroblasts specialize via epigenetic regulation to form different skin types based
on their location within the body. Research has found that the type of skin in the hands
shares a remarkably similar epigenetic signature to the skin in the feet, which is also distally
located. L e e 205
12.10T'wo skin cell types are analyzed for their chromatin domains. There exists a clear boundary
between the lung cell type which is proximal to the body, and the foot cell type which is

distal to the body. L 205
12.11Polycomb, a protein that can remodel chromatin so that epigenetic silencing of genes can
take place, may be regulated by non-coding RNA such as HOTAIR. 205
12.12lincRNAs neighbor developmental regulators 207
12.1 Introduction

Epigenetics is the study of heritable changes in genetic expression and phenotype that do not result from
a sequence of DNA. Each cell, despite having an identical copy of the genome, is able to differentiate into

199

6.047/6.878 Lecture 11: Large Intergenic non-Coding RNAs

a specialized type. There are many biological devices for accomplishing these including DNA methylation,
histone modification, and various types of RNA.

DNA methylation is a binary code that is effectively equivalent to turning a gene "on” or ”off”. However,
often times a gene might need to be more highly expressed as opposed to just being turned on. For this,
histones have tails that are subject to modification. The unique combination of these two elements on a
stretch of DNA can be thought of as a barcode for cell type. Even more important is the method of their
preservation during replication. In the case of DNA methylation, one appropriately methylated strand is
allocated to each mother or daughter cell. By leaving one trail behind, the cell is able to fill in the gaps and
appropriately methylate the other cell.

As the intermediary between DNA sequences and proteins, RNA is arguably the most versatile means of
regulation. As such, they will be the focus of this chapter.

Did You Know?

Cell types can be determined by histone modification or DNA methylation (a binary code, which
relies on a euchromatic and heterochromatic state). These histone modifications can be thought of
as a type of epigenetic barcode that allows cell DNA to be scanned for types. Non-coding RNAs
called Large Intergenic Non-Coding RNAs (lincRNAs) are heavily involved in this process.

A quick history of RNA:

e 1975: A lab testing relative levels of RNA and DNA in bull sperm discovers twice as much RNA as
DNA.

e 1987: After automated sequencing developed, weird non-coding RNAs are first found.

e 1988: RNA is proved to be important for maintaining chromosome structures, via chromatin archi-
tecture

e 1990s: A large number of experiments start to research

e 2000s: Study shows Histone-methyltransferases depend on RNA, as RNAase causes the proteins to
delocalize.

Transcription is a good proxy of what’s active in the cell and what will turn into protein. Microarrays
led to the discovery of twice as many non-coding genes as coding genes initially; now we know the ratio is
even far higher than this.

12.2 Noncoding RNAs from Plants to Mammals

Basic Cycle: large RNA gets chopped up into small RNAs (siRNAs) RNA use by category:

Protists: RNA is used as a template to splice out DNA (RNA-dependent DNA elimination and splicing)

mRNA and DNA in nucleus: DNA chopped and recombined based on gaps in mRNA (“quirky phenom-
ena”)

Plants: RNA-dependent RNA polymerase, where the polymerase takes template of RNA and make a copy
of it, is available in plants but not humans, and can make small RNAs. Mammals have at most one

200

6.047/6.878 Lecture 11: Large Intergenic non-Coding RNAs

copies. Very different than RNA polymerase and DNA polymerase in structure. From this, we know
that plants do DNA methylation with noncoding RNA.

Flies: use RNAs for an RNA switch; coordinated regulation of hox gene requires noncoding RNA.

Mammals: Non-coding RNAs can form triple helices, guide proteins to them; chromatin-modifying com-
plexes; involved in germ line; guide behaviour of transcription factors.

For the rest of this talk, we focus on specifically lincRNA, which we will define as RNA larger than 200
nucleotides.

12.2.1 Long non-coding RNAs

There are a number of different mechanisms and biological devices by which epigenetic regulation occurs.
One of these is long non-coding RNAs which can be thought of as fulfilling an air traffic control function
within the cell.

Long non-coding RNAs share many similar characteristics with microRNAs. They are spliced, contain
multiple exons, are capped, and poly-adenuated. However, they do not have open reading frames. They
look just like protein coding genes, but cannot.

They are better classified by their anatomical position:

Antisense: These are encoded on the opposite strand of a protein coding gene.
Intronic: Entirely contained with an intron of a protein coding gene.
Bidirectional: These share the same promoter as a protein coding gene, but are on the opposite side.

Intergenic: These do not overlap with any protein coding genes. Think of them as sitting blindly out in
the open. They are much easier targets and will be the focus of this chapter.

12.3 Practical topic: RNAseq

RNA-seq is a method that utilizes next-generation sequencing technology to sequence cDNA allowing us to
gain insight into the contents of RNA. The two main problems that RNA-seq addresses are (1) discover new
genes such as splice isoforms of previously discovered genes and (2) uncover the expression levels of genes and
transcripts from the sequencing data. Additionally, RNA-seq is also beginning to replace many traditional
sequencing techniques allowing labs to perform experiments more efficiently.

12.3.1 How it works

The RNA-Seq machine grabs a transcript and breaks it into different fragments, where the fragments are
normally distributed. With the speed that the RNA-seq can sequence these transcript fragments (or reads),
there are an abundant number of reads allowing us to extract expression levels. The basic idea behind this
method relies on the fact that the more abundant a transcript is, the more fragments we’ll sequence from it.

201

6.047/6.878 Lecture 11: Large Intergenic non-Coding RNAs

The tools used to analyze RNA-Seq data are collectively known as the “Tuxedo Tools”

Bowtie

Extremely fast, general purpose short read aligner

TopHat

Aligns RNA-Seq reads to the genome using Bowtie
Discovers splice sites

CummeRbund

Plots abundance and differential
expression results from Cuffdiff

Cufflinks package

I Cufflinks

I assembles transcripts

: Cuffcompare

I compares transcript assemblies to annotation

: Cuffmerge

I merges two or more transcript assemblies

o o o
e —————————

: Cuffdiff
a

j Finds differentially expressed genes and transcri pts%.
i Detects differential splicing and promoter use 1
!

9

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 12.1: Tuxedo Tools

12.3.2 Aligning RNA-Seq reads to genomes and transcriptomes

Since RNA-Seq produces so many reads, the alignment algorithm must have a fast runtime, approximately
of the order of O(n). There are two main strategies for aligning short reads, which require that we already

have the transcripts.

1. Spaced seeds indexing

Reference genome
(> 3 gigabases)

Chri
Chr2 e
Chr3m==
Chr4

Extract seeds

Position 2
CTGC CGTA AACT AATG

Position 1
ACTG CCGT AAAC TAAT
ACTG =xen AMAC wwuw
sex CCGT wver TAAT Six seed
ACTG ==e= =r=r TAAT pairs per
asax wxes AAAC TAAT read/
ACTG COGT sw=s swew fragment
aner COGT ARAC +vew

Short read

ACTCCCGTACTCTAAT

A J

ACTC CCGT ACTC TAAT

Sead ndex
(tens of gigabytes)

HCTE wees WA res

ICTC CoAT ACTC TAAT

Look up each pair
of seeds in index
Hits identify positions
in genome where
spaced seed pair
isfound

Confirm hits

acking
positions

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 12.2: How spaced seeds indexing works

Spaced seeds indexing involves taking each read and breaking it into fragments, or “seeds”. We take
every combination of two fragments (“seed pairs”) and compare them to an index of seeds (which will

202

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 11: Large Intergenic non-Coding RNAs

take tens of gigabytes of space) for potential hits. Compare the other seeds to the index to make sure
we have a hit.

2. Burrows-Wheeler indexing

Reference genome Short read
(> 8 gigabases)
Chr1 e AcTcccaTAGTCTAST
Chr2 e
Chr3 ===
Chr4

Concatenate into l

single string

(. _J
Burrows-Wheeler l

transform and indexing

Bowtie index 3 v
(~2 gigabytes) !!“\ ACTCOCGTACTCTAAT

Look up

‘suffixes’ "
of read "
H
.
ACTCCCGTACTCTAAT
Hits identify

positions in
genome where ” /
read is found ©

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 12.3: How Burrows-Wheeler indexing works
Burrows-Wheeler indexing takes the genome and scrambles it up in such a way such that you can look

at the read one character at a time and throw out a huge chunk of the genome as possible alignment

positions very quickly.

One major problem with these two general purpose alignment strategies is that they don’t account for
large gaps in alignment.

spliced read alignment

introns

Figure 12.4: An example of a gap in alignment
To get around this, TopHat breaks the reads into smaller pieces. These pieces are aligned and reads with

pieces that are mapped far apart are flagged for possible intron sites. The pieces that weren’t able to be
aligned are used to confirm the splice sites. The reads are then stitched back together to make full read

alignments.
There are two strategies for assembling transcripts based on RNA-Seq reads.

203

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 11: Large Intergenic non-Coding RNAs

1. Genome-guided approach (used in software such as Cufflinks)

The idea behind this approach is that we don’t necessarily know if two reads come from the same
transcript, but we will know if they come from different transcripts. The algorithm is as follows: take
the alignments and put them in a graph. Add an edge from x — y if is to the left of y in the genome,
x and y overlap consistently, and y is not contained in x. So we have an edge from x — y if they might
come from the same transcript.

Figure 12.5: An example of how to use the graph to find transcripts

If we walk across this graph from left to right, we get a potential transcript. Applying Dilworth’s
theorem to read partial orders, we can see that the size of the largest antichain in the graph is the
minimum number of transcripts needed to explain the alignment. An antichain is a set of alignments
with the property that no two are compatible (i.e. could arise from the same transcript)

2. Genome-independent approach (used in software such as trinity)

The genome-independent approach attempts to piece together the transcripts directly from the reads
using classical methods for overlap based read assembly, similar to the genome assembly methods.

12.3.3 Calculating expression of genes and transcripts

We want to count the number of reads from each transcript to find the expression level of the transcript.
However, since we divide transcripts into equally-sized fragments, we run into the problem that longer
transcripts will naturally produce more reads than a shorter transcript. To account for this, we compute
expression levels in FPKM, fragments per kilobase per million fragments mapped.

Likelihood function for a gene

Suppose we sequence a particular read, call it F.

Fi

Figure 12.6: F}

204

6.047/6.878 Lecture 11: Large Intergenic non-Coding RNAs

In order to get this particular read, we need to pick the particular transcript it’s in and then we need to
pick this particular read out from the whole transcript. If we define Ygreen to be the relative abundance of
the green transcript, then we have

Ygreen
P(Flhlgrccn) = -£

lgreen

where lgreen is the length of the green transcript. Now suppose we look at a different read, F5.

I [1 : |
I I

Figure 12.7: F;

It could have come from either the green transcript of the blue transcript, so:

P(F2|"y) _ ’lYgreen + 7blue
green blue

We can see that the probability of getting both F} and F3 is just the product of the individual probabilities:

Ygreen Ygreen “blue
P(Fly) = 2= (5= +

lgreen lgreen lblue

We define this as our likelihood function, L(F|y). Given an input of abundances, we get a probability
of how likely our sequence of reads is. So from a set of reads and transcripts, we can build a likelihood
function and calculate the values for gamma that will maximize this function. Cufflinks achieves this using
hill climbing or EM on the log-likelihood function.

12.3.4 Differential analysis with RN A-Seq

Suppose we perform an RNA-Seq analysis for a gene under two different conditions. How can we tell if
there is a significant difference in the fragment counts? We calculate expression by estimating the expected
number of fragments that come from each transcript. To test for significance, we need to know the variance
of that estimate. We model the variance as:

Var(expression) = Technical variability + Biological variability

Technical variability, which is variability from uncertainty in mapping reads, can be modeled well with a
Poisson distribution (see figure below). However, using Poisson to model biological variability, or variability
across replicates, results in overdispersion.

205

6.047/6.878 Lecture 11: Large Intergenic non-Coding RNAs

104| Technical replicates
R?=0.96

108
100
10

1

Brain technical 2 (RPKM)

o
o

0.1 1 10 100 1,000 10,000
Brain technical 1 (RPKM)

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 12.8: Technical variability follows a Poisson distribution

In the simple case where we have variability across replicates, but no uncertainty, we can mix the Poisson
distributions from each replicate into a new distribution to model biological variability. We can treat the
lambda parameter of the Poisson distribution as a random variable that follows a gamma distribution:

X ~ Poisson(T(r,p))

The counts from this model follow a negative binomial distribution. To figure out the parameters for the
negative binomial for each gene, we can fit a gamma function through a scatter plot of the mean count vs.
count variance across replicates.

In the simple case where there is read mapping uncertainty, but not biological variability, we need to in-
clude the mapping uncertainty in our variance estimate. Since we assign reads to transcripts probabilistically,
we need to calculate the variance in that assignment.

The two threads of RNA-Seq expression analysis research focus on the problems in these two simple cases.
One of the threads focuses on inferring the abundances of individual isoforms to learn about differential
splicing and promoter use, while the other thread focuses on modeling variability across replicates to create
more robust differential gene expression analysis. Cuffdiff unites these two separate threads to study the
case where we have biological variability and read mapping ambiguity. Since overdispersion can be modeled
with a negative binomial distribution and mapping uncertainty can be modeled with a Beta distribution, we
combine these two to model this case with a beta negative binomial distribution.

12.4 Long non-coding RNAs in Epigenetic Regulation

Let’s examine human skin as an example of long non-coding RNAs being used in epigenetic regulation.
Human skin is huge, in fact it is the largest organ by weight in the body. It is intricate, with specialized
features, and it is constantly regenerating to replace old dead cells with new ones. The skin must be controlled
so hair only grows on the back of your hand rather than on your palm. Moreover, these boundaries cannot

206

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 11: Large Intergenic non-Coding RNAs

change and are maintained ever since birth.

The skin in all parts of the body is composed of an epithelial layer and a layer of connective tissue
made up of cells called fibroblasts. These fibroblasts secrete cytokine signals that control the outer layer,
determining properties such as the presence or absence of hair. Fibroblasts all around the body are identical
except for the specific epigenetic folding that dictates what type of skin will be formed in a given location.
Based on whether the skin is distal or proximal, interior or exterior, posterior or anterior, a different set of
epigenetic folds will determine the type of skin that forms.

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 12.9: Human fibroblasts specialize via epigenetic regulation to form different skin types based on
their location within the body. Research has found that the type of skin in the hands shares a remarkably
similar epigenetic signature to the skin in the feet, which is also distally located.

It has been found that specific HOX genes delineate these anatomical boundaries during development.
Just by looking at the human HOX genetic code, one can predict where a cell will be located. Using ChIP-
on-chip (chromatin immunoprecipitation microarrays) diamteric chromatin domains have been found among
these HOX genes. In the figure below, we can see a clear boundary between the chromatin domains of a cell
type located proximally and another located distally. Not only is this boundary precise, but it is maintained
across trillions of skin cells.

(B O T 0 S T R S
- :
] o IR I i g o g
3 -
. P T ST W Ty Ry -
S Sr— Y J PRSP S W Y -
A3 ALl ALD A9 A7 AL AS AL Al Al
= o -|m Em:e an | | I -

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 12.10: Two skin cell types are analyzed for their chromatin domains. There exists a clear boundary
between the lung cell type which is proximal to the body, and the foot cell type which is distal to the body.

HOTAIR or HOX transcript antisense intergenic RNA has been investigated as possible RNA regulator
that keeps these boundary between the diametric domains in chromatin. When HOTAIR was knocked out
in the HOXC locus, it was hypothesized that the chromatin domains might slip through into one another.
While it was found that this HOTAIR did not directly affect the epigenetic boundary, researchers did find
evidence of RNA based genomic cross talk. The HOTAIR gene affected a different locus called HOXD.

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 12.11: Polycomb, a protein that can remodel chromatin so that epigenetic silencing of genes can take
place, may be regulated by non-coding RNA such as HOTAIR.

Through a process of ncRNA dependent Polycomb repression, the HOTAIR sequence can control epige-
netic regulation. Plycomb is a portein that puts stop marks on the tails of histones so that they can cause
specific folds in the genetic material. On their own histones, are undirected, so it is necessary for some

207

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 11: Large Intergenic non-Coding RNAs

mechanism to dictate how they attach to the genome. This process of discovery has led to great interest in
the power of long intergenic non-coding RNAs to affect epigenetic regulation.

12.5 Integergenic Non-coding RN As: missing lincs in Stem /Cancer
cells?

12.5.1 An example: XIST

XIST was one of the first lincRNAs to be characterized. It is directly involved in deactivation of one of
the female X chromosomes during embryonic development. It has been described as having the ability to
”crumple an entire chromosome”. This is important because deactivation prevents lethal overexpression of
genes found on the X chromosome.

RNA is important for getting polychrome complex to chromosome ncRNAs can activate downstream
genes in Cis, opposite in trans; Xist does the same thing.

12.6 Technologies: in the wet lab, how can we find these?

How would we find ncRNAs? We have about 20-30 examples of ncRNAs with evidence of importance, but
more are out there. Chromatin state maps (from ENCODE, chip-seq) can be used to find transcriptional
units that do not overlap proteins. We can walk along map and look for genes (look by eye at chromatin
map to find ncRNAs). Nearly 90% of time such a signature is found, RNA will be transcribed from it. We
can validate this through northern blot

When looking at a chromatin map to find ncRNAs, we are essentially looking through the map with a
window of a given size and seeing how much signal vs. noise we are getting, compared to what we might
expect from a random-chance hypothesis. As both large and small windows have benefits, both should be
used on each map section. Larger windows encapulate more information; smaller windows are more sensitive.

After finding integenic regions, we find conserved regions.

We check if new regions are under selective pressure; fewer mutations in conserved regions. If a nucleotide
never has a mutation between species, it’s highly conserved.

linc-RNAs are more conserved than introns, but less conserved than protein-coding introns, possibly due
to non-conserved sequences in loop regions of lincRNAs.

Finding what lincRNAs’ functions are: “Guilt by association”: We can find proteins that correlate with
particular lincRNA in terms of expression; lincRNAs are probably correlated to a particular pathway. In
this way, we acquire a multidimensional barcode for each lincRNA (what it is and is not related to). We
Can cluster lincRNA signatures and identify common patterns. Lots have to do with cell cycle genes. (This
approach works 60-70% of the time)

As most lincRNAs are over 3000 bases, many contain sequences for 100 amino acid open reading frames,
simply by chance. This results in many false negatives during detection.

208

6.047/6.878 Lecture 11: Large Intergenic non-Coding RNAs

It has been found that many lincRNAs tend to neighbor developmental regions of the genome. They also
tend to be lowly expressed compared to protein coding genes.

5 os !
-

g

g. 08 |
E D4

g == Stringent InCRNAS

8 03 == Protein Coding Genes

J 100 200 200 400 50C
Distance from closest coding neighbor (KB)

Figure 12.12: lincRNAs neighbor developmental regulators

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

12.6.1 Example: p53

Independent validation: we use animal models, where one is a wild-type p53, andone is a knockout. We
induce p53, then ask if lincRNAs turn on. 32 of 39 lincRNAs found associated with p53 were temporally
induced upon turning on pb3.

One RNA in particular sat next to a protein-coding gene in the p53 pathway. We tried to figure out if
p53 bound to promoter and turned it on. To do this, we cloned the promoter of lincRNA, and asked does
p53 turn it on? We IPed the p53 protein, to see if it associated with the lincRNA of the promoter. It turned
out that lincRNA is directly related to p53 - p53 turns it on. P53 also turns genes off - certain lincRNAs
act as a repressor.

From this example (and others), we start to see that RNAs usually have a protein partner

RNA can bring myriad of different proteins together, allowing the cell lots of diversity. In this way its
similar to phosphorylation. RNAs bind to important chromatin complexes, and is required for reprogramming
skin cells into stem cells.

209

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 11: Large Intergenic non-Coding RNAs

12.7 Current Research Directions

12.8 Further Reading

12.9 Tools and Techniques

12.10 What Have We Learned?

Bibliography

[1] R.P. Dilworth. A decomposition theorem for partially ordered sets. Annal of Mathematics, 1950.

[2] Mitchell Guttman, Manuel Garber, Joshua Z Levin, Julie Donaghey, James Robinson, Xian Adiconis,
Lin Fan, Magdalena J Koziol, Andreas Gnirke, Chad Nusbaum, and et al. Ab initio reconstruction of cell
type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincrnas. Nature
Biotechnology, 28(5):503-510, 2010.

[3] C. Trapnell.

210

CHAPTER

THIRTEEN

SMALL RNA

Guest Lecture by David Bartel (MIT/Whitehead /HHMI)
Scribed by Boyang Zhao (2011)

Figures
13.1 siRNA and miRNA biogenesis pathways 213
13.2 Protein and mRNA changes following miR-223 loss 214

13.1 Introduction

Large-scale analyses in the 1990s using expressed sequence tags have estimated a total of 35,000 - 100,000
genes encoded by the human genome. However, the complete sequencing of human genome has surprisingly
revealed that the numbers of protein-coding genes are likely to be ~20,000 — 25,000 [12]. While this represents
<2% of the total genome sequence, whole genome and transcriptome sequencing and tiling resolution genomic
microarrays suggests that over >90% of the genome is still actively transcribed [8], largely as non-protein-
coding RNAs (ncRNAs). Although initial speculation has been that these are non-functional transcriptional
noise inherent in the transcription machinery, there has been rising evidence suggesting the important role
these ncRNAs play in cellular processes and manifestation/progression of diseases. Hence these findings
challenged the canonical view of RNA serving only as the intermediate between DNA and protein.

13.1.1 ncRNA classifications

The increasing focus on ncRNA in recent years along with the advancements in sequencing technologies (i.e.
Roche 454, Mllumina/Solexa, and SOLiD; refer to [16] for a more details on these methods) has led to an
explosion in the identification of diverse groups of ncRNAs. Although there has not yet been a consistent
nomenclature, ncRNAs can be grouped into two major classes based on transcript size: small ncRNAs (<200

211

6.047/6.878 Lecture 12: Small RNA

nucleotides) and long ncRNAs (IncRNAs) (>200 nucleotides) (Table 13.1) [6, 8, 13, 20, 24]. Among these,
the role of small ncRNAs microRNA (miRNA) and small interfering RNA (siRNA) in RNA silencing have
been the most well-documented in recent history. As such, much of the discussion in the remainder of this
chapter will be focused on the roles of these small ncRNAs. But first, we will briefly describe the other

diverse set of ncRNAs.

Table 13.1: ncRNA classifications (based on [6, 8, 13, 20, 24])

Name Abbreviation Function
Housekeeping RNAs

Ribosomal RNA rRNA translation

Transfer RNA tRNA translation

Small nucleolar RNA

Small Cajal body-specific RNA
Small nuclear RNA

Guide RNA

snoRNA (~60-220 nt)
scaRNA

snRNA (~60-300 nt)
¢gRNA

Small ncRNAs (<200 nt)

MicroRNA
Small interfering RNA
Piwi interacting RNA

Tiny transcription initiation RNA
Promoter-associated short RNA
Transcription start site antisense RNA
Termini-associated short RNA
Antisense termini associated short RNA
Retrotransposon-derived RNA
3'UTR-derived RNA

x-ncRNA

Small NF90-associated RNA
Unusually small RNA

Vault RNA

Human Y RNA

miRNA (~19-24 nt)
siRNA (~21-22 nt)
piRNA (~26-31 nt)

tiRNA (~17-18 nt)
PASR (~22-200 nt)
TSSa-RNA (~20-90 nt)
TASR

aTASR

RE-RNA

uaRNA

x-ncRNA

snaR

usRNA

vtRNA

hY RNA

Long ncRNAs (>200 nt)

Large intergenic ncRNA
Transcribed ultraconserved regions
Pseudogenes

Promoter upstream transcripts
Telomeric repeat-containing RNA

GAA-repeat containing RNA

Enhancer RNA

Long intronic ncRNA

Antisense RNA

Promoter-associated long RNA

Stable excised intron RNA

Long stress-induced non-coding transcripts

lincRNA
T-UCR
none
PROMPT
TERRA

GRC-RNA
eRNA
none
aRNA
PALR
none
LSINCT

rRNA modification
splicesome modification
RNA splicing

RNA editing

RNA silencing

RNA silencing

Transposon silencing, epigenetic
regulation

Transcriptional regulation?
unknown

Transcriptional maintainence?
not clear

not clear

not clear

not clear

not clear

not clear

not clear

not clear

not clear

Epigenetics regulation
miRNA regulation?
miRNA regulation?
Transcriptional activation?
telomeric heterochromatin main-
tenance

not clear

not clear

not clear

not clear

not clear

not clear

not clear

212

6.047/6.878 Lecture 12: Small RNA

13.1.2 Small ncRNA

For the past decades, there have been a number of well-studied small non-coding RNA species. All of these
species are either involved in RNA translation (transfer RNA (tRNA)) or RNA modification and processing
(small nucleolar RNA (snoRNA) and small nuclear RNA (snRNA)). In particular, snoRNA (grouped into
two broad classes: C/D Box and H/ACA Box, involved in methylation and pseudouridylation, respectively)
are localized in the nucleous and participates in rRNA processing and modification. Another group of small
ncRNAs are snRNAs that interact with other proteins and with each other to form splicesomes for RNA
splicing. Remarkably, these snRNAs are modified (methylation and pseudouridylation) by another set of
small ncRNAs - small Cajal body-specific RNAs (scaRNAs), which are similar to snoRNA (in sequence,
structure, and function) and are localized in the Cajal body in the nucleus. Yet in another class of small
ncRNAs, guide RNAs (gRNAs) have been shown predominately in trypanosomatids to be involved in RNA
editing. Many other classes have also been recently proposed (see Table 13.1) although their functional
roles remain to be determined. Perhaps the most widely studied ncRNA in the recent years are microRNAs
(miRNAs), involved in gene silencing and responsible to the regulation of more than 60% protein-coding genes
[6]. Given the extensive work that has been focused on RNAi and wide range of RNAi-based applications
that have emerged in the past years, the next section (RNA Interference) will be entirely devoted to this
topic.

13.1.3 Long ncRNA

Long ncRNAs (IncRNAs) make up the largest portion of ncRNAs [6]. However the emphasis placed on the
study of long ncRNA has only been realized in the recent years. As a result, the terminology for this family of
ncRNAs are still in its infancy and oftentimes inconsistent in the literature. This is also in part complicated
by cases where some IncRNAs can also serve as transcripts for the generation of short RNAs. In light of
these confusions, as discussed in the previous chapter, IncRNA have been arbitrarily defined as ncRNAs
with size greater than 200 nts (based on the cut-off in RNA purification protocols) and can be broadly
categorized into: sense, antisense, bidirectional, intronic, or intergenic [19]. For example, one particular
class of IncRNA called long intergenic ncRNA (lincRNA) are found exclusively in the intergenic region and
possesses chromatin modifications indicative of active transcription (e.g. H3K4me3 at the transcriptional
start site and H3K36me3 throughout the gene region) [g].

Despite the recent rise of interest in IncRNAs, the discovery of the first IncRNAs (XIST and H19),
based on searching cDNA libraries, dated back to the 1980s and 1990s before the discovery of miRNAs
[3, 4]. Later studies demonstrated the association of IncRNAs with polycomb group proteins, suggesting
potential roles of IncRNAs in epigenetic gene silencing/activation [19]. Another IncRNA, HOX Antisense
Intergenic RNA (HOTAIR), was recently found to be highly upregulated in metastatic breast tumors [11].
The association of HOTAIR with the polycomb complex again supports a potential unified role of IncRNAs in
chromatin remodeling/epigenetic regulation (in either a cis-regulatory (XIST and H19), or trans-regulatory
(e.g. HOTAIR) fashion) and disease etiology.

Recent studies have also identified HULC and pseudogene (transcript resembling real genes but contains
mutations that prevent their translation into functional proteins) PTENP1 that may function as a decoy in
binding to miRNAs to reduce the overall effectiveness of miRNAs [18, 25]. Other potential roles of IncRNAs
remains to be explored. Nevertheless, it is becoming clear that IncRNAs are less likely to be the result of
transcriptional noise, but may rather serve critical role in the control of cellular processes.

213

6.047/6.878 Lecture 12: Small RNA

13.2 RNA Interference

RNA interference has been one of the most significant and exciting discoveries in recent history. The impact
of this discovery is enormous with applications ranging from knockdown and loss-of-function studies to the
generation of better animal models with conditional knockdown of desired gene(s) to large-scale RNAi-based
screens to aid drug discovery.

13.2.1 History of discovery

The discovery of the gene silencing phenomenon dated back as early as the 1990s with Napoli and Jorgensen
demonstrating the down-regulation of chalcone synthase following introduction of exogenous transgene in
plants [17]. Similar suppression was subsequently observed in other systems [10, 22]. In another set unrelated
work at the time, Lee et al. identified in a genetic screen that endogenous lin-4 expressed a non-protein-
coding product that is complementary to the lin-14 gene and controlled the timing of larval development
(from first to second larval state) in C. elegans [15]. We now know this as the first miRNA to be discovered.
In 2000, another miRNA, [et-7, was discovered in the same organism and was found to be involved in
promoting the late-larval to adult transition [21]. The seminal work by Mello and Fire in 1998 (for which
was awarded the Nobel Prize in 2006) demonstrated that the introduction of exogenous dsRNA in C. elegans
specifically silenced genes via RNA interference, explaining the prior suppression phenomenon observed in
plants [7]. Subsequent studies found the conversion of dsSRNA into siRNA in the RNAi pathway. In 2001, the
term miRNA and the link between miRNA and RNAi was described in three papers in Science [23]. With
this, we have come to realize the gene regulatory machinery was composed of predominately of two classes
small RNAs, with miRNA involved in the regulation of endogenous genes and siRNA involved in defense in
response to viral nucleic acids, transposons, and transgenes [5]. Later works revealed downstream effectors:
Dicers (for excision of precursor species) and Argonaute proteins (part of the RNA-induced silencing complex
to perform the actual silencing effects), completing our current understanding of the RNA silencing pathways.
The details of the mechanism and the differences among the species are further discussed below.

13.2.2 Biogenesis pathways

There is a common theme involved for both siRNA-mediated and miRNA-mediated silencing. In the biogen-
esis of both siRNA and miRNA, the double-stranded precursors are cleaved by a RNase into short ~22 nt
fragments. One of the strands (the guide strand) is loaded into an Argonaute protein, a central component
of the larger ribonucleoprotien complex RISC that facilitates target RNA recognition and silencing. The
mechanism of silencing are either cleaveage of the target mRNA or translation repression.

Aside from this common theme, the proteins involved in these processes differ among species and there
exists additional steps in miRNA processing prior to its maturation and incorporation into RISC (Figure
13.1). For the biogenesis of siRNA, the precursors are dsRNAs, oftentimes from exogenous sources such as
viruses or transposons. However, recent studies have also found endogenous siRNAs [9]. Regardless of the
source, these dsRNAs are processed by the RNase III endonuclease, Dicer, into ~22 nt siRNAs. This RNase
ITI-catalyzed cleavage leaves the characteristic 5’phosphates and 2 nt 3’ overhangs [2]. It is worth noting
that different species have evolved with different number of paralogs. This becomes important as, to be
discussed later, the miRNA biogenesis pathway also utilizes Dicer for the processing of miRNA precursors
(more specifically pre-miRNAs). For species such as D. melanogaster, there are two distinct Dicer proteins
and as a result there is typically a preferential processing of the precursors (e.g. Dicer-1 for miRNA cleavage
and Dicer-2 for siRNA cleavage) [5]. In contrast, mammals and nematodes only have a single Dicer protein
and as such both biogenesis pathways converge to the same processing step [5]. In subsequent steps of the

214

6.047/6.878 Lecture 12: Small RNA

siRNA biogenesis pathway, one of the strands in the siRNA duplex is loaded into RISC to silence target

RNAs (Figure 13.1C).
A B C

miRNA gene miRNA gene Exogencus dsRNA,
transpeson, virus, ..

|) o] o)

) ol == ol o] @
[}5’ Pr;-m:;r P-r&miHN.P.] Fre.-miFIN}'- zi g
@ l' @ Mucleus @ :::;T:;

——T [— P
; el

m'--J."_:umu"u-"uT: Cytoplasm Al
miRNA:mIRNA duplex P siRNA duplexes

0 }
Mucleus HASTY? (4] 1@

ar

— | — ¢
Cytoplasm e © gcticase
Py MIRNAIMIRNA% duplex N

s ; B

Sl
® 1 § [B Helicase @1
® 1 G
o | e)
Mature miBNA within RISC " _ AR
Mature siRMNAs within RISC

0 Mature miBMNA within RISG

Target mAMAs from loci
unralated 1o miENA gena

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
Source: Bartel, David P. "MicroRNAs: Genomics, Biogenesis, Mechanism, and
Eunction." Cell 116, no. 2 (2004): 281-97.

Figure 13.1: siRNA and miRNA biogenesis pathways. (A) Biogenesis of plant miRNA (B) Biogenesis of
animal miRNA (C) Biogenesis of animal siRNA. Adopted from Bartel, 2004 (ref [2]). Copyright (© 2004
Cell Press.

In the miRNA biogenesis pathway, majority of the precursors are pol II transcripts of the intron regions,
some of which encode multiple miRNAs in clusters. These precursors, in the form of a stem-loop structure,
are named pri-miRNAs. The pri-miRNAs are first cleaved in the nucleus by a RNase III endonuclease
(Drosha in animals and Dcll in plants) into ~60-70 nt stem loop intermediates, termed pre-miRNAs [2]. In
animals, the pre-miRNA is then exported into the cytoplasm by Exportin-5. This is followed by the cleavage
of pre-miRNA intermediate by Dicer to remove the stem loop. One of the strands in the resulting mature
miRNA duplex is loaded to RISC, similar to that described for siRNA biogenesis Figure 13.1B. Interestingly,
in plants, the pri-miRNA is processed into mature miRNA through two cleavages by the same enzyme, Dcll,
in the nucleus before export into the cytoplasm for loading (Figure 13.1A).

13.2.3 Functions and silencing mechanism

The classical view of miRNA function based on the early discoveries of miRNA has been analogous to a
binary switch whereby miRNA represses translation of a few key mRNA targets to initiate a developmental

215

http://www.sciencedirect.com
http://dx.doi.org/10.1016/S0092-8674(04)00045-5
http://dx.doi.org/10.1016/S0092-8674(04)00045-5

6.047/6.878 Lecture 12: Small RNA

transition. However, subsequent studies have greatly broaden this definition. In plants, most miRNAs bind
to the coding region of the mRNA with near-perfect complementarity. On the other hand, animal miRNAs
bind with partial complementarity (except for a seed region, residues 2-8) to the 3’ UTR regions of mRNA.
As such, there are potentially hundreds targets by a single miRNA in animals rather than just a few [1].
In addition, in mammals, only a few portion of the predicted targets are involved in development, with
the rest predicted to cover a wide range of molecular and biological processes [2]. Lastly, miRNA silencing
acts through both translation repression and mRNA cleavage (and also destabilization as discussed below)(as
shown for example showed by Bartel and coworkers on the miR-196-directed cleavage of HOXBG6 [26]). Taken
together, the modern view of miRNA function has been that miRNA dampens expression of many mRNA
targets to optimize expression, reinforce cell identity, and sharpen transitions.

The mechanism for which miRNA mediates the silencing of target mRNA is still an area of active research.
As previously discussed, RNA silencing can take the form of either cleavage, destabilization (leading to
subsequent degradation of the mRNA), or translation repression. In plants, it has been found that the
predominate mode of RNA silencing is through Argonaute-catalyzed cleavage. However, the contribution
of these different modes of silencing has been less clear in animals. Recent global analyses from the Bartel
group in collaboration with Gygi and Ingolia and Weissman shed light on this question. In a 2008 study,
Bartel and Gygi groups examined the global changes in protein level using mass spectrometry following
miRNA introduction or deletion [1]. Their results revealed the repression of hundreds of genes by individual
miRNAs, and more importantly mRNA destabilization accounts for majority of the highly repressed targets
(Figure 13.2).
3 —_

Pratein log,-fold change

‘L = One 8mer
1

mRNA log.-fold change

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Baek, Daehyun, et al. "The Impact of MicroRNAs on Protein
Qutput." Nature 455, no. 7209 (2008): 64-71.

Figure 13.2: Protein and mRNA changes following miR-223 loss, from messages with at least one 8-mer
3'UTR site (blue) or at least one 7-mer (orange). Adopted from Baek et al., 2008 (ref [1]). Copyright (C) 2008
Macmillan Publishers Limited.

This is further supported by a subsequent study using both RNA-seq and a novel ribosome-profiling first
demonstrated by Inoglia and Weissman 2009 that enables the interrogation of global translation activities

216

http://dx.doi.org/10.1038/nature07242
http://dx.doi.org/10.1038/nature07242

6.047/6.878 Lecture 12: Small RNA

with sub-codon resolution [14]. The results showed destabilization of target mRNA is the predominate
mechanism through which miRNA reduces the protein output.

Bibliography

[1]

2]

[15]

[16]

Daehyun Baek, Judit Villén, Chanseok Shin, Fernando D Camargo, Steven P Gygi, and David P Bartel.
The impact of microRNAs on protein output. Nature, 455(7209):64-71, September 2008.

David P Bartel. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116(2):281-97,
January 2004.

M S Bartolomei, S Zemel, and S M Tilghman. Parental imprinting of the mouse H19 gene. Nature,
351(6322):153-5, May 1991.

C J Brown, A Ballabio, J L. Rupert, R G Lafreniere, M Grompe, R Tonlorenzi, and H F Willard. A
gene from the region of the human X inactivation centre is expressed exclusively from the inactive X
chromosome. Nature, 349(6304):38-44, January 1991.

Richard W Carthew and Erik J Sontheimer. Origins and Mechanisms of miRNAs and siRNAs. Cell,
136(4):642-55, February 2009.

Manel Esteller. Non-coding RNAs in human disease. Nature Reviews Genetics, 12(12):861-874, Novem-
ber 2011.

A Fire, S Xu, M K Montgomery, S A Kostas, S E Driver, and C C Mello. Potent and specific genetic
interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391(6669):806-11, February
1998.

Ewan a Gibb, Carolyn J Brown, and Wan L Lam. The functional role of long non-coding RNA in
human carcinomas. Molecular cancer, 10(1):38, January 2011.

Daniel E Golden, Vincent R Gerbasi, and Erik J Sontheimer. An inside job for siRNAs. Molecular cell,
31(3):309-12, August 2008.

S Guo and K J Kemphues. par-1, a gene required for establishing polarity in C. elegans embryos,
encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell, 81(4):611-20, May 1995.

Rajnish A Gupta, Nilay Shah, Kevin C Wang, Jeewon Kim, Hugo M Horlings, David J Wong, Miao-
Chih Tsai, Tiffany Hung, Pedram Argani, John L Rinn, Yulei Wang, Pius Brzoska, Benjamin Kong, Rui
Li, Robert B West, Marc J van de Vijver, Saraswati Sukumar, and Howard Y Chang. Long non-coding
RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature, 464(7291):1071-6,
April 2010.

Masahira Hattori. Finishing the euchromatic sequence of the human genome. Nature, 431(7011):931-45,
October 2004.

Christopher L Holley and Veli K Topkara. An introduction to small non-coding RNAs: miRNA and
snoRNA. Cardiovascular Drugs and Therapy, 25(2):151-159, 2011.

Nicholas T Ingolia, Sina Ghaemmaghami, John R S Newman, and Jonathan S Weissman. Genome-wide
analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science (New York,
N.Y.), 324(5924):218-23, April 2009.

R C Lee, R L Feinbaum, and V Ambros. The C. elegans heterochronic gene lin-4 encodes small RNAs
with antisense complementarity to lin-14. Cell, 75(5):843-54, December 1993.

Michael L Metzker. Sequencing technologies - the next generation. Nature Reviews Genetics, 11(1):31-
46, January 2010.

217

6.047/6.878 Lecture 12: Small RNA

[17]

[18]

[26]

C. Napoli, C. Lemieux, and R. Jorgensen. Introduction of a Chimeric Chalcone Synthase Gene into
Petunia Results in Reversible Co-Suppression of Homologous Genes in trans. The Plant cell, 2(4):279—
289, April 1990.

Laura Poliseno, Leonardo Salmena, Jiangwen Zhang, Brett Carver, William J Haveman, and Pier Paolo
Pandolfi. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology.
Nature, 465(7301):1033-8, June 2010.

Chris P Ponting, Peter L Oliver, and Wolf Reik. Evolution and functions of long noncoding RNAs.
Cell, 136(4):629-41, February 2009.

J. R. Prensner and A. M. Chinnaiyan. The Emergence of IncRNAs in Cancer Biology. Cancer Discovery,
1(5):391-407, October 2011.

B J Reinhart, F J Slack, M Basson, A E Pasquinelli, J C Bettinger, A E Rougvie, H R Horvitz, and
G Ruvkun. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans.
Nature, 403(6772):901-6, February 2000.

N Romano and G Macino. Quelling: transient inactivation of gene expression in Neurospora crassa by
transformation with homologous sequences. Molecular microbiology, 6(22):3343-53, November 1992.

G Ruvkun. Molecular biology. Glimpses of a tiny RNA world. Science, 294(5543):797-9, October 2001.

Ryan J Taft, Ken C Pang, Timothy R Mercer, Marcel Dinger, and John S Mattick. Non-coding RNAs:
regulators of disease. The Journal of pathology, 220(2):126-39, January 2010.

Jiayi Wang, Xiangfan Liu, Huacheng Wu, Peihua Ni, Zhidong Gu, Yongxia Qiao, Ning Chen, Fenyong
Sun, and Qishi Fan. CREB up-regulates long non-coding RNA, HULC expression through interaction
with microRNA-372 in liver cancer. Nucleic acids research, 38(16):5366-83, September 2010.

Soraya Yekta, I-Hung Shih, and David P Bartel. MicroRNA-directed cleavage of HOXB8 mRNA.
Science, 304(5670):594-6, April 2004.

218

Part 111

Gene and Genome Regulation

219

CHAPTER

FOURTEEN

MRNA SEQUENCING FOR EXPRESSION ANALYSIS AND
TRANSCRIPT DISCOVERY

Guest lecture by Manuel Garber

Figures
14.1 Figure 1: Expression miCroarray ProCess « . o v v v v v v v v v v e i e e e e e 220
14.2 Spaced k-mer method of mapping reads to reference genome 221
14.3 Box 1: How Do We Calculate gMS? 222
14.4 Figure 3: Reconstruction works by determining, for a particular window, the probability of
observing that number of reads (top left) given the uniform distribution of the total reads
(bottom left). This probability follows the Poisson distribution. 222
14.5 Figure 4: Process for reconstructing genome based on reads, using the scan distribution . 223
14.6 Figure 5: Alternative isoforms present a challenge for reconstruction, which must depend
on exon junction spanning readso oo Lo e 223
14.7 Box 2: The Scripture Method 224

14.1 Introduction

The purpose of mRNA sequencing (RNA-seq) is to measure the levels of mRNA transcripts for every gene

in a given cell.

mRNA sequencing was a daunting task, and requires approximately 40 million aligned

reads in order to accurately measure mRNA transcripts.This did not become possible until 2009, when
next-generation sequencing technologies became more advanced and efficient.

In this chapter, we will explore the different techniques for using mRNA sequencing data to aid in gene
and transcript discovery as well as in expression analysis.

221

6.047/6.878 Lecture 11: mRNA sequencing for Expression Analysis and Transcript discovery

14.2 Expression Microarrays

Prior to the development of mRNA sequencing technology, mRNA levels were measured using expression
microarrays. These microarrays function by inserting a DNA probe on a slide and measuring the levels
transcripts that undergo complimentary hybridization with the DNA, a process that could analyze expression
on a gene by gene basis (Figure 1).

RNA1 DNA1 Begin with probes for
each predicted gene
/
— N/
M 4= g,f \'% } ré
) i S
[a)[a] Measure, L&)
| =<+ |r el
’%v ;; f/ﬁ N 2
v AE Y S
\ o o
s)
%3 EE Y/ \f/ 55
- L= [=0 oo

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 14.1: Figure 1: Expression microarray process

However, this technology has several limitations: it cannot distinguish mRNA isoforms, it cannot analyze
on the sequence, or digital level, it can only measure known transcripts, and the expression measurements
become less reliable for highly saturated transcript levels.

14.3 The Biology of mRNA Sequencing

The first step in mRNA sequencing is to lyse the cells of interest. This creates a mass of proteins, nucleotides,
and other molecules which are then filtered through so that only RNA (or specifically mRNA) molecules
remain. The resulting transcripts are then fragmented into reads 200-1000 base pairs long and undergo
a reverse transcription reaction to build a strand-specific DNA library. Finally, both ends of these DNA
fragments are sequenced. After establishing these sequenced reads, the computational part of RNA-Seq can
be divided into three parts: read mapping, reconstruction, and quantification.

14.4 Read Mapping - Spaced Seed Alignment

The idea behind read mapping is to align the sequenced reads to a reference genome. Sequence alignment
algorithms discussed in earlier chapters will not work for this case due to the scale of the problem. The
goal is to align millions of reads to the genome and would take too long if each was aligned individually.
Instead, we will introduce the Spaced Seed Alignment approach. This process begins by using the reference
genome to creating a hash table of 8-mers, which do not have to be contiguous. The positions of these stored
spaced seeds are mapped to the hash table. Using these spaced 8-mers, each read is then compared with
each possible position in the reference genome and scored based on the number of base pair matches (Figure
2).

More accurately, for each position, it is possible to calculate the score using the equation ¢p;g =
—10log;o(1 — P(i|G,q)), where P(i|G,q) represents the probability that the read, ¢, is mapped to posi-
tion i of reference genome G. More details on deriving this score can be found in Figure 13.2.

It is possible to adjust the parameters of this method in order to alter the sensitivity, speed, and memory

222

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 11: mRNA sequencing for Expression Analysis and Transcript discovery

G: |accgattgactgaatggeccttaaggggtectagttgegagacacatgetdacegtgggattgaatd)....
accg attg **** *FFF — 0 X ¢: accg_atag accg aatg
accg *rrE actg FrRR —> 0 X
accg *EFE FEEF aatg 3045 v¥accgattgactgaatyy accgtgggattgaatg
*hEE attg actg FFEF —>0 0
ok ke ke att * % k& aat(. .
o ? J 0 2 missmatches 5 missmatches
kkkk kkkk actg aatg) X
coga ttga *rer sker s g X Report position 0 with
cega ***F ctga *REE —3) 1 X ¢, = —10log,, P(read is wrongly mapped)
coga *RRk kEkk atgg | 1 X b
*kkk ttga ctga *rrR —3 1 X
khkKk ttga **AE atgg N X
dkkk kkkE ctga atgg 1 X

Figure 14.2: Spaced k-mer method of mapping reads to reference genome

of the algorithm. Using smaller k-mer seeds allows for less precise base pair matching (greater sensitivity),
but requires more matches to be attempted. Smaller seeds take up less memory, while larger seeds run faster.

There exist methods other than the one described above to perform this alignment. The most popular of
which is the Burrows-Wheeler approach. The Burrows-Wheeler transform is an even more efficient algorithm
for mapping reads and will be discussed in a later chapter. It is able to speed up the process of finding matches
in the large genome by reordering the genome in a very specific permutation. This allows reads to be matched
solely as a function of the length of the read and not the genome. As better sequencing technology allows
for larger read lengths, more algorithms will need to be developed to handle the extra processing.

Unlike ChIP-Seq, a similar technology, RNA-seq is more complex. This is because the read mapper needs
to worry about small exons interspersed between large introns and be able to find both sides of an exon. This
complexity can be overcome by using the above mentioned spaced seed matching technique, and detecting
when two k-mers from the same read are separated by a long distance. This would signal a possible intron
and can be fixe by then extending the k-mers to fill in gaps (SNO methods). Another method is to base
the alignment on contiguous reads, which are further fragmented into 20-30 bp regions. These regions are
remapped, and the positions with two or more different alignments are marked as splice junctions. Exon-first
aligners are faster than the previous methods, but come at a cost: they fail to differentiate psuedogenes,
prespliced genes, and transposed genes.

14.5 Reconstruction

Reconstruction of reads is a largely statistical problem. The goal is to determine a score for each fixed-sized
window in the genome. This score represents the probability of seeing the observed number of reads given
the window size. In other words, is the number of reads in a particular window unlikely given the genome?
The expected number of reads per window is derived from a uniform distribution based on the total number
of reads (Figure 3). This score is modeled by a Poisson distribution.

However, this score must account for the problem of multiple testing hypotheses, due to the approximately
150 million expected bases. One option for dealing with this is the Bonferroni correction, where the nominal

223

6.047/6.878 Lecture 11: mRNA sequencing for Expression Analysis and Transcript discovery

Figure 14.3: Box 1: How Do We Calculate gMS?

What does ¢, = —10log,, P(read is wrongly mapped) mean?

Lets compute the probability the read originated at genome position i
{: accg atag accg aatqg
gg: 30 40 25 30 30 20 10 20 40 30 20 30 40 40 30 25

q,[k]=—101og,, P(sequencing error at base k), the PHRED score. Equivalently:

a;
P(sequencing error at base k) =10 1

So the probability that a read originates from a given genome position i is:

P(q|G,i)= H P(g,good call) H P(g;bad call) = H P(g,bad call)

J match J missmatch J missmatch

In our example

P(g| G.0)=[(1-107)°(1-10*)* (1-107")(1-107) |[107107 |=[0.97]*[0.001] = 0.001
What does ¢, = —10log,, P(read is wrongly mapped) mean?
P(g|G.i)= H P(q,good call) H P(g;bad call) = H P(g,bad call)

J match j missmatch J missmatch

But what we need is the posterior probabhility, the probability that the region
starting at i was sequenced given that we observed the read g:

P(q|GP(|G) _ Pg|G.DP(|G)
P@glG) X P@GIG.)

P(i| G.q)=

Fortunately, there are efficient ways to approximate this probability (see Li,
H genome Research 2008, for example)

Gys =—10log,(1- P(i| G.q))

I . Permutation
. Poisson

—
I' a=0.05
.k
daluch ; dadbadeiibland anads s o o

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Figure 14.4: Figure 3: Reconstruction works by determining, for a particular window, the probability of
observing that number of reads (top left) given the uniform distribution of the total reads (bottom left).
This probability follows the Poisson distribution.

p-value = n * p-value. This method leads to low sensitivity, due to its very conservative nature. Another
option is to permute the reads observed in the genome, and find the maximum number of reads seen on
a single base. This allows for a max count distribution model, but the process is very slow. The scan
distribution speeds up this process by computing a closed form for max count distribution to account for
dependency of overlapping windows (Figure 4). The probability of observing k reads on a window of size w
in a genome of size L given a total of N reads can be approximated by [slide is not clear].

224

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 11: mRNA sequencing for Expression Analysis and Transcript discovery

Example : Polll ChIP

‘ Significant windows using the FWER
corrected p-value

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 14.5: Figure 4: Process for reconstructing genome based on reads, using the scan distribution

Choosing a window size is also an important decision, as genes exist at different expression levels and
span different orders of magnitude. Small windows are better at detecting punctuate regions, while larger
windows can detect longer spans of moderate enhancement. In most cases, windows of different sizes are
used to pick up signals of varying size.

Transcript reconstruction can be seen as a segmentation problem, with several challenges. As mentioned
above, genes are expressed at different levels, over several orders of magnitude. In addition, the reads used
for reconstruction are obtained from both mature and immature mRNA, the latter still containing introns.
Finally, many genes have multiple isoforms, and the short nature of reads makes it difficult to differentiate
between these different transcripts. A computational tool called Scripture uses a priori knowledge of fragment
connectivity to detect transcripts.

Alternative isoforms can only be detected via exon junction spanning reads, which contain the ends of
an exon. Longer reads have a greater chance of spanning these junctions (Figure 5). Scripture works by
modeling the reads using graph structure, where bases are connected to neighbor bases, as well as splice
neighbors. This process differs from the string graph technique, because it focuses on whole genome, and
does not map overlapping sequences directly. When sliding the window, Scripture can jump across splice
junctions yet still examine alternative isoforms. From this oriented connectivity graph, the program identifies
segments across the graph, and looks for significant segments (Box 2).

Protein coding gene with 2 isoforms

- r 3 - -
[SRR A S PR S S S SR R PR Y
Read coverage Y
~
\ \\i “

Exon-exon junctions

Alternative isoforms

g Aligned read
Gap

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 14.6: Figure 5: Alternative isoforms present a challenge for reconstruction, which must depend on
exon junction spanning reads

Direct transcript assembly is another method of reconstruction (as opposed to genome-guided methods
like Scripture). Transcript assembly methods are able to reconstruct transcripts from organisms without
a reference sequence, while genome-guided approaches are ideal for annotating high quality genomes and
expanding the catalog of expressed transcripts. Hybrid approaches are used for lesser quality transcripts or
transcriptomes that have underwent major rearrangements, such as those of cancer cells. Popular transcript

225

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 11: mRNA sequencing for Expression Analysis and Transcript discovery

assembly tools include Oasis, Trans-ABySS, and Trinity. Another popular genome-guided software is Cuf-
flinks. Regardless of methodology or software type, any sequencing experiment that produces more genome
coverage will experience better transcript reconstruction.

Figure 14.7: Box 2: The Scripture Method

Step 1: Align Reads to the genome allowing gaps flanked by splice sites
genome

| |

—— —
‘-'"“"h-—-...,-—-———-———-.__.-—fr—"—""—""-'“

Step 2: Build an oriented connectivity graph using every spliced alignment
and orienting edges using the flanking splicing motifs

The “connectivity graph” connects all bases that are directly connected within the
transcriptome

Step 3: Identify “segments” across the graph

s ——
L eeeeep e
s AR

\,z;:

Step 4: Find significant segments
-ﬁ/‘—»_\- — T "

w” T T T T — T

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

14.6 Quantification

The goal of the quantification step is to score regions in the genome based on the number of reads. Recall
that each transcript is fragmented into many smaller reads. Therefore, it is insufficient to simply count
the number of reads per region, as this value would be influenced by (1) expression rates and (2) length of
transcript. The higher the expression rate of a transcript the more reads we will have for it. Similarly, the
longer a transcript is, the more reads we will have. This issue can be solved by normalizing the number of
reads by the length of the transcript and the total number of reads in the experiment. This provides the
RPKM value, or reads per kilobase of exonic sequence per million mapped reads.

This method is robust for genes with only one isoform. However, there is the possibility of overlap
between conflicting variants of a transcript. When multiple transcript variants are involved, this problem is
known as differential expression analysis. There are a few different methods for handling this complexity.
The exon intersection model scores only the constituent exons. The exon union model simply scores based on
a merged transcript, but can easily be biased based on the relative ratios of each isoform. A more thorough
model is the transcript expression model, which assigns unique reads to different isoforms.

226

http://ocw.mit.edu/help/faq-fair-use/

CHAPTER

FIFTEEN

GENE REGULATION 1 ~-GENE EXPRESSION CLUSTERING

Ge Liu(2015)

Shau-Chieh Hsu (2015)

Franck Dernoncourt (2012)

Arvind Thiagarajan (2011)

Tahin Syed (2010)

Barrett Steinberg and Brianna Petrone (2009)
Mia Y. Qia (2008)

Figures

15.1 Clustering compared to classification. In clustering we group observations into clusters
based on how near they are to one another. In classification we want a rule that will
accurately assign labels to new points. o 226

15.2 Gene expression values from microarray experiments can be represented as heat maps to
visualize the result of data analysis. Lo 228

15.3 RNA-Seq reads mapping to a gene (c-fos) and its splice junctions. Densities along exon
represent read densities mapping to exons (in log,,), arcs correspond to junction reads,
where arc width is drawn in proportion to number of reads in that junction. The gene is

downregulated in Sample 2 compared to Sample 1. 228
15.4 Transforming Figure 4 to a heatmap L oo 229
15.5 Gene expression level in log value comparison with reference sample 229

15.6 A sample matrix of gene expression values, represented as a heatmap and with hierarchal

clusters. [1] e 230

15.7 Using gene expression matrix to infer more about a disease and gene segment 230

15.8 The k-means clustering algorithm L L oo 231

15.9 Examples of final cluster assignments of fuzzy k-means using k= 4 with centroids, correct
clusters, and most probable assigned clusters marked as crosses, shapes of points, and

colors respectively. Note that the original data set is non-Gaussian. 232
15.10 K-Means as a Generative Model. Samples were drawn from normal distributions. 233
15.11 K-Means as an expectation maximization (EM) algorithm. 234

15.12Comparison of clustering, HMM and motif discovery with respect to expectation minimiza-
tion (EM) algorithm. L 234

6.047/6.878 Lecture 13: Gene Expression Clustering

15.13Hierarchical Clustering e e e 236

15.14Distance Metrics for Hierarchical Clustering. Clockwise from top left: minimum, maxi-
mum, average distance and centroid distance. L L. 236

15.15Calculation of probability that you have more than r +’s in a randomly selected cluster. . 237

15.1 Introduction

In this chapter, we consider the problem of discerning similarities or patterns within large datasets. Finding
structure in such data sets allows us to draw conclusions about the process as well as the structure underlying
the observations. We approach this problem through the application of clustering techniques. The following
chapter will focus on classification techniques.

15.1.1 Clustering vs Classification

One important distinction to be made early on is the difference between classification and clustering. Clas-
sification is the problem of identifying to which of a set of categories (sub-populations) a new observation
belongs, on the basis of a training set of data containing observations or instances whose category member-
ship is known. The training set is used to learn rules that will accurately assign labels to new observations.
The difficulty is to find the most important features (feature selection).

In the terminology of machine learning, classification is considered an instance of supervised learning, i.e.
learning where a training set of correctly-identified observations is available. The corresponding unsupervised
procedure is known as clustering or cluster analysis, and involves grouping data into categories based on
some measure of inherent similarity, such as the distance between instances, considered as vectors in a multi-
dimensional vector space. The difficulty is to identify the structure of the data. Figure 15.1 illustrates the
difference between clustering and classification.

s H
2 S
¢ g eo s
g g *
o 3 *®
5 g
2 g g ®©
s S|, 2o .
>
o o e o
2 3 o g
54 ®
o o
w w
Feature X (brain expression) Feature X (brain expression)
Clustering VS Classification

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 15.1: Clustering compared to classification. In clustering we group observations into clusters based
on how near they are to one another. In classification we want a rule that will accurately assign labels to
new points.

228

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 13: Gene Expression Clustering

15.1.2 Applications

Clustering was originally developed within the field of artificial intelligence. Being able to group similar
objects, with full implications of generality implied, is indeed a fairly desirable attribute for an artificial
intelligence, and one that humans perform routinely throughout life. As the development of clustering
algorithms proceeded apace, it quickly becomes clear that there was no intrinsic barrier involved in applying
these algorithms to larger and larger datasets. This realization led to the rapid introduction of clustering to
computational biology and other fields dealing with large datasets.

Clustering has many applications to computational biology. For example, let’s consider expression profiles
of many genes taken at various developmental stages. Clustering may show that certain sets of genes line
up (i.e. show the same expression levels) at various stages. This may indicate that this set of genes has
common expression or regulation and we can use this to infer similar function. Furthermore, if we find a
uncharacterized gene in such a set of genes, we can reason that the uncharacterized gene also has a similar
function through guilt by association.

Chromatin marks and regulatory motifs can be used to predict logical relationships between regulators
and target genes in a similar manner. This sort of analysis enables the construction of models that allow us
to predict gene expression. These models can be used to modify the regulatory properties of a particular
gene, predict how a disease state arose, or aid in targeting genes to particular organs based on regulatory
circuits in the cells of the relevant organ.

Computational biology deals with increasingly large and open-access datasets. One such example is the
ENCODE project [2]. Launched is 2003, the goal of ENCODE is to build a comprehensive list of functional
elements in the human genome, including elements that act at the protein and RNA levels, and regulatory
elements that control cells and circumstances in which a gene is active. ENCODE data are now freely and
immediately available for the entire human genome: http://genome.ucsc.edu/ENCODE/. Using all of this
data, it is possible to make functional predictions about genes through the use of clustering.

15.2 Methods for Measuring Gene Expression

The most intuitive way to investigate a certain phenotype is to measure the expression levels of functional
proteins present at a given time in the cell. However, measuring the concentration of proteins can be difficult,
due to their varying locations, modifications, and contexts in which they are found, as well as due to the
incompleteness of the proteome. mRNA expression levels, however, are easier to measure, and are often a
good approximation. By measuring the mRNA, we analyze regulation at the transcription level, without
the added complications of translational regulation and active protein degradation, which simplifies the
analysis at the cost of losing information. In this chapter, we will consider two techniques for generating
gene expression data: microarrays and RNA-seq.

15.2.1 Microarrays

Microarrays allow the analysis of the expression levels of thousands of preselected genes in one experiment.
The basic principle behind microarrays is the hybridization of complementary DNA fragments. To begin,
short segments of DNA, known as probes, are attached to a solid surface, commonly known as a gene chip.
Then, the RNA population of interest, which has been taken from a cell, is reverse transcribed to cDNA
(complementary DNA) via reverse transcriptase, which synthesizes DNA from RNA using the poly-A tail as
a primer. For intergenic sequences which have no poly-A tail, a standard primer can be ligated to the ends

229

http://genome.ucsc.edu/ENCODE/

6.047/6.878 Lecture 13: Gene Expression Clustering

of the mRNA. The resulting DNA has more complementarity to the DNA on the slide than the RNA. The
cDNA is than washed over the chip and the resulting hybridization triggers the probes to fluoresce. This can
be detected to determine the relative abundance of the mRNA in the target, as illustrated in figure 15.2.

Genes

Experiments

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 15.2: Gene expression values from microarray experiments can be represented as heat maps to visualize
the result of data analysis.

Two basic types of microarrays are currently used. Affymetrix gene chips have one spot for every gene
and have longer probes on the order of 100s of nucleotides. On the other hand, spotted oligonucleotide arrays
tile genes and have shorter probes around the tens of bases.

There are numerous sources of error in the current methods and future methods seek to remove steps
in the process. For instance, reverse transcriptase may introduce mismatches, which weaken interaction
with the correct probe or cause cross hybridization, or binding to multiple probes. One solution to this has
been to use multiple probes per gene, as cross hybridization will be different for each gene. Still, reverse
transcription is necessary due to the secondary structure of RNA. The structural stability of DNA makes it
less probable to bend and not hybridize to the probe. The next generation of technologies, such as RNA-Seq,
sequences the RNA as it comes out of the cell, essentially probing every base of the genome.

15.2.2 RNA-seq

RNA-Seq reads mapped to gene body and splice junctions

Ahddutihdbdosis.

RNA-Seq read density (log1o)

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 15.3: RNA-Seq reads mapping to a gene (c¢-fos) and its splice junctions. Densities along exon represent
read densities mapping to exons (in log;,), arcs correspond to junction reads, where arc width is drawn in
proportion to number of reads in that junction. The gene is downregulated in Sample 2 compared to Sample
1.

RNA-Seq, also known as whole transcriptome shotgun sequencing, attempts to perform the same function
that DNA microarrays have been used to perform in the past, but with greater resolution. In particular, DNA
microarrays utilize specific probes, and creation of these probes necessarily depends on prior knowledge of the
genome and the size of the array being produced. RNA-seq removes these limitations by simply sequencing
all of the cDNA produced in microarray experiments. This is made possible by next-generation sequencing

230

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 13: Gene Expression Clustering

technology. The technique has been rapidly adopted in studies of diseases like cancer [4]. The data from
RNA-seq is then analyzed by clustering in the same manner as data from microarrays would normally be
analyzed.

15.2.3 Gene Expression Matrices

Microarrays and RNA-seq are frequently used to compare the gene expression profiles of cells under various
conditions. The amount of data generated from these experiments is enormous. Microarrays can analyze
thousands of genes, and RNA-seq can, in principle, analyze every gene that is actively expressed. The
expression level of each of those genes is measured across a variety of conditions, including time courses,
stages of development, phenotypes, healthy vs. sick, and other factors.

To understand what the heatmap of a gene expression matrix (Figure 15.4) convey, we have to first
understand what the expression data matrix tells us. By using microarrays and RNA-seq, we can obtain
gene expression level in quantitative form in an experiment. If we have multiple experiments, we can construct
a value matrix (Figure 15.5) representing a log value of (T/R), where T is the gene expression level in test
sample and R is the gene expression level in reference sample.

The Expression Matrix removed due to copyright restrictions.

Figure 15.4: Transforming Figure 4 to a heatmap

If we visualize the matrix as a heatmap, then we obtain the following new colored-matrix:

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6

Gene 1 -1.2 -2.1 -3 -15 18 29
Gene 2 2.7 02 -11 16 -2.2 -1.7
Gene 3 -2.5 1.5 -01 -11 -1 0.1
Gene 4 2.9 26 25 -2.3 -0.1 -2.3
Gene 5 0.1 26 2.2 2.7 -2.1
Gene 6 2.9 -1.9 -24 -0.1 -1.9 29

Figure 15.5: Gene expression level in log value comparison with reference sample

These matrices can be clustered hierarchically showing the relation between pairs of genes, pairs of pairs,
and so on, creating a dendrogram in which the rows and columns can be ordered using optimal leaf ordering
algorithms.

231

http://compbio.uthsc.edu/microarray/lecture1.htm

6.047/6.878 Lecture 13: Gene Expression Clustering

2
H
a

woa e

the program Cluster from Michael Eisen, which is available from
http://rana.lbl.gov/EisenSoftware.htm, with data extracted from the StemBase database of gene expression data.

Figure 15.6: A sample matrix of gene expression values, represented as a heatmap and with hierarchal

clusters. [1]

By revealing the hidden structure of a long segment of genome, we obtain great insight of what a fragment
of gene does, and subsequently understand more about the root cause of an unknown disease.

Il}delpendentvalidaticn
Conditions~> of groups that emerge:

Chronic
lymphocytic
leukemia

<Genes

=

B-cell genes in
blood cell lines

Proliferation genes
in transformed cell lines

Lymph nede genes in
diffuse large B-cell
lymphoma (DLBCL)

.o Alizadeh, Nature 2000

0250 0300 1om 2000

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Alizadeh, Ash A., Michael B. Eisen, et al. "Distinct Types of Diffuse Large B-cell

Lymphoma Identified by Gene Expression Profiling." Nature 403, no. 6769 (2000): 503-11.

Figure 15.7: Using gene expression matrix to infer more about a disease and gene segment

This predictive and analytical power is increased due to the ability of biclustering the data; that is,
clustering along both dimensions of the matrix. The matrix allows for the comparison of expression profiles
of genes, as well as comparing the similarity of different conditions such as diseases. A challenge, though,
is the curse of dimensionality. As the space of the data increases, the clustering of the points diminishes.
Sometimes, the data can be reduced to lower dimensional spaces to find structure in the data using clustering

to infer which points belong together based on proximity.

Interpreting the data can also be a challenge, since there may be other biological phenomena in play. For

232

https://en.wikipedia.org/wiki/File:Heatmap.png
http://dx.doi.org/10.1038/35000501
http://dx.doi.org/10.1038/35000501
http://rana.lbl.gov/EisenSoftware.htm

6.047/6.878 Lecture 13: Gene Expression Clustering

example, protein-coding exons have higher intensity, due to the fact that introns are rapidly degraded. At
the same time, not all introns are junk and there may be ambiguities in alternative splicing. There are also
cellular mechanisms that degrade aberrant transcripts through non-sense mediated decay.

15.3 Clustering Algorithms

To analyze the gene expression data, it is common to perform clustering analysis. There are two types
of clustering algorithms: partitioning and agglomerative. Partitional clustering divides objects into non-
overlapping clusters so that each data object is in one subset. Alternatively, agglomerative clustering methods
yield a set of nested clusters organized as a hierarchy representing structures from broader to finer levels of
detail.

15.3.1 K-Means Clustering

The k-means algorithm clusters n objects based on their attributes into k partitions. This is an example of
partitioning, where each point is assigned to exactly one cluster such that the sum of distances from each
point to its correspondingly labeled center is minimized. The motivation underlying this process is to make
the most compact clusters possible, usually in terms of a Euclidean distance metric.

K-means 2) k groups are
: created by combining
An unsupervised method. each individual at the

MacQueen, 1967 nearest center.

]
a
a

LECT)

]
s e
B__8

ag

1) k initial centers are
randomly selected
among all data..
(here k=3)

The iteration
ends when
centers are
stabilized.

4) Steps 2 and 3
are repeated as
long as the centers
are not stabilized

we® 3) The centroid
of each group
become the
new centers.

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 15.8: The k-means clustering algorithm

The k-means algorithm, as illustrated in figure 15.8, is implemented as follows:

1. Assume a fixed number of clusters, &

2. Initialization: Randomly initialize the k means py associated with the clusters and assign each data
point z; to the nearest cluster, where the distance between z; and py, is given by d; ,, = (x; — uk)Q.

3. Iteration: Recalculate the centroid of the cluster given the points assigned to it: ug(n+1)= 3, I;ﬁ’il
x; €k

where xj, is the number of points with label k. Reassign data points to the k new centroids by the given

distance metric. The new centers are effectively calculated to be the average of the points assigned to

each cluster.

4. Termination: Iterate until convergence or until a user-specified number of iterations has been reached.
Note that the iteration may be trapped at some local optima.

233

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 13: Gene Expression Clustering

There are several methods for choosing k: simply looking at the data to identify potential clusters or
iteratively trying values for n, while penalizing model complexity. We can always make better clusters by
increasing k, but at some point we begin overfitting the data.

We can also think of k-means as trying to minimize a cost criterion associated with the size of each
cluster, where the cost increases as the clusters get less compact. However, some points can be almost
halfway between two centers, which doesn’t fit well with the binary belonging k-means clustering.

15.3.2 Fuzzy K-Means Clustering

In fuzzy clustering, each point has a probability of belonging to each cluster, rather than completely belonging
to just one cluster. Fuzzy k-means specifically tries to deal with the problem where points are somewhat in
between centers or otherwise ambiguous by replacing distance with probability, which of course could be some
function of distance, such as having probability relative to the inverse of the distance. Fuzzy k-means uses
a weighted centroid based on those probabilities. Processes of initialization, iteration, and termination are
the same as the ones used in k-means. The resulting clusters are best analyzed as probabilistic distributions
rather than a hard assignment of labels. One should realize that k-means is a special case of fuzzy k-means
when the probability function used is simply 1 if the data point is closest to a centroid and 0 otherwise.

Figure 15.9: Examples of final cluster assignments of fuzzy k-means using k= 4 with centroids, correct
clusters, and most probable assigned clusters marked as crosses, shapes of points, and colors respectively.
Note that the original data set is non-Gaussian.

The fuzzy k-means algorithm is the following:

1. Assume a fixed number of clusters &

2. Initialization: Randomly initialize the & means pj associated with the clusters and compute the
probability that each data point xz; is a member of a given cluster k, P(point x; has label k|x;, k).

3. lteration: Recalculate the centroid of the cluster as the weighted centroid given the probabilities of
membership of all data points x;:

S @y x P (uglz;)’
x; €k

S P (las)’

xr, €k

pe(n+1) =

And recalculate updated memberships P (ug|z;)(there are different ways to define membership, here

234

6.047/6.878 Lecture 13: Gene Expression Clustering

is just one example):

i dik 2 1
P (pg|z:) = (Z(djk)”‘l)

Jj=1

4. Termination: Iterate until membership matrix converges or until a user-specified number of iterations
has been reached (the iteration may be trapped at some local maxima or minima)

The b here is the weighting exponent which controls the relative weights places on each partition, or the
degree of fuzziness. When b— > 1, the partitions that minimize the squared error function is increasingly
hard (non-fuzzy), while as b— > oo the memberships all approach %7 which is the fuzziest state. There is no
theoretical evidence of how to choose an optimal b, while the empirical useful values are among [1,30], and
in most of the studies, 1.5 < b < 3.0 worked well.

15.3.3 K-Means as a Generative Model

A generative model is a model for randomly generating observable-data values, given some hidden parameters.
While a generative model is a probability model of all variables, a discriminative model provides a conditional
model only of the target variable(s) using the observed variables.

In order to make k-means a generative model, we now look at it in a probabilistic manner, where we

assume that data points in cluster k are generated using a Gaussian distribution with the mean on the

s — 2 . . .
center of cluster and a variance of 1, which gives P(z;|ux) = \/%exp{—%}. This gives a stochastic

representation of the data, as shown in figure 15.10. Now this turns to a maximum likelihood problem,
which, we will show in below, is exactly equivalent to the original k-means algorithm mentioned above.

odel of P(X,Labels) Observations
Generate . ,: *
X Son @
@
*
o
Estimate P : ®

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 15.10: K-Means as a Generative Model. Samples were drawn from normal distributions.

In the generating step, we want to find a most likely partition, or assignment of label, for each z; given the
mean pp. With the assumption that each point is drawn independently, we could look for the maximum
likelihood label for each point separately:

arg max P(z;|pug) = arg max

L 2
exp {—W} = argmin(; — f1x)

1
V2T
This is totally equivalent to finding the nearest cluster center in the original k-means algorithm.

In the Estimation step, we look for the maximum likelihood estimate of the cluster mean py, given the
partitions (labels):

arg max {logHP (zilu)} = argmax) {;(x —)?+ log(\é—ﬂ))} = argminy _ (z; —)’

Note that the solution of this problem is exactly the centroid of the x;, which is the same procedure as the
original k-means algorithm.

235

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 13: Gene Expression Clustering

Unfortunately, since k-means assumes independence between the axes, covariance and variance are not
accounted for using k-means, so models such as oblong distributions are not possible. However, this issue
can be resolved when generalize this problem into expectation maximization problem.

15.3.4 Expectation Maximization

K-means can be seen as an example of EM (expectation maximization algorithms), as shown in figure
15.11 where expectation consists of estimation of hidden labels, @), and maximizing of expected likelihood
occurs given data and Q. Assigning each point the label of the nearest center corresponds to the E step of
estimating the most likely label given the previous parameter. Then, using the data produced in the E step
as observation, moving the centroid to the average of the labels assigned to that center corresponds to the M
step of maximizing the likelihood of the center given the labels. This case is analogous to Viterbi learning. A
similar comparison can be drawn for fuzzy k-means, which is analogous to Baum-Welch from HMMs. Figure
15.12 compares clustering, HMM and motif discovery with respect to expectation minimization algorithm.

It should be noted that using the EM framework, the £ means approach can be generalized to clusters
of oblong shape and varying sizes. With k£ means, data points are always assigned to the nearest cluster
center. By introducing a covariance matrix to the Gaussian probability function, we can allow for clusters
of different sizes. By setting the variance to be different along different axes, we can even create oblong
distributions.

? Max lik Labeled P
centers, _ points ta, ®
<E X; ..O e @
1? IE> % '. ®
Known VAssign | ® &
centers points . 2

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 15.11: K-Means as an expectation maximization (EM) algorithm.

Figure 15.12: Comparison of clustering, HMM and motif discovery with respect to expectation minimization

(EM) algorithm.

EM is guaranteed to converge and guaranteed to find the best possible answer, at least from an algorithmic

o | Update Algorithm implementing E step Update
2 | assignments in each of the three settings model
% (E step) 2) - parameters
g | Estimate hidden Expression HMM Motif (M step) &
S |labels clustering learning discovery max
likelihood
The hidden label is: Cluster labels State path Motif positions
4 | Assign each point | K-means: Viterbi Greedy: Find Average of
& | to best label Assign each training: label | best motif match | those points
g point to nearest | sequence with | in each sequence | assigned to
E cluster best path label
= Assign each point | Fuzzy K- Baum-Welch MEME: Use all Average of all
o |toalllabels, means: Assign | training: label | positions as a points,
g probabilistically to all clusters, sequence w all | motif occurrence | weighted by
2 weighted by paths (posterior | weighed by motif | membership
< proximity decoding) match score
Qo Pick one label at N/A: Assign to | N/A: Sample a | Gibbs sampling: | Average of
O | random, based on | a random single label for | Use one position | those points
%_ their relative cluster, sample | each position, for the motif, by assigned to
g probability by proximity according to sampling from the | label(a
(%] posterior prob. | match scores sample)

236

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 13: Gene Expression Clustering

point of view. The notable problem with this solution is that the existence of local maxima of probability
density can prevent the algorithm from convergin to the global maximum. One approach that may avoid
this complication is to attempt multiple initializations to better determine the landscape of probabilities.

15.3.5 The limitations of the K-Means algorithm

The k-means algorithm has a few limitations which are important to keep in mind when using it and before
choosing it. First of all, it requires a metric. For example, we cannot use the k-means algorithm on a set of
words since we would not have any metric.

The second main limitation of the k-means algorithm is its sensitivity to noise. One way to try to reduce
the noise is to run a principle component analysis beforehand. Another way is to weight each variable in order
to give less weight to the variables affected by significant noise: the weights will be calculated dynamically
at each iteration of the algorithm K-means [3].

The third limitation is that the choice of initial centers can influence the results. There exist heuristics
to select the initial cluster centers, but none of them are perfect.

Lastly, we need to know a priori the number of classes. As we have seen, there are ways to circumvent
this problem, essentially by running several times the algorithm while varying k or using the rule of thumb
k ~ \/n/2 if we are short on the computational side. http://en.wikipedia.org/wiki/Determining_
the_number_of_clusters_in_a_data_set summarizes well the different techniques to select the number of
clusters. Hierarchical clustering provides a handy approach to choosing the number of cluster.

15.3.6 Hierarchical Clustering

While the clustering discussed thus far often provide valuable insight into the nature of various data, they
generally overlook an essential component of biological data, namely the idea that similarity might exist on
multiple levels. To be more precise, similarity is an intrinsically hierarchical property, and this aspect is not
addressed in the clustering algorithms discussed thus far. Hierarchical clustering specifically addresses this
in a very simple manner, and is perhaps the most widely used algorithm for expression data. As illustrated
in figure 15.13, it is implemented as follows:

1. Initialization: Initialize a list containing each point as an independent cluster.

2. Iteration: Create a new cluster containing the two closest clusters in the list. Add this new cluster to
the list and remove the two constituent clusters from the list.

One key benefit of using hierarchical clustering and keeping track of the times at which we merge certain
clusters is that we can create a tree structure that details the times at which we joined every cluster, as can
be seen in figure 15.13. Thus, to get a number of clusters that fits your problem, you simply cut at a cut-level
of your choice as in figure 15.13 and that gives you the number of clusters corresponding to that cut-level.
However, be aware that one potential pitfall with this approach is that at certain cut-levels, elements that
are fairly close in space (such as e and b in figure 15.13), might not be in the same cluster.

Of course, a method for determining distances between clusters is required. The particular metric used
varies with context, but (as can be seen in figure 15.14 some common implementations include the maximum,

237

http://en.wikipedia.org/wiki/Determining_the_number_of_clusters_in_a_data_set
http://en.wikipedia.org/wiki/Determining_the_number_of_clusters_in_a_data_set

6.047/6.878 Lecture 13: Gene Expression Clustering

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Figure 15.13: Hierarchical Clustering

minimum, and average distances between constituent clusters, and the distance between the centroids of the
clusters.

- .
B
AT Lo

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 15.14: Distance Metrics for Hierarchical Clustering. Clockwise from top left: minimum, maximum,
average distance and centroid distance.

Noted that when choosing the closest clusters, calculating all pair-wise distances is very time and space
consuming, therefore a better scheme is needed. One possible way of doing this is : 1) define some bounding
boxes that divide the feature space into several subspaces 2) calculate pair-wise distances within each box
3)shift the boundary of the boxes in different directions and recalculate pair-wise distances 4) choose the
closest pair based on the results in all iterations.

15.3.7 Evaluating Cluster Performance

The validity of a particular clustering can be evaluated in a number of different ways. The overrepre-
sentation of a known group of genes in a cluster, or, more generally, correlation between the clustering
and confirmed biological associations, is a good indicator of validity and significance. If biological data
is not yet available, however, there are ways to assess validity using statistics. For instance, robust clus-
ters will appear from clustering even when only subsets of the total available data are used to generate
clusters. In addition, the statistical significance of a clustering can be determined by calculating the proba-
bility of a particular distribution having been obtained randomly for each cluster. This calculation utilizes
variations on the hypergeometric distribution. As can be seen from figure 15.15, we can do this by calcu-
lating the probability that we have more than r +’s when we pick & elements from a total of N elements.
http://en.wikipedia.org/wiki/Cluster_analysis#Evaluation_of_clustering_results gives several
formula to assess the quality of the clustering.

238

http://en.wikipedia.org/wiki/Cluster_analysis#Evaluation_of_clustering_results
http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 13: Gene Expression Clustering

Select k elements
(at random)

&
. {} ‘ m happen
) <o ® @ to be +
® * (out of p +’s)
® @
N—p * N experiments, p labeled +,
m\k—m « Cluster: k elements, m labeled +,
P(poszr)= Z# k-m labeled -
P-value of uniformity ™" J « P-value of single cluster containing k
in computed cluster elements of which at least r are +

Prob that a randomly chosen
set of k experiments would
result in m positive and k-m
negative

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 15.15: Calculation of probability that you have more than r +’s in a randomly selected cluster.

15.4 Current Research Directions

The most significant problems associated with clustering now are associated with scaling existing algorithms
cleanly with two attributes: size and dimensionality. To deal with larger and larger datasets, algorithms
such as canopy clustering have been developed, in which datasets are coarsely clustered in a manner intended
to pre-process the data, following which standard clustering algorithms (e.g. k-means) are applied to sub-
divide the various clusters. Increase in dimensionality is a much more frustrating problem, and attempt to
remedy this usually involve a two stage process in which appropriate relevant subspaces are first identified
by appropriate transformations on the original space and then subjected to standard clustering algorithms.

15.5 Further Reading

e Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Second Edition, February 2009. Found online at http://www-stat.
stanford.edu/~tibs/ElemStatLearn/download.html

e Numerical Recipes: The Art of Scientific Computing (3rd ed.). New York: Cambridge University
Press.

e McLachlan, G.J. and Basford, K.E. (1988) ”Mixture Models: Inference and Applications to Clustering”,
Marcel Dekker.

e Bezdek, J. C., Ehrlich, R., Full, W. (1984). FCM: The fuzzy c-means clustering algorithm. Computers
and Geosciences, 10(2), 191-203.

e http://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-clustering-1.html

e http://compbio.uthsc.edu/microarray/lecturel.html

15.6 Resources

e Cluster 3.0: open source clustering software that implements the most commonly used clustering
methods for gene expression data analysis.

239

http://www-stat.stanford.edu/~tibs/ElemStatLearn/download.html
http://www-stat.stanford.edu/~tibs/ElemStatLearn/download.html
http://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-clustering-1.html
http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 13: Gene Expression Clustering

MATLAB: K-means clustering: http://www.mathworks.com/help/stats/kmeans.html ; Fuzzy C-
means clustering: http://www.mathworks.com/help/fuzzy/fcm.html; Hierarchical Clustering: http:
//www.mathworks.com/help/stats/linkage.html

e Orange is a free data mining software suite (see module orngClustering for scripting in Python):
http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm

R (see Cluster Analysis and Finite Mixture Models)

SAS CLUSTER

15.7 What Have We Learned?

To summarize, in this chapter we have seen that:

e In clustering, we identify structure in unlabeled data. For example, we might use clustering to identify
groups of genes that display similar expression profiles.

— Partitioning clustering algorithms, construct non-overlapping clusters such that each item is as-
signed to exactly one cluster. Example: k-means

— Agglomerative clustering algorithms construct a hierarchical set of nested clusters, indicating the
relatedness between clusters. Example: hierarchical clustering

— By using clustering algorithms, we can reveal hidden structure of a gene expression matrix, which
gives us valuable clues for understanding the mechanism of complicated diseases and categorizing
different diseases

e In classification, we partition data into known labels. For example, we might construct a classifier to
partition a set of tumor samples into those likely to respond to a given drug and those unlikely to
respond to a given drug based on their gene expression profiles. We will focus on classification in the
next chapter.

Bibliography

[1] http://en.wikipedia.org/wiki/File:Heatmap.png.

[2] http://genome.ucsc.edu/ENCODE/.

[3] J.Z. Huang, M.K. Ng, Honggiang Rong, and Zichen Li. Automated variable weighting in k-means type
clustering. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 27(5):657 —668, may 2005.

[4] Christopher A. Maher, Chandan Kumar-Sinha, Xuhong Cao, Shanker Kalyana-Sundaram, Bo Han, Xiao-
jun Jing, Lee Sam, Terrence Barrette, Nallasivam Palanisamy, and Arul M. Chinnaiyan. Transcriptome
sequencing to detect gene fusions in cancer. Nature, 458(7234):97-101, Mar 05 2009.

240

http://www.mathworks.com/help/stats/kmeans.html
http://www.mathworks.com/help/fuzzy/fcm.html
http://www.mathworks.com/help/stats/linkage.html
http://www.mathworks.com/help/stats/linkage.html
http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm
http://en.wikipedia.org/wiki/File:Heatmap.png
http://genome.ucsc.edu/ENCODE/

CHAPTER

SIXTEEN

GENE REGULATION 2 ~CLASSIFICATION

Arvind Thiagarajan
Fulton Wang

Salil Desai

David Charlton
Kevin Modzelewski
Robert Toscano

16.1 Introduction

In the previous chapter we looked at clustering, which provides a tool for analyzing data without any prior
knowledge of the underlying structure. As we mentioned before, this is an example of “unsupervised”
learning. This chapter deals with supervised learning, in which we are able to use pre-classified data to
construct a model by which to classify more datapoints. In this way, we will use existing, known structure
to develop rules for identifying and grouping further information.

There are two ways to do classification. The two ways are analogous to the two ways in which we perform
motif discovery: HMM, which is a generative model that allows us to actually describe the probability of a
particular designation being valid, and CRF, which is a discriminative method that allows us to distinguish
between objects in a specific context. There is a dichotomy between generative and discriminative approaches.
We will use a Bayesian approach to classify mitochondrial proteins, and SVM to classify tumor samples.

In this lecture we will look at two new algorithms: a generative classifier, Nave Bayes, and a discriminative
classifier, Support Vector Machines (SVMs). We will discuss biological applications of each of these models,
specifically in the use of Nave Bayes classifiers to predict mitochondrial proteins across the genome and the
use of SVMs for the classification of cancer based on gene expression monitoring by DNA microarrays. The
salient features of both techniques and caveats of using each technique will also be discussed.

Like with clustering, classification (and more generally supervised learning) arose from efforts in Artificial

241

6.047/6.878 Lecture 14:
Gene Regulation 2: Classification

Intelligence and Machine Learning. Furthermore, much of the motivating infrastructure for classification had
already been developed by probability theorists prior to the advent of either Al or ML.

16.2 Classification - Bayesian Techniques

Consider the problem of identifying mitochondrial proteins. If we look at the human genome, how do
we determine which proteins are involved in mitochondrial processes, or more generally which proteins are
targeted to the mitochondrial?- This is particularly useful because if we know the mitochondrial proteins, we
can study how these proteins mediate disease processes and metabolic functions. The classification method
we will look considers 7 features for all human proteins:

targeting signal
protein domains
co-expression

mass spectrometry
sequence homology

induction

NS otk W=

motifs

Our overall approach will be to determine how these features are distributed for both mitochondrial and
non-mitochondrial proteins. Then, given a new protein, we can apply probabilistic analysis to these seven
features to decide which class it most likely falls into.

16.2.1 Single Features and Bayes Rule

Let’s just focus on one feature at first. We must first assume that there is a class dependent distribution
for the features. We must first derive this distribution from real data. The second thing we need is the a
priori chance of drawing a sample of particular class before looking at the data. The chance of getting a
particular class is simply the relative size of the class. Once we have these probabilities, we can use Bayes
rule to get the probability a sample is in a particular class given the data(this is called the posterior). We
have forward generative probabilities, and use Bayes rules to perform the backwards inference. Note that it
is not enough to just consider the probability the feature was drawn from each class dependent distribution,
because if we knew a priori that one class(say class A) is much more common than the other, then it should
take overwhelming evidence that the feature was drawn from class B’s distribution for us to believe the
feature was indeed from class B. The correct way to find what we need based on both evidence and prior
knowledge is to use Bayes Rule:

P(f lass) P(Class
P(Class|feature) = ((feature|Class) P(C ass))

P(feature)

I Mitochondria is the energy producing machinery of cell. Very early in life, the mitochondria was engulfed by the predecessor
to modern day eukaryotes, and now, we have different compartments in our cells. So the mitochonria has its own genome,
but it is very depleted from its own ancestral genome - only about 11 genes remain. But there are hundreds are genes that
make the mitochondria work, and these proteins are encoded by genes transcribed in the nucleus, and then transported to the
mitochondria. So the goal is to figure out which proteins encoded in the genome are targeted to the mitochondria. This is
important because there are many diseases associated with the mitochonria, such as aging.

242

6.047/6.878 Lecture 14:
Gene Regulation 2: Classification

e Posterior : P(Class|feature)

e Prior : P(Class)

e Likelihood : P(feature|Class)

This formula gives us exactly the connection we need to flip known feature probabilities into class proba-
bilities for our classifying algorithm. It lets us integrate both the likelihood we derive from our observations
and our prior knowledge about how common something is. In the case of mtDNA, for example, we can
estimate that mitochondrial DNA makes up something like 1500/21000 (i.e. less than 10%) of the human
genome. Therefore, applying Bayes rule, our classifier should only classify a gene as mitochondrial if there
is a very strong likelihood based on the observed features, since the prior probability that any gene
is mitochondrial is so low.

With this rule, we can now form a maximum likelihood rule for predicting an objects class based on an
observed feature. We want to choose the class that has the highest probability given the observed feature,
so we will choose Classl instead of Class?2 if:

P(feature|Classl) P(Classl) > P(feature|Class2) P(Class2)
P(feature) P(feature)

Notice that P(feature) appears on both sides, so we can cancel that out entirely, and simply choose the
class with the highest value of P(feature|Class)P(Class).

Another way of looking at this is as a discriminant function: By rearranging the formulas above and
taking the logarithm, we should select Class] instead of Class2 precisely when

P(X]|Classl)P(Classl)
log (P(X\Class2)P(Class2)) >0

In this case the use of logarithms provide distinct advantages:

1. Numerical stability
2. Easier math (its easier to add the expanded terms than multiply them)

3. Monotonically increasing discriminators.

This discriminant function does not capture the penalties associated with misclassification (in other
words, is one classification more detrimental than other). In this case, we are essentially minimizing the
number of misclassifications we make overall, but not assigning penalties to individual misclassifications.
From examples discussed in class and in the problem set - if we are trying to classify a patient as having
cancer or not, it could be argued that it is far more harmful to misclassify a patient as being healthy if they
have cancer than to misclassify a patient as having cancer if they are healthy. In the first case, the patient
will not be treated and would be more likely to die, whereas the second mistake involves emotional grief but
no greater chance of loss of life. To formalize the penalty of misclassification we define something called a
loss function,Lj s , which assigns a loss to the misclassification of an object as class j when the true class is
class k (a specific example of a loss function was seen in Problem Set 2).

243

6.047/6.878 Lecture 14:
Gene Regulation 2: Classification

16.2.2 Collecting Data

The preceding tells us how to handle predictions if we already know the exact probabilities corresponding to
each class. If we want to classify mitochondrial proteins based on feature X, we still need ways of determining
the probabilities P(mito), P(not mito), P(X|mito) and P(X|not mito). To do this, we need a training set:
a set of data that is already classified that our algorithm can use to learn the distributions corresponding to
each class. A high-quality training set (one that is both large and unbiased) is the most important part
of any classifier. An important question at this point is, how much data do we need about known genes in
order to build a good classifier for unknown genes? This is a hard question whose answer is not fully known.
However, there are some simple methods that can give us a good estimate: when we have a fixed set of
training data, we can keep a holdout set that we dont use for our algorithm, and instead use those (known)
data points to test the accuracy of our algorithm when we try to classify them. By trying different sizes of
training versus holdout set, we can check the accuracy curve of our algorithm. Generally speaking, we have
enough training data when we see the accuracy curve flatten out as we increase the amount of training data
(this indicates that additional data is likely to give only a slight marginal improvement). The holdout set is
also called the test set, because it allows us to test the generalization power of our classifier.

Supposing we have already collected our training data, however, how should we model P(X|Class)?
There are many possibilities. One is to use the same approach we did with clustering in the last lecture
and model the feature as a Gaussian then we can follow the maximum likelihood principle to find the best
center and variance. The one used in the mitochondrial study is a simple density estimate: for each feature,
divide the range of possibilities into a set of bins (say, five bins per feature). Then we use the given data
to estimate the probability of a feature falling into each bin for a given class. The principle behind this is
again maximum likelihood, but for a multinomial distribution rather than a Gaussian. We may choose to
discretize a otherwise continuous distribution because estimating a continuous distribution can be complex.

There is one issue with this strategy: what if one of the bins has zero samples in it? A probability of
zero will override everything else in our formulas, so that instead of thinking this bin is merely unlikely,
our classifier will believe it is impossible. There are many possible solutions, but the one taken here is to
apply the Laplace Correction: add some small amount (say, one element) into each bin, to draw probability
estimates slightly towards uniform and account for the fact that (in most cases) none of the bins are truly
impossible. Another way to avoid having to apply the correction is to choose bins that are not too small so
that bins will not have zero samples in them in practice. If you have many many points, you can have more
bins, but run the risk of overfitting your training data.

16.2.3 Estimating Priors

We now have a method for approximating the feature distribution for a given class, but we still need to know
the relative probability of the classes themselves. There are three general approaches:

1. Estimate the priors by counting the relative frequency of each class in the training data. This is prone
to bias, however, since data available is often skewed disproportionately towards less common classes
(since those are often targeted for special study). If we have a high-quality (representative) sample for
our training data, however, this works very well.

2. Estimate from expert knowledge—there may be previous estimates obtained by other methods inde-
pendent of our training data, which we can then use as a first approximation in our own predictions.
In other words, you might ask experts what the percentage of mitochondrial proteins are.

3. Assume all classes are equally likely we would typically do this if we have no information at all about
the true frequencies. This is effectively what we do when we use the maximum likelihood principle:

244

6.047/6.878 Lecture 14:
Gene Regulation 2: Classification

our clustering algorithm was essentially using Bayesian analysis under the assumption that all priors
are equal. This is actually a strong assumption, but when you have no other data, this is the best you
can do.

For classifying mitochondrial DN A, we use method (2), since some estimates on the proportions of mtDNA
were already known. But there is an complication there are more than 1 features.

16.2.4 Multiple features and Naive Bayes

In classifying mitochondrial DNA, we were looking at 7 features and not just one. In order to use the
preceding methods with multiple features, we would need not just one bin for each individual feature range,
but one for each combination of features if we look at two features with five ranges each, thats already 25
bins. All seven features gives us almost 80,000 bins and we can expect that most of those bins will be empty
simply because we dont have enough training data to fill them all. This would cause problems because zeroes
cause infinite changes in the probabilities of being in one class. Clearly this approach wont scale well as we
add more features, so we need to estimate combined probabilities in a better way.

The solution we will use is to assume the features are independent, that is, that once we know the
class, the probability distribution of any feature is unaffected by the values of the other features. This is the
Nave Bayes Assumption, and it is almost always false, but it is often used anyway for the combined reasons
that it is very easy to manipulate mathematically and it is often close enough to the truth that it gives a
reasonable approximation. (Note that this assumption does not say that all features are independent: if we
look at the overall model, there can be strong connections between different features, but the assumption
says that those connections are divided by the different classes, and that within each individual class there
are no further dependencies.) Also, if you know that some features are coupled, you could learn the joint
distribution in only some pairs of the features.

Once we assume independence, the probability of combined features is simply the product of the individual
probabilities associated with each feature. So we now have:

P(f1, f2, K, fn|Class) = P(f1|Class)P(f2|Class) K P(fn|Class)

Where f; represents feature 1. Similarly, the discriminant function can be changed to the multiplication
of the prior probabilities:

_ TP (f1|Class1)P(Class1)
G(f1, f2, K, fn) = log (npgilmiisz)pﬁmissz))

16.2.5 Testing a classifier

A classifier should always be tested on data not contained in its training set. We can imagine in the worst case
an algorithm that just memorized its training data and behaved randomly on anything else a classifier that
did this would perform perfectly on its training data, but that indicates nothing about its real performance
on new inputs. This is why its important to use a test, or holdout, set as mentioned earlier. However, a
simple error rate doesnt encapsulate all of the possible consequences of an error. For a simple binary classifier
(an object is either in or not in a single target class), there are the following for types of errors:

1. True positive (TP)

245

6.047/6.878 Lecture 14:
Gene Regulation 2: Classification

2. True negative (TN)
3. False positive (FP)

4. False negative (FN)

The frequency of these errors can be encapsulated in performance metrics of a classifier which are defined
as,

1. Sensitivity what fraction of objects that are in a class are correctly labeled as that class? That is,
what fraction have true positive results? High sensitivity means that elements of a class are very likely
to be labeled as that class. Low sensitivity means there are too many false negatives.

2. Specificity what fraction of objects not in a class are correctly labeled as not being in that class? That
is, what fraction have true negative results? High specificity means that elements labeled as belonging
to a class are very likely to actually belong to it. Low specificity means there are too many false
positives.

In most algorithms there is a tradeoff between sensitivity and specificity. For example, we can reach
a sensitivity of 100% by labeling everything as belonging to the target class, but we will have a specificity
of 0%, so this is not useful. Generally, most algorithms have some probability cutoff they use to decide
whether to label an object as belonging to a class (for example, our discriminant function above). Raising
that threshold increases the specificity but decreases the sensitivity, and decreasing the threshold does the
reverse. The MAESTRO algorithm for classifying mitochondrial proteins (described in this lecture) achieves
99% specificity and 71% sensitivity.

16.2.6 MAESTRO Mitochondrial Protein Classification

They find a class dependent distribution for each feature by creating several bins and evaluating the pro-
portion of mitochondrial and non mitochondrial proteins in each bin. This lets you evaluate the usefulness
of each feature in classification. You end up with a bunch of medium strength classifiers, but when you
combine them together, you hopefully end up with a stronger classifier. Calvo et al. [1] sought to construct
high-quality predictions of human proteins localized to the mitochondrion by generating and integrating
data sets that provide complementary clues about mitochondrial localization. Specifically, for each human
gene product p, they assign a score s;(p), using each of the following seven genome-scale data sets targeting
signal score, protein domain score, cis-motif score, yeast homology score, ancestry score, coexpression score,
and induction score (details of each of the meaning and content of each of these data sets can be found in
the manuscript). Each of these scores s1 — S7 can be used individually as a weak genome-wide predictor of
mitochondrial localization. Each methods performance was assessed using large gold standard curated train-
ing sets - 654 mitochondrial proteins T,ito maintained by the MitoP2 databasel and 2,847 nonmitochondrial
proteins T i, annotated to localize to other cellular compartments. To improve prediction accuracy, the
authors integrated these eight approaches using a nave Bayes classifier that was implemented as a program
called MAESTRO. So we can take several weak classifiers, and combine them to get a stronger classifier.

When MAESTRO was applied across the human proteome, 1451 proteins were predicted as mitochondrial
proteins and 450 novel proteins predictions were made. As mentioned in the previous section The MAESTRO
algorithm achieves a 99% specificity and a 71% sensitivity for the classification of mitochondrial proteins,
suggesting that even with the assumption of feature independence, Nave Bayes classification techniques can
prove extremely powerful for large-scale (i.e. genome-wide) scale classification.

246

6.047/6.878 Lecture 14:
Gene Regulation 2: Classification

16.3 Classification Support Vector Machines

The previous section looked at using probabilistic (or generative) models for classification, this section looks
at using discriminative techniques in essence, can we run our data through a function to determine its
structure? Such discriminative techniques avoid the inherent cost involved in generative models which might
require more information than is actually necessary.

Support vector machine techniques essentially involve drawing a vector thats perpendicular to the
line(hyperplane) separating the training data. The approach is that we look at the training data to ob-
tain a separating hyperplane so that two classes of data lie on different sides of the hyperplane. There are,
in general, many hyperplanes that can separate the data, so we want to draw the hyperplane that separates
the data the most - we wish to choose the line that maximizes the distance from the hyperplane to any data
point. In other words, the SVM is a maximum margin classifier. You can think of the hyperplane being
surrounded with margins of equal size on each side of the line, with no data points inside the margin on either
side. We want to draw the line that allows us to draw the largest margin. Note that once the separating
line and margin are determined, some data points will be right on the boundary of the margin. These are
the data points that keep us from expanding the margin any further, and thus determine the line/margin.
Such points are called the support vectors. If we add new data points outside the margin or remove points
that are not support vectors, we will not change the maximum margin we can achieve with any hyperplane.

Suppose that the vector perpendicular to the hyperplane is w, and that the hyperplane passes through

the point (Wb\) Then a point z is classified as being in the positive class if w * x is greater than b, and

negative otherwise. It can be shown that the optimal w, that is, the hyperplane that achieves the maximum
margin, can actually be written as a linear combination of the data vectors Ya; * x;. Then, to classify a
new data point x, we need to take the dot product of w with x to arrive at a scalar. Notice that this scalar,
Ya; x (x; *) only depends on the dot product between x and the training vectors z;s. Furthermore, it can
be shown that finding the maximum margin hyperplane for a set of (training) points amounts to maximizing
a linear program where the objective function only depends on the dot product of the training points with
each other. This is good because it tells us that the complexity of solving that linear program is independent
of the of dimension of the data points. If we precompute the pairwise dot products of the training vectors,
then it makes no difference what the dimensionality of the data is in regards to the running time of solving
the linear program.

16.3.1 Kernels

We see that SVMs are dependent only on the dot product of the vectors. So, if we call our transformation
¢(v), for two vectors we only care about the value of ¢(v;1) - ¢(v2) The trick to using kernels is to realize that
for certain transformations ¢, there exists a function K (vy,vs), such that:

K(vi,v2) = ¢(v1) - ¢(v2)

In the above relation, the right-hand side is the dot product of vectors with very high dimension, but
the left-hand side is the function of two vectors with lower dimension. In our previous example of mapping
r — (z,y = 2?), we get

K(x1,12) = (2123) - (w2, 23) = 2172 + (2172)?

Now we did not actually apply the transformation ¢, we can do all our calculations in the lower dimen-
sional space, but get all the power of using a higher dimension.

247

6.047/6.878 Lecture 14:
Gene Regulation 2: Classification

Example kernels are the following;:

1. Linear kernel: K(v1,v2) = v1 - v9 which represents the trivial mapping of ¢(z) =
2. Polynomial kernel: K (vy,v2) = (14 vy - v2)™ which was used in the previous example with n = 2.

3. Radial basis kernel: K (v1,v2) = exp(—83|v1 —v2|?) This transformation is actually from a point v; to a
function (which can be thought of as being a point in Hilbert space) in an infinite-dimensional space.
So what were actually doing is transforming our training set into functions, and combining the to get
a decision boundary. The functions are Gaussians centered at the input points.

4. Sigmoid kernel: K (vy,vs) = tanh[B(vi vy +7)] Sigmoid kernels have been popular for use in SVMs due
to their origin in neural networks (e.g. sigmoid kernel functions are equivalent to two-level, perceptron
neural networks). It has been pointed out in previous work (Vapnik 1995) that the kernel matrix may
not be positive semi-definite for certain values of the parameters p and r. The sigmoid kernel has
nevertheless been used in practical applications [2].

Here is a specific example of a kernel function. Consider the two classes of one-dimensional data:
{-5,-4,-3,3,4,5}and{-2,—-1,0,1,2}

This data is clearly not linearly separable, and the best separation boundary we can find might be
x > —2.5. Now consider applying the transformation . The data can now be written as new pairs,

{-5,-4,-3,3,4,5} = {(-5,25),(—4,16),(-3,9),(3,9), (4,16), (5,25)}
and
{-2,-1,0,1,2} — {(-2,-4),(-1,1),(0,0),(1,1),(2,4)}

This data is separable by the rule y > 6.5, and in general the more dimensions we transform data to the
more separable it becomes.

An alternate way of thinking of this problem is to transform the classifier back in to the original low-
dimensional space. In this particular example, we would get the rule 2 < 6.5 , which would bisect the
number line at two points. In general, the higher dimensionality of the space that we transform to, the more
complicated a classifier we get when we transform back to the original space.

One of the caveats of transforming the input data using a kernel is the risk of overfitting (or over-
classifying) the data. More generally, the SVM may generate so many feature vector dimensions that it
does not generalize well to other data. To avoid overfitting, cross-validation is typically used to evaluate the
fitting provided by each parameter set tried during the grid or pattern search process. In the radial-basis
kernel, you can essentially increase the value of § until each point is within its own classification region
(thereby defeating the classification process altogether). SVMs generally avoid this problem of over-fitting
due to the fact that they maximize margins between data points.

When using difficult-to-separate training sets, SVMs can incorporate a cost parameter C, to allow some
flexibility in separating the categories. This parameter controls the trade-off between allowing training
errors and forcing rigid margins. It can thereby create a soft margin that permits some misclassifications.
Increasing the value of C increases the cost of misclassifying points and forces the creation of a more accurate
model that may not generalize well.

248

6.047/6.878 Lecture 14:
Gene Regulation 2: Classification

Can we use just any function as our kernel? The answer to this is provided by Mercers Condition which
provides us an analytical criterion for choosing an acceptable kernel. Mercers Condition states that a kernel
K(z,y) is a valid kernel if and only if the following holds For any g(z) such that [g(z)?dx is finite, we have:

[[K(z,y)g(x)g(y)dzdy > 0[3]

In all, we have defined SVM discriminators and shown how to perform classification with appropriate
kernel mapping functions that allow performing computations on lower dimension while being to capture all
the information available at higher dimensions. The next section describes the application of SVMs to the
classification of tumors for cancer diagnostics.

16.4 Tumor Classification with SVMs

A generic approach for classifying two types of acute leukemias acute myeloid leukemia (AML) and acute
lymphoid leukemia (ALL) was presented by Golub et al. [4]. This approach centered on effectively addressing
three main issues:

1. Whether there were genes whose expression pattern to be predicted was strongly correlated with the
class distinction (i.e. can ALL and AML be distinguished)

2. How to use a collection of known samples to create a “class predictor” capable of assigning a new
sample to one of two classes

3. How to test the validity of their class predictors

They addressed (1) by using a “neighbourhood analysis” technique to establish whether the observed
correlations were stronger than would be expected by chance. This analysis showed that roughly 1100 genes
were more highly correlated with the AML-ALL class distinction than would be expected by chance. To
address (2) they developed a procedure that uses a fixed subset of “informative genes” (chosen based on their
correlation with the class distinction of AML and ALL) and makes a prediction based on the expression level
of these genes in a new sample. Each informative gene casts a “weighted vote” for one of the classes, with
the weight of each vote dependent on the expression level in the new sample and the degree of that genes
correlation with the class distinction. The votes are summed to determine the winning class. To address
(3) and effectively test their predictor by first testing by cross-validation on the initial data set and then
assessing its accuracy on an independent set of samples. Based on their tests, they were able to identify
36 of the 38 samples (which were part of their training set!) and all 36 predictions were clinically correct.
On the independent test set 29 of 34 samples were strongly predicted with 100% accuracy and 5 were not
predicted.

A SVM approach to this same classification problem was implemented by Mukherjee et al.[3]. The output
of classical SVM is a binary class designation. In this particular application it is particularly important to
be able to reject points for which the classifier is not confident enough. Therefore, the authors introduced a
confidence interval on the output of the SVM that allows for rejection of points with low confidence values.
As in the case of Golub et al.[4] it was important for the authors to infer which genes are important for the
classification. The SVM was trained on the 38 samples in the training set and tested on the 34 samples in
the independent test set (exactly in the case of Golub et al.). The authors results are summarized in the
following table (where |d| corresponds to the cutoff for rejection).

These results a significant improvement over previously reported techniques, suggesting that SVMs play
an important role in classification of large data sets (as those generated by DNA microarray experiments).

249

6.047/6.878 Lecture 14:
Gene Regulation 2: Classification

16.5 Semi-Supervised Learning

In some scenarios we have a data set with only a few labeled data points, a large number of unlabeled data
points and inherent structure in the data. This type of scenario both clustering and classification do not
perform well and a hybrid approach is required. This semi-supervised approach could involve the clustering
of data first followed by the classification of the generated clusters.

16.5.1 Open Problems

16.6 Current Research Directions

16.7 Further Reading

e Richard O. Duda, Peter E. Hart, David G. Stork (2001) Pattern classification (2nd edition), Wiley,
New York

e See previous chapter for more books and articles.

16.8 Resources

e Statistical Pattern Recognition Toolbox for Matlab.

e See previous chapter for more tools

Bibliography

[1] Calvo, S., Jain, M., Xie, X., Sheth, S.A., Chang, B., Goldberger, O.A., Spinaz- zola, A., Zeviani, M.,
Carr, S.A., and Mootha, V.K. (2006). Systematic identifi- cation of human mitochondrial disease genes
through integrative genomics. Nat. Genet. 38, 576582.

[2] Scholokopf, B., et al., 1997. Comparing support vector machines with Gaussian kernels to radial basis
function classifiers. IEEE Transactions on Signal Processing.

[3] Christopher J.C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining
and Knowledge Discovery, 2:121-167, 1998.

[4] T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov, H. Coller, M. L. Loh,
J. R. Downing, M. A. Caligiuri, and C. D. Bloomfield. Molecular classification of cancer: class discovery
and class prediction by gene expression monitoring. Science, 286:531-537, 1999.

[5] S. Mukherjee, P. Tamayo, D. Slonim, A. Verri, T. Golub, J. P. Mesirov, and T. Poggio. Support vector
machine classification of microarray data. Technical report, AT Memo 1677, Massachusetts Institute of
Technology, 1998.

250

6.047/6.878 Lecture 14:

Gene Regulation 2: Classification

Genes Rejects Errors Confidence level |d|
7129 3 0 93% 0.1
40 0 0 93% 0.1
5 3 0 92% 0.1

251

6.047/6.878 Lecture 14:
Gene Regulation 2: Classification

252

CHAPTER

SEVENTEEN

REGULATORY MOTIFS, GIBBS SAMPLING, AND EM

Jenny Lin (2014)

Maria Alexis (2013)

James Yeung (2012)

Yinging Li and Arvind Thiagarajan (2011)
Bianca Dumitrascu and Neal Wadhwa (2010)
Joseph Lane (2009)

Brad Cater and Ethan Heilman (2008)

Figures
17.1 Transcription factors binding to DNA at a motifsite 253
17.2 Example Profile Matrix e 254
17.3 Examples of the 7Z matrix computed 255

17.4 Selecting motif location: the greedy algorithm will always pick the most probable location
for the motif. The EM algorithm will take an average while Gibbs Sampling will actually

use the probability distribution given by Z to sample a motif in each step 255
17.5 Sample position weight matrix Lo 256
17.6 Gibbs Sampling Lo e e 258
17.7 Using motif seeds to find degenerate motifso 259

17.8 Examples of the Z matrix computed via EM, Gibbs Sampling, and the Greedy Algorithm 260

17.9 Selecting motif location: the greedy algorithm will always pick the most probable location
for the motif. The EM algorithm will take an average while Gibbs Sampling will actually

use the probability distribution given by Z to sample a motif in each step 260
17.10Sequences with zero, one or two motifs. L oL 262
17.11Entropy is maximized when both heads and tails have an equal chance of occurring 263
17.12The height of each stack represents the number of bits of information that Gibbs sampling

or EM told us about the postion in the motif 263
17.13lexA binding site assuming low G-C content and using K-L distance 264

253

6.047/6.878 Lecture 15:
Regulatory Motifs, Gibbs Sampling, and EM

17.1 Introduction to regulatory motifs and gene regulation

We have already explored the areas of dynamic programming, sequence alignment, sequence classification
and modeling, hidden Markov models, and expectation maximization. In the following chapter, we will look
at how these techniques are also useful in identifying novel motifs and elucidating their functions.

17.1.1 The regulatory code: Transcription Factors and Motifs

Motifs are short (6-8 bases long), recurring patterns that have well- defined biological functions. Motifs
include DNA patterns in enhancer regions or promoter motifs, as well as motifs in RNA sequences such as
splicing signals. As we have discussed, genetic activity is regulated in response to environmental variations.
Motifs are responsible for recruiting Transcription Factors, or regulatory proteins, to the appropriate target
gene. Motifs can also be recognized by microRNAs, which bind to motifs given through complementarity;
nucleosomes, which recognize motifs based on their GC content; and other RNAs, which use a combination
of DNA sequence and structure. Once bound, they can activate or repress the expression of the associated
gene.

Transcription factors (TFs) can use several mechanisms in order to control gene expression, including
acetylation and deacetylation of histone proteins, recruitment of cofactor molecules to the TF-DNA complex,
and stabilization or disruption of RNA-DNA interfaces during transcription. They often regulate a group
of genes that are involved in similar cellular processes. Thus, genes that contain the same motif in their
upstream regions are likely to be related in their functions. In fact, many regulatory motifs are identified by
analyzing the regions upstream of genes known to have similar functions.

Motifs have become exceedingly useful for defining genetic regulatory networks and deciphering the
functions of individual genes. With our current computational abilities, regulatory motif discovery and
analysis has progressed considerably and remains at the forefront of genomic studies.

17.1.2 Challenges of motif discovery

Before we can get into algorithms for motif discovery, we must first understand the characteristics of motifs,
especially those that make motifs somewhat difficult to find. As mentioned above, motifs are generally very
short, usually only 6-8 base pairs long. Additionally, motifs can be degenerate, where only the nucleotides
at certain locations within the motif affect the motif’s function. This degeneracy arises because transcrip-
tion factors are free to interact with their corresponding motifs in manners more complex than a simple
complementarity relation. As seen in 17.1, many proteins interact with the motif not by opening up the
DNA to check for base complementarity, but instead by scanning the spaces, or grooves, between the two
sugar phosphate backbones. Depending on the physical structure of the transcription factor, the protein may
only be sensitive to the difference between purines and pyrimidines or weak and strong bases, as opposed to
identifying specific base pairs. The topology of the transcription factor may even make it such that certain
nucleotides aren’t interacted with at all, allowing those bases to act as wildcards.

This issue of degeneracy within a motif poses a challenging problem. If we were only looking for a fixed
k-mer, we could simply search for the k-mer in all the sequences we are looking at using local alignment

254

6.047/6.878 Lecture 15:
Regulatory Motifs, Gibbs Sampling, and EM

sugar phosphate
Base p8IT hackhone

©1995 GARLAND FUBLISHING

Figure 17.1: Transcription factors binding to DNA at a motif site

© Garland Publishing. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

tools. However, the motif may vary from sequence to sequence. Because of this, a string of nucleotides that
is known to be a regulatory motif is said to be an instance of a motif because it represents one of potentially
many different combinations of nucleotides that fulfill the function of the motif.

In our approaches, we make two assumptions about the data. First, we assume that there are no pairwise
correlations between bases, i.e. that each base is independent of every other base. While such correlations do
exist in real life, considering them in our analysis would lead to an exponential growth of the parameter space
being considered, and consequently we would run the risk of overfitting our data. The second assumption we
make is that all motifs have fixed lengths; indeed, this approximation simplifies the problem greatly. Even
with these two assumptions, however, motif finding is still a very challenging problem. The relatively small
size of motifs, along with their great variety, makes it fairly difficult to locate them. In addition, a motif’s
location relative to the corresponding gene is far from fixed; the motif can be upstream or downstream, and
the distance between the gene and the motif also varies. Indeed, sometimes the motif is as far as 10k to
10M base pairs from the gene.

17.1.3 Motifs summarize TF sequence specificity

Because motif instances exhibit great variety, we generally use a Position Weight Matrix (PWM) to char-
acterize the motif. This matrix gives the frequency of each base at each location in the motif. The figure
below shows an example PWM, where p., corresponds to the frequency of base ¢ in position k within the
motif, with p.o denoting the distribution of bases in non-motif regions.

We now define the problem of motif finding more rigorously. We assume that we are given a set of
co-regulated and functionally related genes. Many motifs were previously discovered by doing footprint

255

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 15:
Regulatory Motifs, Gibbs Sampling, and EM

sequence positions

1 2 3 4 5 6 7 8
01)03|/01/02/0.2/0403 0.1

05)0.20.1)0.1|06|0.1|0.2|0.7

02020605 (0.1 (0.2 0.2 0.1
0.203)0.2)0.2 0.1 03 |03 (0.1

- O 0O »

Figure 17.2: Example Profile Matrix

experiments, which isolate sequences bound by specific transcription factors, and therefore more likely to
correspond to motifs. There are several computational methods that can be used to locate motifs:

1. Perform a local alignment across the set of sequences and explore the alignments that resulted in a
very high alignment score.

2. Model the promoter regions using a Hidden Markov Model and then use a generative model to find
non-random sequences.

Reduce the search space by applying prior knowledge for what motifs should look like.

=W

. Search for conserved blocks between different sequences.

Examine the frequency of kmers across regions highly likely to contain a motif.

o

6. Use probabilistic methods, such as EM, Gibbs Sampling, or a greedy algorithm

Method 5, using relative kmer frequencies to discover motifs, presents a few challenges to consider. For
example, there could be many common words that occur in these regions that are in fact not regulatory
motifs but instead different sets of instructions. Furthermore, given a list of words that could be a motif, it
is not certain that the most likely motif is the most common word; for instance, while motifs are generally
overrepresented in promoter regions, transcription factors may be unable to bind if an excess of motifs are
present. One possible solution to this problem might be to find kmers with maximum relative frequency
in promoter regions as compared to background regions. This strategy is commonly performed as a post
processing step to narrow down the number of possible motifs.

In the next section, we will talk more about these probabilistic algorithms as well as methods to use

kmer frequency for motif discovery. We will also come back to the idea of using kmers to find motifs in the
context of using evolutionary conservation for motif discovery.

17.2 Expectation maximization

17.2.1 The key idea behind EM

We are given a set of sequences with the assumption that motifs are enriched in them. The task is to find
the common motif in those sequences. The key idea behind the following probabilistic algorithms is that if

256

6.047/6.878 Lecture 15:
Regulatory Motifs, Gibbs Sampling, and EM

we were given motif starting positions in each sequence, finding the motif PWM would be trivial; similarly,
if we were given the PWM for a particular motif, it would be easy to find the starting positions in the
input sequences. Let Z be the matrix in which Z;; corresponds to the probability that a motif instance
starts at position j in sequence 4 (a graphical of the probability distributions summarized in Z is shown in
Figure 17.8). These algorithms therefore rely on a basic iterative approach: given a motif length L and an
initial matrix Z, we can use the starting positions to estimate the motif, and in turn use the resulting motif
to re-estimate the starting positions, iterating over these two steps until convergence on a motif.

no clear
21 winner
two
22 candidate

one bi
23 y‘p winnerg

Z, — ™~ uniform

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 17.3: Examples of the Z matrix computed

17.2.2 The E step: Estimating Z;; from the PWM

Greedy always picks maximum

Gibibg sampling picks one at random

"

2 hE B P LI—
(and)

EM uses both in estimating motif

“All methods agree amtia

Greedy ignores most of the probabil|
Gibbs sampling rapidly converges to some choice
: ntorm

EM averages over the enlire sequence {slow/no convergence)

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 17.4: Selecting motif location: the greedy algorithm will always pick the most probable location for
the motif. The EM algorithm will take an average while Gibbs Sampling will actually use the probability
distribution given by Z to sample a motif in each step

Step 1: Initialization The first step in EM is to generate an initial probability weight matrix (PWM).
The PWM describes the frequency of each nucleotide at each location in the motif. In 17.5, there is
an example of a PWM. In this example, we assume that the motif is eight bases long.

If you are given a set of aligned sequences and the location of suspected motifs within them, then
finding the PWM is accomplished by computing the frequency of each base in each position of the
suspected motif. We can initialize the PWM by choosing starting locations randomly.

We refer to the PWM as pgx, where p.r is the probability of base ¢ occurring in position k of the
motif. Note: if there is 0 probability, it is generally a good idea to insert pseudo- counts into your
probabilities. The PWM is also called the profile matrix. In addition to the PWM, we also keep a
background distribution pex, r—o, a distribution of the bases not in the motif.

Step 2: Expectation In the expectation step, we generate a vector Z;; which contains the probability of
the motif starting in position j in sequence i. In EM, the Z vector gives us a way of classifying all of
the nucleotides in the sequences and tell us whether they are part of the motif or not. We can calculate
Z;; using Bayes’ Rule. This simplifies to:

A Pr'(X;|Z;) Pr!(Zi;=1)
@ SEZ WAL Prt(X;|Z;j=1) Prt(Z;,=1)

257

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 15:
Regulatory Motifs, Gibbs Sampling, and EM

sequence positions

A
' ~
1 2 3 4 S 6 7 8

0.1]10.30.1)10.2|0.2]0.4(0.3]0.1
05102 (0.1]0.1 |0.6]0.1 (0.2 0.7

0.210.2 (0.6 05 |0.1]0.2 (0.2 |0.1

- QA »

0.2103(0.2]0.2/0.1)0.3 |0.3]0.1

Figure 17.5: Sample position weight matrix

j+w-1
Pr(X,|Z, =1,p) = Hpq, Hpck,k Hpck,
L k=W
before motif motlf after motif

where Prt(X;|Z;; = 1) = Pr(X;|Z;; = 1,p) is defined as

This is the probability of sequence i given that the motif starts at position j. The first and last
products correspond to the probability that the sequences preceeding and following the candidate
motif come from some background probability distribution whereas the middle product corresponds to
the probability that the candidate motif instance came from a motif probability distribution. In this
equation, we assume that the sequence has length L and the motif has length W.

17.2.3 M step: Finding the maximum likelihood motif from starting posi-
tions Zij

Step 3: Maximization Once we have calculated Z!, we can use the results to update both the PWM and
the background probability distribution. We can update the PWM using the following equation

p(m) n. + dc,k >
c.k seudo-counts
Y (n,, +d, P
b

k

[Z ZZU k >0 moti

i JIXG jeka=ct

W
—ch,j k=0
j=1

nc,k = %

c
total # of C’s /‘[’
in data set

Step 4: Repeat Repeat steps 2 and 3 until convergence.

258

6.047/6.878 Lecture 15:
Regulatory Motifs, Gibbs Sampling, and EM

One possible way to test whether the profile matrix has converged is to measure how much each
element in the PWM changes after step maximization. If the change is below a chosen threshold, then
we can terminate the algorithm. EM is a deterministic algorithm and is entirely dependent on the
initial starting points because it uses an average over the full probability distribution. It is therefore
advisable to rerun the algorithm with different intial starting positions to try reduce the chance of
converging on a local maximum that is not the global maximum and to get a good sense of the solution
space.

17.3 Gibbs Sampling: Sample from joint (M,Zij) distribution

17.3.1 Sampling motif positions based on the Z vector

Gibbs sampling is similar to EM except that it is a stochastic process, while EM is deterministic. In
the expectation step, we only consider nucleotides within the motif window in Gibbs sampling. In the
maximization step, we sample from Z;; and use the result to update the PWM instead of averaging over all
values as in EM.

Step 1: Initialization As with EM, you generate your initial PWM with a random sampling of initial
starting positions. The main difference lies in the Maximization step. During EM, the algorithm
creates the sequence motif by considering all possible starting points of the motif. During Gibbs, the
algorithm picks a single starting point of the motif with the probability of the starting points Z.

Step 2: Remove Remove one sequence, X;, from your set of sequences. You will change the starting
location of for this particular sequence.

Step 3: Update Using the remaining set of sequences, update the PWM by counting how often each base
occurs in each position, adding pseudocounts as necessary.

Step 4: Sample Using the newly updated PWM, compute the score of each starting point in the sequence
X;. To generate each score, Z;;, the following formula is used:

11
is; Pank—j+1
FES T
k=3

Ay =
’ Peg: 0

This is simply the probability that the sequence was generated using the motif PWM divided by the
probability that the sequence was generated using the background PWM.

Select a new starting position for X; by randomly choosing a position based on its Z;;.

Step 5: Iterate Loop back to Step 2 and iterate the algorithm until convergence.

17.3.2 More likely to find global maximum, easy to implement

Because Gibbs updates its sequence motif during Maximization based of a single sample of the Motif rather
than every sample weighted by their scores, Gibbs is less dependent on the starting PWM. EM is much more
likely to get stuck on a local maximum than Gibbs because of this fact. However, this does not mean that
Gibbs will always return the global maximum. Gibbs must be run multiple times to ensure that you have
found the global maximum and not the local maximum.Two popular implementations of Gibbs Sampling
applied to this problem are AlignACE and BioProspector. A more general Gibbs Sampler can be found in

259

6.047/6.878 Lecture 15:
Regulatory Motifs, Gibbs Sampling, and EM

the program WinBUGS. Both AlignACE and BioProspector use the aforementioned algorithm for several
choices of initial values and then report common motifs. Gibbs sampling is easier to implement than E-M,
and in theory, it converges quickly and is less likely to get stuck at a local optimum. However, the search is
less systematic.

P(Sequences|params1,params2)

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faqg-fair-use/.

Figure 17.6: Gibbs Sampling

17.4 De novo motif discovery

As discussed in beginning of this chapter, the core problem for motif finding is to define the criteria for what
is a valid motif and where they are located. Since most motifs are linked to important biological functions,
one could subject the organism to a variety of conditions in hope of triggering these biological functions.
One could then search for differentially expressed genes, and then use those genes as a basis for which genes
are functionally related and thus likely to be controlled by the same motif instance. However, this technique
not only relies on prior knowledge of interesting biological functions to probe for, but is also subject to biases
in the experimental procedure. Alternatively, one could use ChIP-seq to search for motifs, but this method
relies on not only having a known Transcription Factor of interest, but also requires developing antibodies
to recognize said Transcription Factor, which can be costly and time consuming.

Ideally one would be able to discover motifs de novo, or without relying on an already known gene set
or Transcription Factor. While this seems like a difficult problem, it can in fact be accomplished by taking
advantage of genome-wide conservation. Because biological functions are usually conserved across species
and have distinct evolutionary signatures, one can align sequences from close species and search specifically
in conserved regions (also known as Island of Conservation) in order to increase the rate of finding functional
motifs.

17.4.1 Motif discovery using genome-wide conservation

Conservation islands often overlap known motifs, so doing genome-wide scans through evolutionary conserved
regions can help us discover motifs, de novo. However, not all conserved regions will be motifs; for instance,
nucleotides surrounding motifs may also be conserved even though they are not themselves part of a motif.
Distinguishing motifs from background conserved regions can be done by looking for enrichments which will
select more specifically for kmers involved in regulatory motifs. For instance, one can find regulatory motifs
by searching for conserved sequences enriched in intergenic regions upstream of genes as compared to control

260

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 15:
Regulatory Motifs, Gibbs Sampling, and EM

regions such as coding sequences, since one would expect motifs to be enriched in or around promoters of
genes. One can also expand this model to find degenerate motifs: we can look for conservation of smaller,
non-degenerate motifs separated by a gap of variable length, as shown in the figure below. We can also
extend this motif through a greedy search in order to get closer to find the local maximum likelihood motif.
Finally, evolution of motifs can also reveal which motifs are degenerate; since a particular motif is more likely
to be degenerate if it is often replaced by another motif throughout evolution, motif clustering can reveal
which kmers are likely to correspond to the same motif.

In fact, the strategy has its biological relevance. In 2003, Professor Kellis argued that there must be some

selective pressure to cause a particular sequence to be occur on specific places. His PhD. thesis on the topic
can be found at the following location: http://web.mit.edu/manoli/www/publications/KellisThesisO3.pdf

images/Fig18_ConservationForTFMotifDiscovery.png

Figure 17.7: Using motif seeds to find degenerate motifs

17.4.2 Validation of discovered motifs with functional datasets

These predicted motifs can then be validated with functional datasets. Predicted motifs with at least one of
the following features are more likely to be real motifs: -enrichment in co-regulated genes. One can extend
this further to larger gene groups; for instance, motifs have been found to be enriched in genes expressed in
specific tissues -overlap with TF binding experiments -enrichment in genes from the same complex -positional
biases with respect to the transcription start site (T'SS): motifs are enriched in gene TSS’s -upstream vs.
downstream of genes, inter- vs. intra-genic positonal biases: motifs are generally depleted in coding sequences
-similarity to known transcription factor motifs: some, but not all, discovered motifs may match known motifs
(however, not all motifs are conserved and known motifs may not be exactly correct)

17.5 Evolutionary signatures for instance identification

17.6 Phylogenies, Branch length score Confidence score

17.6.1 Foreground vs. background. Real vs. control motifs.
17.7 Possibly deprecated stuff below:

17.7.1 Greedy

While the greedy algorithm is not used very much in practice, it is important know how it functions and
mainly its advantages and disadvantages compared to EM and Gibbs sampling. The Greedy algorithm works
just like Gibbs sampling except for a main difference in Step 4. Instead of randomly choosing selecting a
new starting location, it always picks the starting location with the highest probability.

261

6.047/6.878 Lecture 15:
Regulatory Motifs, Gibbs Sampling, and EM

This makes the Greedy algorithm slightly faster than Gibbs sampling but reduces its chances of finding
a global maximum considerably. In cases where the starting location probability distribution is fairly evenly
distributed, the greedy algorithm ignores the weights of every other starting position other than the most
likely.

17.8 Comparing different Methods

The main difference between Gibbs, EM, and the Greedy algorithm lies in their maximization step after
computing their Z matrix. Examples of the Z matrix are graphically represented below.THis Z matrix
is then used to recompute theoriginal profile matrix until convergence. Some examples of this matrix are
graphically represented by 17.8

no clear
21 - winner
two
22 candidate

one bi
23 JL winnerg

Z, — ™~ uniform

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 17.8: Examples of the Z matrix computed via EM, Gibbs Sampling, and the Greedy Algorithm

Intuitively, the greedy algorithm will always pick the most probable location for the motif. The EM
algorithm will take an average of all values while Gibbs Sampling will actually use the probability distribution
given by Z to sample a motif in a step.

Greedy always picks maximum

Giibp sampling picks one at random
o1} o
2, x = -~ iedaten
{and)
EM uses both in estimating moti

All methods agree)

Greedy ignores most of the probabil|
Gibbs sampling rapidly converges to some choice
T = wnlorm

EM averages over the snlire sequence {slow/no convergence)

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Figure 17.9: Selecting motif location: the greedy algorithm will always pick the most probable location for
the motif. The EM algorithm will take an average while Gibbs Sampling will actually use the probability
distribution given by Z to sample a motif in each step

17.9 OOPS,ZOOPS, TCM

The different types of sequence model make differing assumptions about how and where motif occurrences
appear in the dataset. The simplest model type is OOPS (One-Occurence-Per-Sequence) since it assumes
that there is exactly one occurrence per sequence of the motif in the dataset. This is the case we have analyzed
in the Gibbs sampling section. This type of model was introduced by Lawrence & Reilly (1990) [2], when they
describe for the first time a generalization of OOPS, called ZOOPS (Zero-or-One-Occurrence-Per-Sequence),
which assumes zero or one motif occurrences per dataset sequence. Finally, TCM (Two-Component Mixture)

262

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 15:
Regulatory Motifs, Gibbs Sampling, and EM

models assume that there are zero or more non-overlapping occurrences of the motif in each sequence in the
dataset, as described by Baily & Elkan (1994). [1] Each of these types of sequence model consists of two
components, which model, respectively, the motif and non-motif (background) positions in sequences. A
motif is modelled by a sequence of discrete random variables whose parameters give the probabilities of each
of the different letters (4 in the case of DNA, 20 in the case of proteins) occurring in each of the different
positions in an occurrence of the motif. The background positions in the sequence are modelled by a single
discrete random variable.

17.10 Extension of the EM Approach

17.10.1 ZOOPS Model

The approach presented before (OOPS) relies on the assumption that every sequence is characterized by
only one motif (e.g., there is exactly one motif occurrence in a given sequence). The ZOOPS model takes
into consideration the possibility of sequences not containing motifs.

In this case let 7 be a sequence that does not contain a motif. This extra information is added to our
previous model using another parameter A to denote the prior probability that any position in a sequence is
the start of a motif. Next, the probability of the entire sequence to contain a motif is A= (L — W + 1) % A

The E-Step

The E-step of the ZOOPS model calculates the expected value of the missing information—the probability
that a motif occurrence starts in position j of sequence X;. The formulas used for the three types of model
are given below.

PrO(x;|z; = 1)A®
7t — i)
T PrOX|Q; = 0)(1 = AW) + XLV PrO(X;|Zy = 1)AW®

where \! is the probablity that sequence i has a motif, Prt(X;|Q; = 0) is the probablity that X; is
generated from a sequence i that does not contain a motif

The M-Step

The M-step of EM in MEME re-estimates the values for A using the preceding formulas. The math remains
the same as for OOPS, we just update the values for A and ~y

/\(E+I)_ _I\(r.;ll _ 1 gl Zu)
T(E-W 1) 7)1{L7H"+1]‘ZI E A i,
i=1j=

The model above takes into consideration sequences that do not have any motifs. The challenge is to
also take into consideration the situation in which there is more than one motif per sequence. This can be

263

6.047/6.878 Lecture 15:
Regulatory Motifs, Gibbs Sampling, and EM

accomplished with the more general model TCM. TCM (two-component mixture model) is based on the
assumption that there can be zero, one, or even two motif occurrences per sequence.

i

Figure 17.10: Sequences with zero, one or two motifs.

17.10.2 Finding Multiple Motifs

All the above sequence model types model sequences containing a single motif (notice that TCM model
can describe sequences with multiple occurences of the same motif). To find multiple, non-overlapping,
different motifs in a single dataset, one incorporates information about the motifs already discovered into
the current model to avoid rediscovering the same motif. The three sequence model types assume that
motif occurrences are equally likely at each position j in sequences x;. This translates into a uniform prior
probability distribution on the missing data variables Z;;. A new prior on each Z;; had to be used during
the E-step that takes into account the probability that a new width-W motif occurrence starting at position
X;; might overlap occurrences of the motifs previously found. To help compute the new prior on Z;; we
introduce variables V;; where V;; = 1 if a width-W motif occurrence could start at position j in the sequence
X; without overlapping an occurrence of a motif found on a previous pass. Otherwise V;; = 0.

V;] =

1, noprevious motifsin [X; j,...., Xi jtw—1]
0, otherwise

17.11 Motif Representation and Information Content

Instead of a Profile Matrix, we can also represent Motifs using information theory. In information theory,
information about a certain event is communicated through a message. The amount of information carried
by a message is measured in bits. We can determine the bits of information carried by a message by observing
the probability distribution of the event described in the message. Basically, if we dont know anything about
the outcome of the event, the message will contain a lot of bits. However, if we are pretty sure how the
event is going to play out, and the message only confirms our suspicions, the message carries very few bits
of information. For example, The sentence OQun will rise tomorrow” is not very surprising, so the information
of that sentence if quite low.. However, the sentence Oun will not rise tomorrow” is very surprising and it
has high information content. We can calculate the specific amount of information in a given message with
the equation: — logp.

Shannon Entropy is a measure of the expected amount of information contained in a message. In other
words, it is the information contained by a message of every event that could possibly occur weighted by
each events probability. The Shannon entropy is given by the equation:

264

6.047/6.878 Lecture 15:
Regulatory Motifs, Gibbs Sampling, and