
Computational Biology: Genomes, Networks, Evolution

MIT course 6.047/6.878

Taught by Prof. Manolis Kellis

January 6, 2016

ii

CONTENTS

1 Introduction to the Course 3
1.1 Introduction and Goals . 3

1.1.1 A course on computational biology . 3
1.1.2 Duality of Goals: Foundations and Frontiers . 3
1.1.3 Duality of disciplines: Computation and Biology . 4
1.1.4 Why Computational Biology? . 4
1.1.5 Finding Functional Elements: A Computational Biology Question 6

1.2 Final Project - Introduction to Research In Computational Biology 7
1.2.1 Final project goals . 7
1.2.2 Final project milestones . 7
1.2.3 Project deliverables . 8
1.2.4 Project grading . 8

1.3 Additional materials . 9
1.3.1 Online Materials for Fall 2015 . 9
1.3.2 Textbooks . 9

1.4 Crash Course in Molecular Biology . 9
1.4.1 The Central Dogma of Molecular Biology . 9
1.4.2 DNA . 10
1.4.3 Transcription . 11
1.4.4 RNA . 12
1.4.5 Translation . 13
1.4.6 Protein . 14
1.4.7 Regulation: from Molecules to Life . 15
1.4.8 Metabolism . 16
1.4.9 Systems Biology . 16
1.4.10 Synthetic Biology . 17
1.4.11 Model organisms and human biology . 17

1.5 Introduction to algorithms and probabilistic inference . 18
1.5.1 Probability distributions . 19
1.5.2 Graphical probabilistic models . 19
1.5.3 Bayes rules: priors, likelihood, posterior . 19
1.5.4 Markov Chains and Sequential Models . 19
1.5.5 Probabilistic inference and learning . 19
1.5.6 Max Likelihood and Max A Posteriori Estimates . 19

I Comparing Genomes 21

2 Sequence Alignment and Dynamic Programming 23
2.1 Introduction . 23

iii

CONTENTS CONTENTS

2.2 Aligning Sequences . 24
2.2.1 Example Alignment . 24
2.2.2 Solving Sequence Alignment . 24

2.3 Problem Formulations . 26
2.3.1 Formulation 1: Longest Common Substring . 26
2.3.2 Formulation 2: Longest Common Subsequence (LCS) 27
2.3.3 Formulation 3: Sequence Alignment as Edit Distance 28
2.3.4 Formulation 4: Varying Gap Cost Models 28
2.3.5 Enumeration . 29

2.4 Dynamic Programming . 29
2.4.1 Theory of Dynamic Programming . 29
2.4.2 Fibonacci Numbers . 30
2.4.3 Sequence Alignment using Dynamic Programming . 32

2.5 The Needleman-Wunsch Algorithm . 32
2.5.1 Dynamic programming vs. memoization . 32
2.5.2 Problem Statement . 33
2.5.3 Index space of subproblems . 33
2.5.4 Local optimality . 33
2.5.5 Optimal Solution . 34
2.5.6 Solution Analysis . 34
2.5.7 Needleman-Wunsch in practice . 34
2.5.8 Optimizations . 35

2.6 Multiple alignment . 37
2.6.1 Aligning three sequences . 37
2.6.2 Heuristic multiple alignment . 38

2.7 Current Research Directions . 39
2.8 Further Reading . 39
2.9 Tools and Techniques . 39
2.10 What Have We Learned? . 39
2.11 Appendix . 39

2.11.1 Homology . 39
2.11.2 Natural Selection . 39
2.11.3 Dynamic Programming v. Greedy Algorithms . 40
2.11.4 Pseudocode for the Needleman-Wunsch Algorithm . 41

3 Rapid Sequence Alignment and Database Search 43
3.1 Introduction . 43
3.2 Global alignment vs. Local alignment vs. Semi-global alignment 45

3.2.1 Using Dynamic Programming for local alignments . 47
3.2.2 Algorithmic Variations . 47
3.2.3 Generalized gap penalties . 49

3.3 Linear-time exact string matching . 49
3.3.1 Karp-Rabin Algorithm . 49

3.4 The BLAST algorithm (Basic Local Alignment Search Tool) 52
3.4.1 The BLAST algorithm . 52
3.4.2 Extensions to BLAST . 54

3.5 Pre-processing for linear-time string matching . 54
3.5.1 Suffix Trees . 54
3.5.2 Suffix Arrays . 55
3.5.3 The Burrows-Wheeler Transform . 55
3.5.4 Fundamental pre-processing . 55
3.5.5 Educated String Matching . 55

3.6 Probabilistic Foundations of Sequence Alignment . 56
3.7 Current Research Directions . 58

iv

CONTENTS CONTENTS

3.8 Further Reading . 58
3.9 Tools and Techniques . 59
3.10 What Have We Learned? . 59

4 Comparative Genomics I: Genome Annotation 61
4.1 Introduction . 62

4.1.1 Motivation and Challenge . 62
4.1.2 Importance of many closely–related genomes . 63
4.1.3 Comparative genomics and evolutionary signatures . 64

4.2 Conservation of genomic sequences . 65
4.2.1 Functional elements in Drosophila . 65
4.2.2 Rates and patterns of selection . 65

4.3 Excess Constraint . 66
4.3.1 Causes of Excess Constraint . 67
4.3.2 Modeling Excess Constraint . 68
4.3.3 Excess Constraint in the Human Genome . 69
4.3.4 Examples of Excess Constraint . 71
4.3.5 Measuring constraint at individual nucleotides . 72

4.4 Diversity of evolutionary signatures: An Overview of Selection Patterns 72
4.4.1 Selective Pressures On Different Functional Elements 73

4.5 Protein–Coding Signatures . 75
4.5.1 Reading–Frame Conservation (RFC) . 76
4.5.2 Codon–Substitution Frequencies (CSFs) . 77
4.5.3 Classification of Drosophila Genome Sequences . 80
4.5.4 Leaky Stop Codons . 81

4.6 microRNA (miRNA) Gene Signatures . 84
4.6.1 Computational Challenge . 84
4.6.2 Unusual miRNA Genes . 85
4.6.3 Example: Re-examining ’dubious’ protein-coding genes 87

4.7 Regulatory Motifs . 87
4.7.1 Computationally Detecting Regulatory Motifs . 87
4.7.2 Individual Instances of Regulatory Motifs . 88

4.8 Current Research Directions . 88
4.9 Further Reading . 88
4.10 Tools and Techniques . 88
4.11 Bibliography . 88

5 Genome Assembly and Whole-Genome Alignment 89
5.1 Introduction . 91
5.2 Genome Assembly I: Overlap-Layout-Consensus Approach . 91

5.2.1 Setting up the experiment . 91
5.2.2 Finding overlapping reads . 93
5.2.3 Merging reads into contigs . 94
5.2.4 Laying out contig graph into scaffolds . 95
5.2.5 Deriving consensus sequence . 96

5.3 Genome Assembly II: String graph methods . 97
5.3.1 String graph definition and construction . 97
5.3.2 Flows and graph consistency . 99
5.3.3 Feasible flow . 99
5.3.4 Dealing with sequencing errors . 100
5.3.5 Resources . 100

5.4 Whole-Genome Alignment . 100
5.4.1 Global, local, and ’glocal’ alignment . 100
5.4.2 Lagan: Chaining local alignments . 101

v

CONTENTS CONTENTS

5.5 Gene-based region alignment . 102
5.6 Mechanisms of Genome Evolution . 105

5.6.1 Chromosomal Rearrangements . 106
5.7 Whole Genome Duplication . 107
5.8 Additional figures . 107

6 Bacterial Genomics– Molecular Evolution at the Level of Ecosystems 111
6.1 Introduction . 111

6.1.1 Evolution of microbiome research . 112
6.1.2 Data generation for microbiome research . 112

6.2 Study 1: Evolution of life on earth . 112
6.3 Study 2: Pediatric IBD study with Athos Boudvaros . 113
6.4 Study 3: Human Gut Ecology (HuGE) project . 114
6.5 Study 4: Microbiome as the connection between diet and phenotype 118
6.6 Study 5: Horizontal Gene Transfer (HGT) between bacterial groups and its effect on antibiotic

resistance . 119
6.7 Study 6: Identifying virulence factors in Meningitis . 119
6.8 Q/A . 121
6.9 Current research directions . 122
6.10 Further Reading . 122
6.11 Tools and techniques . 122
6.12 What have we learned? . 122

II Coding and Non-Coding Genes 125

7 Hidden Markov Models I 127
7.1 Introduction . 127
7.2 Motivation: . 128

7.2.1 We have a new sequence of DNA, now what? . 128
7.2.2 Why probabilistic sequence modeling? . 129

7.3 Markov Chains and HMMS: From Example To Formalizing 129
7.3.1 Motivating Example: Weather Prediction . 129
7.3.2 Formalizing of Markov Chain and HMMS . 129

7.4 Apply HMM to Real World: From Casino to Biology . 131
7.4.1 The Dishonest Casino . 131
7.4.2 Back to Biology . 134

7.5 Algorithmic Settings for HMMs . 137
7.5.1 Scoring . 137
7.5.2 Decoding . 138
7.5.3 Evaluation . 140

7.6 An Interesting Question: Can We Incorporate Memory in Our Model? 142
7.7 Further Reading . 143

7.7.1 Length Distributions of States and Generalized Hidden Markov Models 143
7.7.2 Conditional random fields . 143

7.8 Current Research Directions . 143
7.9 Tools and Techniques . 143
7.10 What Have We Learned? . 143

8 Hidden Markov Models II - Posterior Decoding and Learning 145
8.1 Review of previous lecture . 145

8.1.1 Introduction to Hidden Markov Models . 145
8.1.2 Genomic Applications of HMMs . 146
8.1.3 Viterbi decoding . 147

vi

CONTENTS CONTENTS

8.1.4 Forward Algorithm . 147

8.1.5 This lecture . 149

8.2 Posterior Decoding . 150

8.2.1 Motivation . 150

8.2.2 Backward Algorithm . 150

8.2.3 The Big Picture . 152

8.3 Encoding Memory in a HMM: Detection of CpG islands . 153

8.4 Learning . 155

8.4.1 Supervised Learning . 156

8.4.2 Unsupervised Learning . 156

8.5 Using HMMs to align sequences with affine gap penalties . 159

8.6 Current Research Directions . 160

8.7 Further Reading . 162

8.8 Tools and Techniques . 162

8.9 What Have We Learned? . 162

9 Gene Identification: Gene Structure, Semi-Markov, CRFs 163

9.1 Introduction . 163

9.2 Overview of Chapter Contents . 164

9.3 Eukaryotic Genes: An Introduction . 164

9.4 Assumptions for Computational Gene Identification . 164

9.5 Hidden Markov Models . 165

9.6 Conditional Random Fields . 166

9.7 Other Methods . 167

9.8 Conclusion . 168

9.8.1 HMM . 168

9.8.2 CRF . 168

9.9 Current Research Directions . 169

9.10 Further Reading . 169

9.11 Tools and Techniques . 169

9.12 What Have We Learned? . 169

10 RNA Folding 171

10.1 Motivation and Purpose . 172

10.2 Chemistry of RNA . 172

10.3 Origin and Functions of RNA . 173

10.3.1 Riboswitches . 173

10.3.2 microRNAs . 173

10.3.3 Other types of RNA . 174

10.4 RNA Structure . 174

10.5 RNA Folding Problem and Approaches . 176

10.5.1 Nussinov’s algorithm . 177

10.5.2 Zuker Algorithm . 178

10.6 Evolution of RNA . 181

10.7 Probabilistic Approach to the RNA Folding Problem . 181

10.7.1 Application of SCFGs . 182

10.8 Advanced topics . 183

10.8.1 Other problems . 183

10.8.2 Relevance . 185

10.8.3 Current research . 185

10.9 Summary and key points . 185

10.10Further reading . 186

vii

CONTENTS CONTENTS

11 RNA Modifications 189

11.1 Introduction . 189

11.2 Post-Transcriptional Regulation . 190

11.2.1 Basics of Protein Translation . 190

11.2.2 Measuring Translation . 191

11.2.3 Codon Evolution . 193

11.2.4 Translational Regulation . 195

11.3 Current Research Directions . 195

11.4 Further Reading . 195

11.5 Tools and Techniques . 195

11.6 What Have We Learned? . 195

12 Large Intergenic non-Coding RNAs 197

12.1 Introduction . 197

12.2 Noncoding RNAs from Plants to Mammals . 198

12.2.1 Long non-coding RNAs . 199

12.3 Practical topic: RNAseq . 199

12.3.1 How it works . 199

12.3.2 Aligning RNA-Seq reads to genomes and transcriptomes 200

12.3.3 Calculating expression of genes and transcripts . 202

12.3.4 Differential analysis with RNA-Seq . 203

12.4 Long non-coding RNAs in Epigenetic Regulation . 204

12.5 Integergenic Non-coding RNAs: missing lincs in Stem/Cancer cells? 206

12.5.1 An example: XIST . 206

12.6 Technologies: in the wet lab, how can we find these? . 206

12.6.1 Example: p53 . 207

12.7 Current Research Directions . 208

12.8 Further Reading . 208

12.9 Tools and Techniques . 208

12.10What Have We Learned? . 208

13 Small RNA 209

13.1 Introduction . 209

13.1.1 ncRNA classifications . 209

13.1.2 Small ncRNA . 211

13.1.3 Long ncRNA . 211

13.2 RNA Interference . 212

13.2.1 History of discovery . 212

13.2.2 Biogenesis pathways . 212

13.2.3 Functions and silencing mechanism . 213

III Gene and Genome Regulation 217

14 mRNA sequencing for Expression Analysis and Transcript discovery 219

14.1 Introduction . 219

14.2 Expression Microarrays . 220

14.3 The Biology of mRNA Sequencing . 220

14.4 Read Mapping - Spaced Seed Alignment . 220

14.5 Reconstruction . 221

14.6 Quantification . 224

viii

CONTENTS CONTENTS

15 Gene Regulation 1 –Gene Expression Clustering 225
15.1 Introduction . 226

15.1.1 Clustering vs Classification . 226
15.1.2 Applications . 226

15.2 Methods for Measuring Gene Expression . 227
15.2.1 Microarrays . 227
15.2.2 RNA-seq . 228
15.2.3 Gene Expression Matrices . 229

15.3 Clustering Algorithms . 231
15.3.1 K -Means Clustering . 231
15.3.2 Fuzzy K -Means Clustering . 232
15.3.3 K -Means as a Generative Model . 233
15.3.4 Expectation Maximization . 234
15.3.5 The limitations of the K -Means algorithm . 235
15.3.6 Hierarchical Clustering . 235
15.3.7 Evaluating Cluster Performance . 236

15.4 Current Research Directions . 237
15.5 Further Reading . 237
15.6 Resources . 237
15.7 What Have We Learned? . 238

16 Gene Regulation 2 –Classification 239
16.1 Introduction . 239
16.2 Classification - Bayesian Techniques . 240

16.2.1 Single Features and Bayes Rule . 240
16.2.2 Collecting Data . 242
16.2.3 Estimating Priors . 242
16.2.4 Multiple features and Naive Bayes . 243
16.2.5 Testing a classifier . 243
16.2.6 MAESTRO Mitochondrial Protein Classification . 244

16.3 Classification Support Vector Machines . 245
16.3.1 Kernels . 245

16.4 Tumor Classification with SVMs . 247
16.5 Semi-Supervised Learning . 248

16.5.1 Open Problems . 248
16.6 Current Research Directions . 248
16.7 Further Reading . 248
16.8 Resources . 248

17 Regulatory Motifs, Gibbs Sampling, and EM 251
17.1 Introduction to regulatory motifs and gene regulation . 252

17.1.1 The regulatory code: Transcription Factors and Motifs 252
17.1.2 Challenges of motif discovery . 252
17.1.3 Motifs summarize TF sequence specificity . 253

17.2 Expectation maximization . 254
17.2.1 The key idea behind EM . 254
17.2.2 The E step: Estimating Zij from the PWM . 255
17.2.3 M step: Finding the maximum likelihood motif from starting positions Zij 256

17.3 Gibbs Sampling: Sample from joint (M,Zij) distribution . 257
17.3.1 Sampling motif positions based on the Z vector . 257
17.3.2 More likely to find global maximum, easy to implement 257

17.4 De novo motif discovery . 258
17.4.1 Motif discovery using genome-wide conservation . 258
17.4.2 Validation of discovered motifs with functional datasets 259

ix

CONTENTS CONTENTS

17.5 Evolutionary signatures for instance identification . 259
17.6 Phylogenies, Branch length score Confidence score . 259

17.6.1 Foreground vs. background. Real vs. control motifs. 259
17.7 Possibly deprecated stuff below: . 259

17.7.1 Greedy . 259
17.8 Comparing different Methods . 260
17.9 OOPS,ZOOPS,TCM . 260
17.10Extension of the EM Approach . 261

17.10.1 ZOOPS Model . 261
17.10.2 Finding Multiple Motifs . 262

17.11Motif Representation and Information Content . 262

18 Regulatory Genomics 265
18.1 Introduction . 265

18.1.1 History of the Field . 266
18.1.2 Open Problems . 266

18.2 De Novo Motif Discovery . 266
18.2.1 TF Motif Discovery . 266
18.2.2 Validating Discovered Motifs . 267
18.2.3 Summary . 267

18.3 Predicting Regular Targets . 268
18.3.1 Motif Instance Identification . 268
18.3.2 Validating Targets . 268

18.4 MicroRNA Genes and Targets . 269
18.4.1 MiRNA Gene Discovery . 269
18.4.2 Validating Discovered MiRNAs . 269
18.4.3 MiRNA’s 5’ End Identification . 270
18.4.4 Functional Motifs in Coding Regions . 270

18.5 Current Research Directions . 270
18.6 Further Reading . 270
18.7 Tools and Techniques . 270
18.8 What Have We Learned? . 270

19 Epigenomics/Chromatin States 271
19.1 Introduction . 272
19.2 Epigenetic Information in Nucleosomes . 273

19.2.1 Epigenetic Inheritance . 274
19.3 Epigenomic Assays . 275

19.3.1 ChIP: a method for determining where proteins bind to DNA or where histones are
modified . 275

19.3.2 Bisulfite Sequencing: a method for determining where DNA is methylated 276
19.4 Primary data processing of ChIP data . 276

19.4.1 Read mapping . 276
19.4.2 Quality control metrics . 277
19.4.3 Peak Calling and Selection . 279

19.5 Annotating the Genome Using Chromatin Signatures . 282
19.5.1 Data . 283
19.5.2 HMMs for Chromatin State Annotation . 283
19.5.3 Choosing the Number of states to model . 284
19.5.4 Results . 285
19.5.5 Multiple Cell Types . 286

19.6 Current Research Directions . 287
19.7 Further Reading . 288
19.8 Tools and Techniques . 288

x

CONTENTS CONTENTS

19.9 What Have We Learned? . 288

20 Networks I: Inference, structure, spectral methods 297
20.1 Introduction . 297

20.1.1 Introducing Biological Networks . 298
20.1.2 Interactions Between Biological Networks . 299
20.1.3 Network Representation . 299

20.2 Network Centrality Measures . 301
20.2.1 Degree Centrality . 301
20.2.2 Betweenness Centrality . 302
20.2.3 Closeness Centrality . 303
20.2.4 Eigenvector Centrality . 303

20.3 Linear Algebra Review . 303
20.3.1 Eigenvectors . 303
20.3.2 Vector decomposition . 304
20.3.3 Diagonal Decomposition . 304
20.3.4 Singular Value Decomposition . 305

20.4 Sparse Principal Component Analysis . 307
20.4.1 Limitations of Principal Component Analysis . 307
20.4.2 Sparse PCA . 308

20.5 Network Communities and Modules . 311
20.5.1 Node-Centric Communities . 312
20.5.2 Group-Centric Communities . 313
20.5.3 Network-Centric Communities . 313

20.6 Network Diffusion Kernels . 319
20.7 Neural Networks . 321

20.7.1 Feed-forward nets . 321
20.7.2 Back-propagation . 321
20.7.3 Deep Learning . 322

20.8 Open Issues and Challenges . 323
20.9 Current Research Directions . 324
20.10Further Reading . 324
20.11Tools and Techniques . 325
20.12What Have We Learned? . 325

21 Regulatory Networks: Inference, Analysis, Application 327
21.1 Introduction . 327

21.1.1 Introducing Biological Networks . 328
21.1.2 Interactions Between Biological Networks . 329
21.1.3 Studying Regulatory Networks . 329

21.2 Structure Inference . 330
21.2.1 Key Questions in Structure Inteference . 330
21.2.2 Abstract Mathematical Representations for Networks 330

21.3 Overview of the PGM Learning Task . 331
21.3.1 Parameter Learning for Bayesian Networks . 331
21.3.2 Learning Regulatory Programs for Modules . 333
21.3.3 Conclusions in Network Inference . 333

21.4 Applications of Networks . 333
21.4.1 Overview of Functional Models . 333
21.4.2 Functional Prediction for Unannotated Nodes . 334

21.5 Structural Properties of Networks . 336
21.5.1 Degree distribution . 336
21.5.2 Network motifs . 337

21.6 Network clustering . 338

xi

CONTENTS CONTENTS

21.6.1 An algebraic view to networks . 339
21.6.2 The spectral clustering algorithm . 341

22 Chromatin Interactions 345
22.1 Introduction . 345

22.1.1 What’s already known . 346
22.1.2 What we don’t know . 346
22.1.3 Why do we study it? . 347

22.2 Relevant terminology . 347
22.2.1 Nuclear lamina . 347
22.2.2 Lamina Associated Domains(LADs) . 347
22.2.3 Histones . 347
22.2.4 Chromatin . 347
22.2.5 Chromosome territories (CT) . 348
22.2.6 Gross folding principles . 348

22.3 Molecular Methods for Studying Nuclear Genome Organization 348
22.3.1 Methods for measuring DNA-Nuclear Lamina interactions 348
22.3.2 Measuring DNA-DNA contacts . 350

22.4 Mapping Genome-Nuclear Lamina Interactions (LADs) . 352
22.4.1 Interpreting DamID Data . 353
22.4.2 Interpreting Hi-C Data . 354

22.5 Computational Methods for Studying Nuclear Genome Organization 355
22.5.1 Sources of Bias . 355
22.5.2 Bias Correction . 355
22.5.3 3D-modeling of 3C-based data . 356

22.6 Architecture of Genome Organization . 356
22.6.1 Multiple cell types influence on determining architecture 356
22.6.2 Inter-species comparison of lamina associations . 356
22.6.3 A-T Content Rule . 357

22.7 Mechanistic Understanding of Genome Architecture . 358
22.7.1 Understanding Mitosis and LADs . 358
22.7.2 Modeling . 358

22.8 Current Research Directions: . 359
22.8.1 LADs . 359
22.8.2 TADs and Other Compartments: . 359
22.8.3 Other/Miscellaneous: . 359

22.9 Further Reading . 360
22.10Available Tools and Techniques . 360
22.11What Have We Learned? . 360

23 Introduction to Steady State Metabolic Modeling 361
23.1 Introduction . 361

23.1.1 What is Metabolism? . 362
23.1.2 Why Model Metabolism? . 362

23.2 Model Building . 362
23.2.1 Chemical Reactions . 362
23.2.2 Steady-State Assumption . 363
23.2.3 Reconstructing Metabolic Pathways . 364

23.3 Metabolic Flux Analysis . 364
23.3.1 Mathematical Representation . 364
23.3.2 Null Space of S . 365
23.3.3 Constraining the Flux Space . 366
23.3.4 Linear Programming . 366

23.4 Applications . 368

xii

CONTENTS CONTENTS

23.4.1 In Silico Detection Analysis . 368
23.4.2 Quantitative Flux In Silico Model Predictions . 369
23.4.3 Quasi Steady State Modeling (QSSM) . 370
23.4.4 Regulation via Boolean Logic . 371
23.4.5 Coupling Gene Expression with Metabolism . 373
23.4.6 Predicting Nutrient Source . 374

23.5 Current Research Directions . 377
23.6 Further Reading . 377
23.7 Tools and Techniques . 377
23.8 What Have We Learned? . 377

24 The ENCODE project: Systematic experimentation and integrative genomics 379
24.1 Introduction . 379
24.2 Experimental Techniques . 380
24.3 Computational Techniques . 381
24.4 Current Research Directions . 383
24.5 Further Reading . 384
24.6 Tools and Techniques . 384
24.7 What Have We Learned? . 384

25 Pharmacogenomics 387
25.1 Introduction . 387
25.2 Current Research Directions . 387
25.3 Further Reading . 387
25.4 Tools and Techniques . 387
25.5 What Have We Learned? . 387

26 Synthetic Biology 389
26.1 Introduction . 389
26.2 Current Research Directions . 391
26.3 Further Reading . 392
26.4 Tools and Techniques . 392
26.5 What Have We Learned? . 393

IV Phylogenomics and Population Genomics395

27 Molecular Evolution and Phylogenetics 397
27.1 Introduction . 398
27.2 Basics of Phylogeny . 398

27.2.1 Trees . 398
27.2.2 Traits . 399
27.2.3 Methods for Tree Reconstruction . 400

27.3 Distance Based Methods . 402
27.3.1 From alignment to distances . 402
27.3.2 Distances to Trees . 407

27.4 Character-Based Methods . 411
27.4.1 Scoring . 412
27.4.2 Search . 417

27.5 Possible Theoretical and Practical Issues with Discussed Approach 419
27.6 Towards final project . 419

27.6.1 Project Ideas . 419
27.6.2 Project Datasets . 419

27.7 What Have We Learned? . 420

xiii

CONTENTS CONTENTS

28 Phylogenomics II 421

28.1 Introduction . 422

28.2 Inferring Orthologs/Paralogs, Gene Duplication and Loss . 422

28.2.1 Species Tree . 422

28.2.2 Gene Tree . 423

28.2.3 Gene Family Evolution . 423

28.2.4 Reconciliation . 423

28.2.5 Interpreting Reconciliation Examples . 427

28.3 Reconstruction . 428

28.3.1 Species Tree Reconstruction . 428

28.3.2 Improving Gene Tree Reconstruction and Learning Across Gene Trees 429

28.4 Modeling Population and Allele Frequencies . 430

28.4.1 The Wright-Fisher Model . 430

28.4.2 The Coalescent Model . 432

28.4.3 The Multispecies Coalescent Model . 434

28.5 SPIDIR . 434

28.5.1 Background . 434

28.5.2 Method and Model . 436

28.6 Ancestral Recombination Graphs . 437

28.6.1 The Sequentially Markov Coalescent . 437

28.7 Conclusion . 437

28.8 Current Research Directions . 438

28.9 Further Reading . 438

28.10Tools and Techniques . 438

28.11What Have We Learned? . 438

29 Population History 439

29.1 Introduction . 439

29.2 Quick Survey of Human Genetic Variation . 440

29.3 African and European Gene Flow . 441

29.4 Gene Flow on the Indian Subcontinent . 442

29.4.1 Almost All Mainland Indian Groups are Mixed . 442

29.4.2 Population structure in India is different from Europe 444

29.4.3 Discussion . 444

29.5 Gene Flow Between Archaic Human Populations . 445

29.5.1 Background . 445

29.5.2 Evidence of Gene Flow between Humans and Neanderthals 445

29.5.3 Gene Flow between Humans and Denisovans . 446

29.5.4 Analysis of High Coverage Archaic Genomes . 447

29.5.5 Discussion . 447

29.6 European Ancestry and Migrations . 448

29.6.1 Tracing the Origins of European Genetics . 448

29.6.2 Migration from the Steppe . 449

29.6.3 Screening for Natural Selection . 449

29.7 Tools and Techniques . 449

29.7.1 Techniques for Studying Population Relationships . 449

29.7.2 Extracting DNA from Neanderthal Bones . 451

29.7.3 Reassembling Ancient DNA . 452

29.8 Research Directions . 452

29.9 Further Reading . 453

xiv

CONTENTS CONTENTS

30 Population Genetic Variation 455
30.1 Introduction . 456
30.2 Population Selection Basics . 456

30.2.1 Polymorphisms . 456
30.2.2 Allele and Genotype Frequencies . 457
30.2.3 Ancestral State of Polymorphisms . 460
30.2.4 Measuring Derived Allele Frequencies . 461

30.3 Genetic Linkage . 462
30.3.1 Correlation Coefficient r2 . 463

30.4 Natural Selection . 463
30.4.1 Genomics Signals of Natural Selection . 464

30.5 Human Evolution . 467
30.5.1 A History of the Study of Population Dynamics . 467
30.5.2 Understanding Disease . 470
30.5.3 Understanding Recent Population Admixture . 471

30.6 Current Research . 472
30.6.1 HapMap project . 472
30.6.2 1000 genomes project . 472

30.7 Further Reading . 472

V Medical Genomics 475

31 Medical Genetics – The Past to the Present 477
31.1 Introduction . 477
31.2 Goals of investigating the genetic basis of disease . 478

31.2.1 Personalized genomic medicine . 478
31.2.2 Informing therapeutic development . 478

31.3 Mendelian Traits . 479
31.3.1 Mendel . 479
31.3.2 Linkage Analysis . 479

31.4 Complex Traits . 482
31.5 Genome-wide Association Studies . 482

31.5.1 Events Enabling Genome-wide Association Studies 483
31.5.2 Quality Controls . 484
31.5.3 Testing for Association . 484
31.5.4 Interpretation: How can GWAS inform the biology of disease? 486
31.5.5 Bottom-up . 486
31.5.6 Top-down . 487
31.5.7 Comparison with Linkage Analysis . 487
31.5.8 Challenges of Non-coding Variants . 487
31.5.9 Conclusions . 488

31.6 Current Research Directions . 488
31.7 Further Reading . 489
31.8 Tools and Techniques . 489
31.9 What Have We Learned? . 489

32 Variation 2: : Quantitative trait mapping, eQTLs, molecular trait variation 493
32.1 Introduction . 493
32.2 eQTL Basics . 494

32.2.1 Cis-eQTLs . 494
32.2.2 Trans-eQTLs . 495

32.3 Structure of an eQTL Study . 495
32.3.1 Considerations for Expression Data . 496

xv

CONTENTS CONTENTS

32.3.2 Considerations for Genomic Data . 496
32.3.3 Covariate Adjustment . 496
32.3.4 Points to Consider . 497

32.4 Current Research Directions . 497
32.4.1 Quantifying Trait Variation . 497
32.4.2 New Applications . 498

32.5 What Have We Learned? . 498
32.6 Further Reading . 498
32.7 Tools and Resources . 499

33 Missing Heretibility 505
33.1 Introduction . 505
33.2 Current Research Directions . 505
33.3 Further Reading . 505
33.4 Tools and Techniques . 505
33.5 What Have We Learned? . 505

34 Personal Genomes, Synthetic Genomes, Computng in C vs. Si 507
34.1 Introduction . 507
34.2 Reading and Writing Genomes . 507
34.3 Personal Genomes . 508
34.4 Current Research Directions . 509
34.5 Further Reading . 509
34.6 Tools and Techniques . 509
34.7 What Have We Learned? . 509

35 Personal Genomics 511
35.1 Introduction . 511
35.2 Epidemiology: An Overview . 512
35.3 Genetic Epidemiology . 513
35.4 Molecular Epidemiology . 514

35.4.1 meQTLs . 515
35.4.2 EWAS . 516

35.5 Causality Modeling and Testing . 516
35.5.1 Polygenic Risk Prediction . 517

35.6 Current Research Directions . 518
35.7 Further Reading . 518
35.8 Tools and Techniques . 518
35.9 What Have We Learned? . 518

36 Cancer Genomics 519
36.1 Introduction . 519
36.2 Characterization . 519
36.3 Interpretation . 521
36.4 Current Research Directions . 521
36.5 Further Reading . 522
36.6 Tools and Techniques . 522
36.7 What Have We Learned? . 522

37 Genome Editing 523
37.1 Introduction . 523

37.1.1 What is CRISPR/Cas? . 523
37.1.2 Why is CRISPR/Cas important to us? . 523
37.1.3 Cas-9 . 524

37.2 Current Research Directions . 524

xvi

CONTENTS CONTENTS

37.2.1 Improvement of Cas-9 . 524
37.2.2 Current research being done with CRISPR/Cas-9 . 524

37.3 Further Reading . 525
37.4 Tools and Techniques . 525
37.5 What Have We Learned? . 525

xvii

CONTENTS CONTENTS

xviii

CONTENTS History of the Course CONTENTS

Preface and Acknowledgements

These notes summarize the material taught in the MIT course titled “Computational Biology: Genomes,
Networks, Evolution”, also cross-listed with Harvard, HST, HSPH and BU over the years. The course was
listed as MIT course 6.047/6.878 in 2007-2011 (and under the temporary numbers 6.085/6.095/6.895 in Fall
2005-2006, and 6.096 in Spring 2005). It was cross-listed with MIT/Harvard Health Sciences and Technology
(HST) course HST.507 in 2007-2011, Boston University Biological Engineering course BE-562 in 2008 and
2009, and Harvard School of Public Health course IMI231 in 2009-2011.

The course was originally developed by Prof. Manolis Kellis at MIT, with advice from Silvio Micali. It
was first taught in Spring Spring 2005 as a half-course extension to the Introduction to Algorithms Course
(6.046), and as an independent full-credit course in Fall 2005-2011. The course was co-lectured with Prof.
Piotr Indyk in Fall 2005-2006, who contributed to the material on hashing and dimentionality reduction
techniques. It was co-taugh with Prof. James Galagan in Fall 2007-2009 who contributed to the lectures on
expression clustering, supervised learning and metabolic modelling, and who continued teaching the course
independently at BU.

The material in the course has benefited tremendously from courses by Bonnie Berger at MIT, whose
course “Introduction to Computational Biology (18.417)” was co-taught by Manolis Kellis as a student in
Fall 2001, and Serafim Batzoglou at Stanford whose course “Computational Genomics (CS262)” was an
inspiration for clarity and style and a source of figures and diagrams for the early chapters on alignment and
HMMs. Lastly, the material in the course also benefited from two books used extensively in the course in
the last several years, titled “Biological Sequence Analysis” by Durbin, Eddy, Drogh, and Mitchison,
and “Bioinformatics Algorithms” by Jones and Pevzner.

The material of several chapters was initially developed by guest lecturers who are experts in their field
and contributed new material, figures, slides, organization, and thoughts in the form of one or more lec-
tures. Without them, the corresponding chapters would not have been possible. They are: Pardis Sabeti
(Population Genetic Variation), Mark Daly (Medical Genetics), David Reich (Population History), Eric
Alm (Bacterial Genomics), John Rinn (Long Non-Coding RNAs), James Galagan (Steady State mod-
eling), Matt Rasmussen (Phylogenomics), Mike Lin (Gene finding), Stefan Washietl (RNA folding),
Jason Ernst (Epigenomics), Sushmita Roy (Regulatory Networks), Pouya Kheradpour (Regulatory
Genomics).

The Teaching Assistants who taught recitations and help develop the course problem sets have been
Reina Reimann (Spring 2005), Pouya Kheradpour (Fall 2005), Matt Rasmussen and Mike Lin
(Fall 2006), Mike Lin and David Sontag (Fall 2007), Matt Rasmussen and Pouya Kheradpour (Fall
2008), Ed Reznik and Bob Altshuler (Fall 2009), Matt Edwards (Fall 2010), and Melissa Gymrek
(Fall 2011). The notes were originally compiled in a uniform format Anna Shcherbina (Fall 2011).

The current and past members of the MIT CompBio Lab (http://compbio.mit.edu/people.html),
who have taught me as they grew into experts in their own fields. They are: Matt Rasmussen, Mike Lin,
Pouya Kheradpour, Alexander Stark, Xiaohui Xie, Jason Ernst, Sushmita Roy, Luke Ward, Chris Bristow,
Abdoulaye Diallo, David Hendrix, Loyal Goff, Stefan Washietl, Daniel Marbach, Mukul Bansal, Matthew
Eaton, Irwin Jungreis, Rachel Sealfon, Bob Altshuler, Jessica Wu, Angela Yen, Soheil Feizi, Luis Barrera,
Ben Holmes, Anna Ayuso, Wouter Meuleman, Ferhat Ay, Rogerio Candeias, Patrick Meyer, Tom Morgan,
Wes Brown, Will Gibson, Rushil Goel, Luisa Di Stefano, Stephan Ossowski, Aviva Presser, Erez Lieberman,
Joshua Grochow, Yuliya Kodysh, Leopold Parts, Ameya Deoras, Matt Edwards, Adrian Dalca.

The students taking the class and contributing to the scribe notes are:

• Spring 2005: Dan Arlow, Arhab Battacharyya, Punyashloka Biswal, Adam Bouhenguel, Dexter Chan,
Shuvo Chatterjee, Tiffany Dohzen, Lyric Doshy, Robert Figueiredo, Edena Gallagher, Josh Grochow,
Aleksas Hauser, Blanca Himes, George Huo, Xiaoming Jia, Scott Johnson, Steven Kannan, Faye
Kasemset, Jason Kelly, Daniel Kim, Yuliya Kodysh, Nate Kushman, Lucy Mendel, Jose Pacheco,
Sejal Patel, Haiharan Rahul, Gireeja Ranade, Sophie Rapoport, Aditya Rastogi, Shubhangi Saraf,
Oded Shaham, Walter Stiehl, Kevin Stolt, James Sun, Xin Sun, Kah Tai, Kah Tay, Chester Tse, Verlik
Tzanov, Brian Wu

• Fall 2005: Ebad Ahmed, Christophe Falling, Michael Farry, Elaine Gee, Luke Hutchison, Michael Lin,
Grigore Pintilie, Asfandyar Qureshi, Matthew Rasmussen, Alexandru Salcianu, Zeeshan Syed, Hayden

1

http://compbio.mit.edu/people.html

CONTENTS History of the Course CONTENTS

Taylor, Velin Tzanov, Grant Wang

• Fall 2006: Mats Ahlgren, Zhu Ailing, Bob Altshuler, Nada Amin, Shay Artzi, Solomon Bisker, Allen
Bryan, Sumeet Gupta, Adam Kiezun, Richard Koche, Mieszko Lis, Ryan Newton, Michael O’Kelly,
Chris Reeder, Jonathan Rhodes, Michael Schnall-Levin, Alex Tsankov, Tarak Upadhyaya, Kush Varsh-
ney, Sam Volchenboum, Jon Wetzel, Amy Williams

• Fall 2007: Anton Aboukhalil, Matthew Belmonte, Ellenor Brown, Brad Cater, Alal Eran, Guilherme
Fujiwara, Saba Gul, Kate Hoff, Shannon Iyo, Eric Jonas, Peter Kruskall, Michael Lee, Ben Levick, Fulu
Li, Alvin Liang, Joshua Lim, Chit-Kwan Lin, Po-Ru Loh, Kevin Modzelewski, Georgis Papachristoudis,
Michalis Potamias, Emmanuel Santos, Alex Schwendner, Maryam Shanechi, Timo Somervuo, James
Sun, Xin Sun, Robert Toscano, Qingqing Wang, Ning Xie, Qu Zhang, Blaine Ziegler

• Fall 2008: Burak Alver, Tural Badirkhanli, Arnab Bhattacharyya, Can Cenik, Clara Chan, Lydia
Chilton, Arkajit Dey, Ardavan Farjadpour, Jeremy Fineman, Bernhard Haeupler, Arman Hajati, Ethan
Heilman, Joe Herman, Irwin Jungreis, Arjun Manrai, Nilah Monnier, Christopher Rohde, Rachel
Sealfon, Daniel Southern, Paul Steiner, David Stiebel, Mengdi Wang

• Fall 2009: Layla Barkal, Michael Bennie, David Charlton, Guoliang Chew, John Dong, Matthew
Edwards, Eric Eisner, Subha Gollakota, Nathan Haseley, Allen Lin, Christopher McFarland, Michael
Melgar, Anrae Motes, Anand Oza, Elizabeth Perley, Brianna Petrone, Arya Tafvizi Zavareh, Yi-Chieh
Wu, Angela Yen, Morteza Zadimoghaddam, Chelsea Zhang, James Zou

• Fall 2010: Minjeong Ahn, Andreea Bodnari, Wesley Brown, Jenny Cheng, Bianca Dumitrascu, Sam
Esfahani, Amer Fejzic, Talitha Forcier, Maria Frendberg, Dhruv Garg, Rushil Goel, Melissa Gymrek,
Benjamin Holmes, Wui Ip, Isaac Joseph, Geza Kovacs, Gleb Kuznetsov, Adam Marblestone, Alexander
Mccauley, Sheida Nabavi, Jacob Shapiro, Andrew Shum, Ashutosh Singhal, Mark Smith, Mashaal
Sohail, Eli Stickgold, Tahin Syed, Lance Wall, Albert Wang, Fulton Wang, Jerry Wang

• Fall 2011: Asa Adadey, Leah Alpert, Ahmed Bakkar, Rebecca Bianco, Brett Boval, Kelly Brock, Pe-
ter Carr, Efrain Cermeno, Alex Chernyakhovsky, Diana Chien, Akashnil Dutta, Temuge Enkhbaatar,
Maha Farhat, Alec Garza-Galindo, Fred Grober, Gabriel Ha, Marc Hafner, Neel Hajare, Timothy
Helbig, Ivan Imaz, Yarden Katz, Gwang Ko, David Ku, Yu-Chi Kuo, Dan Landay, Yinqing Li, Mark
Mimee, Selene Mota, Hyun Ji Noh, Chrisantha Perera, Aleksey Pesterev, Michael Quintin, Maria
Rodriguez, Megan Roytman, Abhishek Sarkar, Angela Schwarz, Meriem Sefta, Anna Shcherbina,
Mindy Shi, Noam Shoresh, Eric Soderstrom, Ying Qi Soh, Sarah Spencer, Derrick Sund, Ruqi Tang,
Zenna Tavares, Arvind Thiagarajan, Paul Tillberg, Christos Tzamos, Leonardo Urbina, Manasi Vartak,
Nathan Villagaray-Carski, Sajith Wickramasekara, Thomas Willems, Maxim Wolf, Lok Sang Wong,
Iris Xu, Johannes Yeh, Deniz Yorukoglu, Boyang Zhao.

• Fall 2013: Maria Alexis, Polina Binder, Jake Bograd-Denton, Orhan Tunc Celiker, Hyunghoon Cho,
Brian Cleary, David Danko, Vivek Dasari, Dalesh Dharamshi, Atray Dixit, Joseph Driscoll, John
Froberg, Themistoklis Gouleakis, Carissa Jansen, Yuta Kato, Hanna Levitin, Brendan Liu, Quan-
quan Liu, Yang Li, Julianna Mello, Hayden Metsky, Peter Nguyen, Luke O’Connor, Alexander Pagan,
Sebastian Palacios, Peter Palmedo, Jr., Staphany Park, Nicole Power, Emma Seropian, Meena Sub-
ramaniam, Nirvan Tyagi, Joseph Vitti, Timothy Wall, Deena Wang, James Weis, Iris Xu, Haoyang
Zeng, Sidi Zhang

• Fall 2014: Abdulaziz Alghunaim, Sahar Alkhairy, Benjamin Bauchwitz, Tristan Bepler, Silvia Canas
Duarte, Kevin Chen, Michael Coulombe, Lei (Jerry) Ding, Gabriel Filsinger, Matthew Fox, Kristjan
Kaseniit, Joseph Kim, David Lazar, William Leiserson, Jenny Lin, Kathy Lin, Yunpeng Liu, Nicolai
Ludvigsen, Eric Mazumdar, Hilary Mulholland, Pavel Muravyev, Muneeza Patel, Divya Pillai, Clément
Pit-Claudel, Adam Sealfon, Ha Kyung (Kris) Shin, Aradhana Sinha, Daniel Sosa, Yi-Shiuan Tung,
Margaret Walker, Sarah Walker, Yuhao Wang, Hui Ting Grace Yeo, Catherine Yun

• Fall 2015: Jonathan Li, Jesse Tordoff, Thrasyvoulos Karydis, Heather Sweeney, Eric Bartell, Anas-
tasiya Belyaeva, Justin Gullingsrud, Cara Weisman, Robert Hunt, Alex Genshaft, Ge Liu, Richard

2

CONTENTS History of the Course CONTENTS

Hsu, Karthik Murugadoss, Sagar Indurkhya, Max Shen, Kevin Tian, Alvin Shi, Connor Duffy, Narek
Dshkhunyan, Joyce Hong, Gil Goldshlager, Sophia Liu, Aurora Alvarez-Buylla, Giri Anand, Tejas
Sundaresan, Nolan Kamitaki, Bryce Hwang, Hunter Gatewood, Misha Jamy, Nadia Wallace, Carles
Boix, Ava Soleimany, Brock Wooldridge, Sadik Yildiz, Anne Kim, Divya Shanmugam, Deniz Aksel,
Molly Schmidt, Jonahtan Uesato, Joseph Cunningham, Suganya Sridharma, Oleksandr Chaykovskyy,
Eunice Wu, Sam Johnson, Ye Tao

3

CONTENTS History of the Course CONTENTS

4

CHAPTER

ONE

INTRODUCTION TO THE COURSE

Figures
1.1 In this computational biology problem, we are provided with a sequence of bases, and wish

to locate genes and regulatory motifs. 6

1.2 The double-helix structure of DNA. Nucleotides are in the center, and the sugar-phosphate
backbone lies on the outside. 11

1.3 DNA is packed over several layers of organization into a compact chromosome. 12

1.4 RNA is produced from a DNA template during transcription. A “bubble” is opened in the
DNA, allowing the RNA polymerase to enter and place down bases complementary to the
DNA. 13

(a) Transcription initiation . 13

(b) Transcription elongation . 13

(c) Transcription termination . 13

1.5 This codon table shows which of the 20 amino acid each of the 3-nucleotide codons in
mRNA are translated into. In red are the stop codons, which terminate translation. . . . 14

1.6 Operon Lac illustrates a simple biological regulatory system. In the presence of glucose,
genes to lactose metabolism are turn out because glucose inactives an activator protein. In
the absence of lactose, a repressor protein also turns out the operon. Lactose metabolism
genes are expressed only in the presence of lactose and absence of glucose. 15

1.7 Metabolic pathways and regulation can be studied by Computational biology. Models
are made from genome scale information and used to predict metabolic function and to
metabolic engineering. An example of biological engineering is modifying bacteria genome
to overproduce artemesenin, an antibiotic used to treat malaria. 16

1.1 Introduction and Goals

1.1.1 A course on computational biology

These lecture notes are aimed to be taught as a term course on computational biology, each 1.5 hour lecture
covering one chapter, coupled with bi-weekly homework assignments and mentoring sessions to help students
accomplish their own independent research projects. The notes grew out of MIT course 6.047/6.878, and
very closely reflect the structure of the corresponding lectures.

1.1.2 Duality of Goals: Foundations and Frontiers

There are two goals for this course. The first goal is to introduce you to the foundations of the field of
computational biology. Namely, introduce the fundamental biological problems of the field, and learn the
algorithmic and machine learning techniques needed for tackling them. This goes beyond just learning how to

5

6.047/6.878 Lecture 01: Introduction and Administrative Details

use the programs and online tools that are popular any given year. Instead, the aim is for you to understand
the underlying principles of the most successful techniques that are currently in use, and provide you with
the capacity to design and implement the next generation of tools. That is the reason why an introductory
algorithms class is set as a pre-req; the best way to gain a deeper understanding for the algorithms presented
is to implement them yourself.

The second goal of the course is to tackle the research frontiers of computational biology, and that’s
what all the advanced topics and practical assignments are really about. We’d actually like to give you a
glimpse of how research works, expose you to current research directions, guide you to find the problems
most interesting to you, and help you become an active practitioner in the field. This is achieved through
guest lectures, problem sets, labs, and most importantly a term-long independent research project, where
you carry out your independent research.

The modules of the course follow that pattern, each consisting of lectures that cover the foundations
and the frontiers of each topic. The foundation lectures introduce the classical problems in the field. These
problems are very well understood and elegant solutions have already been found; some have even been
taught for well over a decade. The frontiers portion of the module cover advanced topics, usually by tackling
central questions that still remain open in the field. These chapters frequently include guest lectures by
some of the pioneers in each area speaking both about the general state of the field as well as their own lab’s
research.

The assignments for the course follow the same foundation/frontiers pattern. Half of the assignments
are going to be about working out the methods with pencil on paper, and diving deep into the algorithmic
and machine learning notions of the problems. The other half are actually going to be practical questions
consisting of programming assignments, where real data sets are provided. You will analyze this data using
the techniques you have learned and interpret your results, giving you a real hands on experience. The
assignments build up to the final project, where you will propose and carry out an original research project,
and present your findings in conference format. Overall, the assignments are designed to give you the
opportunity to apply computational biology methods to real problems in biology.

1.1.3 Duality of disciplines: Computation and Biology

In addition to aiming to cover both foundations and frontiers, the other important duality of this course is
between computation and biology.

From the biological perspective of the course, we aim to teach topics that are fundamental to our
understanding of biology, medicine, and human health. We therefore shy away from any computationally-
interesting problems that are biologically-inspired, but not relevant to biology. We’re not just going to see
something in biology, get inspired, and then go off into computer science and do a lot of stuff that biology
will never care about. Instead, our goal is to work on problems that can make a significant change in the
field of biology. We’d like you to publish papers that actually matter to the biological community and have
real biological impact. This goal has therefore guided the selection of topics for the course, and each chapter
focuses on a fundamental biological problem.

From the computational perspective of the course, being after all a computer science class, we focus
on exploring general techniques and principles that are certainly important in computational biology, but
nonetheless can be applied in any other fields that require data analysis and interpretation. Hence, if what
you want is to go into cosmology, meteorology, geology, or any such, this class offers computational techniques
that will likely become useful when dealing with real-world data sets related to those fields.

1.1.4 Why Computational Biology?

lecture1_transcript.html#Motivations

There are many reasons why Computational Biology has emerged as an important discipline in recent
years, and perhaps some of these lead you to pick up this book or register for this class. Even though we
have our own opinion on what these reasons are, we have asked the students year after year for their own
view on what has enabled the field of Computational Biology to expand so rapidly in the last few years.
Their responses fall into several broad themes, which we summarize here.

6

6.047/6.878 Lecture 01: Introduction and Administrative Details

1. Perhaps the most fundamental reason why computational approaches are so well-suited to the study of
biological data is that at their core, biological systems are fundamentally digital in nature. To be
blunt, humans are not the first to build a digital computer – our ancestors are the first digital computer,
as the earliest DNA-based life forms were already storing, copying, and processing digital information
encoded in the letters A,C,G, and T. The major evolutionary advantage of a digital medium for storing
genetic information is that it can persist across thousands of generations, while analog signals would
be diluted from generation to generation from basic chemical diffusion.

2. Besides DNA, many other aspects of biology are digital, such as biological switches, which ensure
that only two discrete possible states are achieved by feedback loops and metastable processes, even
though these are implemented by levels of molecules. Extensive feedback loops and other diverse
regulatory circuits implement discrete decisions through otherwise unstable components, again with
design principles similar to engineering practice, making our quest to understand biological systems
from an engineering perspective more approachable.

3. Sciences that heavily benefit from data processing, such as Computational Biology, follow a virtuous
cycle involving the data available for processing. The more that can be done by processing and analyz-
ing the available data, the more funding will be directed into developing technologies to obtain, process
and analyze even more data. New technologies such as sequencing, and high-throughput experimental
techniques like microarray, yeast two-hybrid, and ChIP-chip assays are creating enormous and in-
creasing amounts of data that can be analyzed and processed using computational techniques. The
$1000 and $100 genome projects are evidence of this cycle. Over ten years ago, when these projects
started, it would have been ludicrous to even imagine processing such massive amounts of data. How-
ever, as more potential advantages were devised from the processing of this data, more funding was
dedicated into developing technologies that would make these projects feasible.

4. The ability to process data has greatly improved in the recent years, owing to: 1) the massive compu-
tational power available today (due to Moore’s law, among other things), and 2) the advances in the
algorithmic techniques at hand.

5. Optimization approaches can be used to solve, via computational techniques, that are otherwise in-
tractable problems.

6. Running time & memory considerations are critical when dealing with huge datasets. An algorithm
that works well on a small genome (for example, a bacteria) might be too time or space inefficient to be
applied to 1000 mammalian genomes. Also, combinatorial questions dramatically increase algorithmic
complexity.

7. Biological datasets can be noisy, and filtering signal from noise is a computational problem.

8. Machine learning approaches are useful to make inferences, classify biological features, & identify
robust signals.

9. As our understanding of biological systems deepens, we have started to realize that such systems cannot
be analyzed in isolation. These systems have proved to be intertwined in ways previously unheard of,
and we have started to shift our analyses to techniques that consider them all as a whole.

10. It is possible to use computational approaches to find correlations in an unbiased way, and to come up
with conclusions that transform biological knowledge and facilitate active learning. This approach is
called data-driven discovery.

11. Computational studies can predict hypotheses, mechanisms, and theories to explain experimental
observations. These falsifiable hypotheses can then be tested experimentally.

12. Computational approaches can be used not only to analyze existing data but also to motivate data
collection and suggest useful experiments. Also, computational filtering can narrow the experimental
search space to allow more focused and efficient experimental designs.

7

6.047/6.878 Lecture 01: Introduction and Administrative Details

13. Biology has rules: Evolution is driven by two simple rules: 1) random mutation, and 2) brutal selection.
Biological systems are constrained to these rules, and when analyzing data, we are looking to find and
interpret the emerging behavior that these rules generate.

14. Datasets can be combined using computational approaches, so that information collected across
multiple experiments and using diverse experimental approaches can be brought to bear on questions
of interest.

15. Effective visualizations of biological data can facilitate discovery.

16. Computational approaches can be used to simulate & model biological data.

17. Computational approaches can be more ethical. For example, some biological experiments may be
unethical to perform on live subjects but could be simulated by a computer.

18. Large scale, systems engineering approaches are facilitated by computational technique to obtain global
views into the organism that are too complex to analyze otherwise.

1.1.5 Finding Functional Elements: A Computational Biology Question

lecture1_transcript.html#Codons

Several computational biology problems refer to finding biological signals in DNA data (e.g. coding
regions, promoters, enhancers, regulators, ...).

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Figure 1.1: In this computational biology problem, we are provided with a sequence of bases, and wish to
locate genes and regulatory motifs.

We then discussed a specific question that computational biology can be used to address: how can one
find functional elements in a genomic sequence? Figure 1.1 shows part of the sequence of the yeast genome.
Given this sequence, we can ask:

Q: What are the genes that encode proteins?

A: During translation, the start codon marks the first amino acid in a protein, and the stop codon indicates
the end of the protein. However, as indicated in the “Extracting signal from noise” slide, only a few
of these ATG sequences in DNA actually mark the start of a gene which will be expressed as protein.
The others are “noise”; for example, they may have been part of introns (non-coding sequences which
are spliced out after transcription).

8

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 01: Introduction and Administrative Details

Q: How can we find features (genes, regulatory motifs, and other functional elements) in the genomic
sequence?

A: These questions could be addressed either experimentally or computationally. An experimental approach
to the problem would be creating a knockout, and seeing if the fitness of the organism is affected. We
could also address the question computationally by seeing whether the sequence is conserved across
the genomes of multiple species. If the sequence is significantly conserved across evolutionary time, it’s
likely to perform an important function.

There are caveats to both of these approaches. Removing the element may not reveal its function–even if
there is no apparent difference from the original, this could be simply because the right conditions have not
been tested. Also, simply because an element is not conserved doesn’t mean it isn’t functional. (Also, note
that “functional element” is an ambiguous term. Certainly, there are many types of functional elements in
the genome that are not protein-encoding. Intriguingly, 90-95% of the human genome is transcribed (used
as a template to make RNA). It isn’t known what the function of most of these transcribed regions are, or
indeed if they are functional).

1.2 Final Project - Introduction to Research In Computational
Biology

lecture1_transcript.html#FinalProject

1.2.1 Final project goals

An important component of being a computational biologist is the ability to carry out independent research
in the area. The skills for a successful researcher differ from one person to the next, but in the process
of teaching this course, we have identified several aspects that are all needed, and laid out activities for a
term-long project, that enable students to carry out their independent research.

The project mirrors real world scientific process: come up with an idea→ frame it→ propose it→ revise
it → carry it out → present your results. Students are expected to think critically about their own project,
and also evaluate peer research proposals, and lastly respond to feedback from their peers.

Students are expected to use real data and present their results in conference format. The ultimate goal is
publishable research. Students are encouraged to talk with the course staff while formulating a final project
idea, look head through the various chapters and modules, and get an idea of what areas will interest you
most.

1.2.2 Final project milestones

Instead of waiting until the end of the term to begin brainstorming or provide feedback, we begin project
activities with the first problem set, to identify problems of interest and types of projects, find partners,
speak with current students and postdocs in computational biology that can serve as mentors, and lay out
a research plan in the style of an NIH proposal to identify potential pitfalls early and address them or work
around them before they become a bottleneck.

By setting up several incremental progress milestones throughout the term, coupled with mentoring and
feedback throughout the semester, we have achieved consistent progress in previous years, which can be
useful to students taking on a new project at any stage of their career. Research projects from this course
in the past have been used as the starting point for a published paper, have led to Masters and PhD theses,
and earned awards both academically and in conferences.

The timeline for the final project is as follows:

1. Set-up: a brief overview of your experience and interest. Due 9/29

2. Brainstorming: a list of initial project ideas and partners. Due 10/6

3. Proposal: submit a project proposal in the form of an NIH proposal. Due 10/20

9

6.047/6.878 Lecture 01: Introduction and Administrative Details

4. Proposal presentation: present slides to class and mentors on the proposal. Due 10/23

5. Review: review and critique 3 peer proposals. Due 10/30

6. Midterm Progress Report: write outline of final report. Due 11/19

7. Final Project Report: write report in conference paper format. Due 12/6

8. Final Class Presentation: 10min conference talk. Due 12/10

There will be Friday mentoring sessions before each portion of the final project is due, and you are
encouraged to find a mentor at the first few sessions who is actively interested in your project and could
help you more frequently. The mentoring sessions can be helpful in identifying if unexpected results are the
result of a bug or are instead a discovery.

Make sure you start working on the project even while waiting for peer reviews, so that you will have
4-5 weeks to complete the research itself.

1.2.3 Project deliverables

The final project will include the following two deliverables:

1. A written presentation, due Mon at 8pm, last week of classes. The written presentation can contain
the following elements:

• Who did what (to reflect trend in publications)

• The overall project experience

• Your discoveries

• What you learned from the experience (introspection)

2. An oral presentation, due Thursday after the written presentation. This allows students three days to
prepare the oral presentation.

1.2.4 Project grading

Selecting a project that will be successful can be difficult. To help students optimize for a successful project,
we let them know in advance the grading scheme, designed to maximize the project impact by being orig-
inal, challenging, and relevant to the field, but of course the grade is ultimately dependent on the overall
achievement and the clarity of presentation.

Briefly, the grading equation for the final project is:

min(O,C,R)×A+ P

where

Originality - unoriginal computational experiments don’t get published

Challenge - the project needs to be sufficiently difficult

Relevance - it needs to be from biology, can’t just reuse something from another field

Achievement - if you don’t accomplish anything you won’t get a good grade

Presentation - even if you’ve achieved a good project you have to be able to present it so everyone knows
that, and make it look easy. The presentation should show how the project is O, C, and R.

Originality, Challenge, Relevance are each out of 5 points, Achievement and Presentation are each out of
10.

10

6.047/6.878 Lecture 01: Introduction and Administrative Details

1.3 Additional materials

1.3.1 Online Materials for Fall 2015

lecture1_transcript.html#Handouts

In addition to these static notes, the course has several online resources:

• The course calendar on Google Calendar. You can add ”6.047 Lectures”, a public calendar.

• The NB note-taking system for annotating these notes http://nb.mit.edu/

1.3.2 Textbooks

lecture1_transcript.html#CourseInformation The following three (optional) reference textbooks are
recommended for the class.

1. Richard Durbin, Sean R. Eddy, Anders Krogh and Graeme Mitchison, Biological Sequence Analysis:
Probabilistic Models of Proteins and Nucleic Acids.

2. Neil Jones and Pavel Pevzner, An Introduction to Bioinformatics Algorithms.

3. Richard Duda, Peter Hart, David Stork, Pattern Classification.

Each book has a different advantage. The first book is a classic one. It is heavy in math and covers much
of what is in class. The book is focused on sequence alignment. As part of sequence alignment theory, the
book approaches Hidden Markov Models (HMM), pairwise and multiple alignment methods, phylogenetic
trees as well as a short background in probability theory.

The second book intends to balance between mathematical rigor and biological relevance. According to
the author, it is a good book for undergrad students. The book includes a table that associates algorithms
to biological problems.

The third book is about machine learning. It takes more of an engineering approach. It includes machine
learning theory, neural network and, as the name suggests, pattern recognition.

1.4 Crash Course in Molecular Biology

For the primarily computational students, we provide a brief introduction to the key notions of molecular
biology that we will encounter throughout the term.

1.4.1 The Central Dogma of Molecular Biology

lecture1_transcript.html#CentralDogma DNA → RNA → Protein

The central dogma of molecular biology describes how genetic information is stored and interpreted
in the cell: The genetic code of an organism is stored in DNA, which is transcribed into RNA, which is
finally translated into protein. Proteins carry out the majority of cellular functions such as motility, DNA
regulation, and replication.

Though the central dogma holds true in most situations, there are a number of notable exceptions to the
model. For instance, retroviruses are able to generate DNA from RNA via reverse-transcription. In addition,
some viruses are so primitive that they do not even have DNA, instead only using RNA to protein.

11

http://nb.mit.edu/

6.047/6.878 Lecture 01: Introduction and Administrative Details

Did You Know?
The central dogma is sometimes incorrectly interpreted too strongly as meaning that DNA only
stores immutable information from one generation to the next that remains identical within a gen-
eration, RNA is only used as a temporary information transfer medium, and proteins are the only
molecule that can carry out complex actions.
Again, there are many exceptions to this interpretation, for example:

• Somatic mutations can alter the DNA within a generation, and different cells can have different
DNA content.

• Some cells undergo programmed DNA alterations during maturation, resulting in different
DNA content, most famously the B and T immunity while blood cells

• Epigenetic modifications of the DNA can be inherited from one generation to the next

• RNA can play many diverse roles in gene regulation, metabolic sensing, and enzymatic reac-
tions, functions that were previously thought to be reserved to proteins.

• Proteins themselves can undergo conformational changes that are epigenetically inherited no-
tably prion states that were famously responsible for mad cow disease

1.4.2 DNA

DNA → RNA→ Protein

DNA function

The DNA molecule stores the genetic information of an organism. DNA contains regions called genes, which
encode for proteins to be produced. Other regions of the DNA contain regulatory elements, which partially
influence the level of expression of each gene. Within the genetic code of DNA lies both the data about the
proteins that need to be encoded, and the control circuitry, in the form of regulatory motifs.

DNA structure

DNA is composed of four nucleotides: A(adenine), C(cytosine),T (thymine), and G (guanine). A and
G are purines, which have two rings, while C and T are pyrimidines, with one ring. A and T are connected
by two hydrogen bonds, while C and G are connected by three bonds. Therefore, the A-T pairing is weaker
than the C-G pairing. (For this reason, the genetic composition of bacteria that live in hot springs is 80%
G-C). lecture1_transcript.html#Complementarity

The two DNA strands in the double helix are complementary, meaning that if there is an A on one
strand, it will be bonded to a T on the other, and if there is a C on one strand, it will be bonded to a G
on the other. The DNA strands also have directionality, which refers to the positions of the pentose ring
where the phosphate backbone connects. This directionality convention comes from the fact that DNA and
RNA polymerase synthesize in the 5’ to 3’ direction. With this in mind, we can say that that the DNA
strands are anti-parallel, as the 5’ end of one strand is adjacent to the 3’ end of the other. As a result,
DNA can be read both in the 3’ to 5’ direction and the 5’ to 3’ direction, and genes and other functional
elements can be found in each. By convention, DNA is written from 5’ to 3’. The 5’ and 3’ directions refer
to the positions on the pentose ring where the phosphate backbone connects.

Base pairing between nucleotides of DNA constitutes its primary and secondary structure. In addition
to DNA’s secondary structure, there are several extra levels of structure that allow DNA to be tightly
compacted and influence gene expression (Figure 3). The tertiary structure describes the twist in the DNA
ladder that forms a helical shape. In the quaternary structure, DNA is tightly wound around small proteins
called histones. These DNA-histone complexes are further wound into tighter structures seen in chromatin.

Before DNA can be replicated or transcribed into RNA, the chromatin structure must be locally “un-
packed”. Thus, gene expression may be regulated by modifications to the chromatin structure, which make it

12

6.047/6.878 Lecture 01: Introduction and Administrative Details

Figure 1.2: The double-helix structure of DNA. Nucleotides are in the center, and the sugar-phosphate
backbone lies on the outside.

easier or harder for the DNA to be unpacked. This regulation of gene expression via chromatin modification
is an example of epigenetics.

DNA replication

The structure of DNA, with its weak hydrogen bonds between the bases in the center, allows the strands
to easily be separated for the purpose of DNA replication (the capacity for DNA strands to be separated
also allows for transcription, translation, recombination, and DNA repair, among others). This was noted
by Watson and Crick as “It has not escaped our notice that the specific pairing that we have postulated
immediately suggests a possible copying mechanism for the genetic material.” In the replication of DNA, the
two complementary strands are separated, and each of the strands are used as templates for the construction
of a new strand.

DNA polymerases attach to each of the strands at the origin of replication, reading each existing strand
from the 3’ to 5’ direction and placing down complementary bases such that the new strand grows in the
5’ to 3’ direction. Because the new strand must grow from 5’ to 3’, one strand (the leading strand) can be
copied continuously, while the other (the lagging strand) grows in pieces which are later glued together by
DNA ligase. The end result is 2 double-stranded pieces of DNA, where each is composed of 1 old strand,
and 1 new strand; for this reason, DNA replication is semiconservative.

Many organisms have their DNA broken into several chromosomes. Each chromosome contains two
strands of DNA, which are complementary to each other but are read in opposite directions. Genes can
occur on either strand of DNA. The DNA before a gene (in the 5’ region) is considered “upstream” whereas
the DNA after a gene (in the 3’ region) is considered “downstream”.

1.4.3 Transcription

lecture1_transcript.html#Transcription

DNA

© Zephyris on wikipedia. Some rights reserved. License: CC BY-SA. This content is excluded from
our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

→ RNA→ Protein

13

https://en.wikipedia.org/wiki/DNA#/media/File:DNA_Structure%2BKey%2BLabelled.pn_NoBB.png
http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 01: Introduction and Administrative Details

Figure 1.3: DNA is packed over several layers of organization into a compact chromosome.

mRNA generation

Transcription is the process by which RNA is produced using a DNA template. The DNA is partially
unwound to form a “bubble”, and RNA polymerase is recruited to the transcription start site (TSS) by
regulatory protein complexes. RNA polymerase reads the DNA from the 3’ to 5’ direction and placing down
complementary bases to form messenger RNA (mRNA). RNA uses the same nucleotides as DNA, except
Uracil is used instead of Thymine.

Post-transcriptional modifications

mRNA in eukaryotes experience post-translational modifications, or processes that edit the mRNA strand
further. Most notably, a process called splicing removes introns, intervening regions which don’t code for
protein, so that only the coding regions, the exons, remain. Different regions of the primary transcript may
be spliced out to lead to different protein products (alternative splicing). In this way, an enormous number
of different molecules may be generated based on different splicing permutations.

In addition to splicing, both ends of the mRNA molecule are processed. The 5’ end is capped with a
modified guanine nucleotide. At the 3’ end, roughly 250 adenine residues are added to form a poly(A) tail.

1.4.4 RNA

lecture1_transcript.html#RNA

DNA→

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Qiu, Jane. "Epigenetics: Unfinished Symphony." Nature 441, no. 7090 (2006): 143-45.

RNA → Protein

RNA is produced when DNA is transcribed. It is structurally similar to DNA, with the following major
differences:

1. The nucleotide uracil (U) is used instead of DNA’s thymine (T).

2. RNA contains ribose instead of deoxyribose (deoxyribose lacks the oxygen molecule on the 2’ position
found in ribose).

3. RNA is single-stranded, whereas DNA is double-stranded.

RNA molecules are the intermediary step to code a protein. RNA molecules also have catalytic and
regulatory functions. One example of catalytic function is in protein synthesis, where RNA is part of the
ribosome.

There are many different types of RNA, including:

14

http://dx.doi.org/10.1038/441143a

6.047/6.878 Lecture 01: Introduction and Administrative Details

(a) Transcription initiation

(b) Transcription elongation

(c) Transcription termination

Figure 1.4: RNA is produced from a DNA template during transcription. A “bubble” is opened in the DNA,
allowing the RNA polymerase to enter and place down bases complementary to the DNA.

1. mRNA (messenger RNA) contains the information to make a protein and is translated into protein
sequence.

2. tRNA (transfer RNA) specifies codon-to-amino-acid translation. It contains a 3 base pair anti-codon
complementary to a codon on the mRNA, and carries the amino acid corresponding to its anticodon
attached to its 3’ end.

3. rRNA (ribosomal RBA) forms the core of the ribosome, the organelle responsible for the translation
of mRNA to protein.

4. snRNA (small nuclear RNA) is involved in splicing (removing introns from) pre- mRNA, as well as
other functions.

Other functional kinds of RNA exist and are still being discovered. Though proteins are generally thought
to carry out essential cellular functions, RNA molecules can have complex three-dimensional structures and
perform diverse functions in the cell.

According to the “RNA world” hypothesis, early life was based entirely on RNA. RNA served as both
the information repository (like DNA today) and the functional workhorse (like protein today) in early
organisms. Protein is thought to have arisen afterwards via ribosomes, and DNA is thought to have arisen
last, via reverse transcription.

1.4.5 Translation

lecture1_transcript.html#Translation

DNA→ RNA

Courtesy of Forluvoft on wikipedia. Images in the public domain.

→ Protein

Translation

Unlike transcription, in which the nucleotides remained the means of encoding information in both DNA
and RNA, when RNA is translated into protein, the primary structure of the protein is determined by the

15

https://en.wikipedia.org/wiki/Transcription_%28genetics%29

6.047/6.878 Lecture 01: Introduction and Administrative Details

sequence of amino acids of which it is composed. Since there are 20 amino acids and only 4 nucleotides,
3-nucleotides sequences in mRNA, known as codons, encode for each of the 20 amino acids.

Each of the 64 possible 3-sequences of nucleotides (codon) uniquely specifies either a particular amino
acid, or is a stop codon that terminates protein translation (the start codon also encodes methionine). Since
there are 64 possible codon sequences, the code is degenerate, and some amino acids are specified by multiple
encodings. Most of the degeneracy occurs in the 3rd codon position.

Post-translational modifications

Like mRNA, protein also undergo further modifications that affect its structure and function. One type of
post-translational modification (PTM) involves introducing new functional groups to the amino acids. Most
notably, phosphorylation is the process by which a phosphate group is added onto an amino acid which can
activate or deactivate the protein entirely. Another type of PTM is cleavage of peptide bonds. For example,
the hormone insulin is cleaved twice following the formation of disulfide bonds within the original protein.

Figure 1.5: This codon table shows which of the 20 amino acid each of the 3-nucleotide codons in mRNA
are translated into. In red are the stop codons, which terminate translation.

1.4.6 Protein

DNA→ RNA→ Protein

Protein is the molecule responsible for carrying out most of the tasks of the cell, and can have many
functions, such as enzymatic, contractile, transport, immune system, signal and receptor to name a few.
Like RNA and DNA, proteins are polymers made from repetitive subunits. Instead of nucleotides, however,
proteins are composed of amino acids.

Each amino acid has special properties of size, charge, shape, and acidity. As such, additional structure
emerges beyond simply the sequence of amino acids (the primary structure), as a result of interactions
between the amino acids. As such, the three-dimensional shape, and thus the function, of a protein is
determined by its sequence. However, determining the shape of a protein from its sequence is an unsolved
problem in computational biology.

16

6.047/6.878 Lecture 01: Introduction and Administrative Details

1.4.7 Regulation: from Molecules to Life

lecture1_transcript.html#Regulation

Not all genes are expressed at the same time in a cell. For example, cells would waste energy if they
produced lactose transporter in the absence of lactose. It is important for a cell to know which genes it
should expresses and when. A regulatory network is involved to control expression level of genes in a specific
circumstance.

Transcription is one of the steps at which protein levels can be regulated. The promoter region, a segment
of DNA found upstream (past the 5’ end) of genes, functions in transcriptional regulation. The promoter
region contains motifs that are recognized by proteins called transcription factors. When bound, transcription
factors can recruit RNA polymerase, leading to gene transcription. However, transcription factors can also
participate in complex regulatory interactions. There can be multiple binding sites in a promotor, which
can act as a logic gate for gene activation. Regulation in eukaryokes can be extremely complex, with gene
expression affected not only by the nearby promoter region, but also by distant enhancers and repressors.

We can use probabilistic models to identify genes that are regulated by a given transcription factor. For
example, given the set of motifs known to bind a given transcription factor, we can compute the probability
that a candidate motif also binds the transcription factor (see the notes for precept #1). Comparative
sequence analysis can also be used to identify regulatory motifs, since regulatory motifs show characteristic
patterns of evolutionary conservation.

The lac operon in E. coli and other bacteria is an example of a simple regulatory circuit. In bacteria,
genes with related functions are often located next to each other, controlled by the same regulatory region,
and transcribed together; this group of genes is called an operon. The lac operon functions in the metabolism
of the sugar lactose, which can be used as an energy source. However, the bacteria prefer to use glucose as an
energy source, so if there is glucose present in the environment the bacteria do not want to make the proteins
that are encoded by the lac operon. Therefore, transcription of the lac operon is regulated by an elegant
circuit in which transcription occurs only if there is lactose but not glucose present in the environment.

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Figure 1.6: Operon Lac illustrates a simple biological regulatory system. In the presence of glucose, genes
to lactose metabolism are turn out because glucose inactives an activator protein. In the absence of lactose,
a repressor protein also turns out the operon. Lactose metabolism genes are expressed only in the presence
of lactose and absence of glucose.

17

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 01: Introduction and Administrative Details

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Figure 1.7: Metabolic pathways and regulation can be studied by Computational biology. Models are made
from genome scale information and used to predict metabolic function and to metabolic engineering. An
example of biological engineering is modifying bacteria genome to overproduce artemesenin, an antibiotic
used to treat malaria.

1.4.8 Metabolism

lecture1_transcript.html#

Live organisms are made from self-organizing building blocks. Energy source is necessary for organize
blocks. The basic mechanism involved in building blocks is degrading small molecules to get energy to build
big molecules. The process of degrading molecules to release energy is called catabolism and the process of
using energy to assemble more complex molecules is called anabolism. Anabolism and catabolism are both
metabolic processes. Metabolism regulates the flow of mass and energy in order to keep an organism in a
state of low entropy.

Enzymes are a critical component of metabolic reactions. The vast majority of (but not all!) enzymes are
proteins. Many biologically critical reactions have high activation energies, so that the uncatalyzed reaction
would happen extremely slowly or not at all. Enzymes speed up these reactions, so that they can happen
at a rate that is sustainable for the cell. In living cells, reactions are organized into metabolic pathways. A
reaction may have many steps, with the products of one step serving as the substrate for the next. Also,
metabolic reactions often require an investment of energy (notably as a molecule called ATP), and energy
released by one reaction may be captured by a later reaction in the pathway. Metabolic pathways are also
important for the regulation of metabolic reactionsif any step is inhibited, subsequent steps may lack the
substrate or the energy that they need to proceed. Often, regulatory checkpoints appear early in metabolic
pathways, since if the reaction needs to be stopped, it is obviously better to stop it before much energy has
been invested.

1.4.9 Systems Biology

lecture1_transcript.html#SystemsBiology

Systems biology strives to explore and explain the behavior that emerges from the complex interactions
among the components of a biological system. One interesting recent paper in systems biology is “Metabolic
gene regulation in a dynamically changing environment” (Bennett et al., 2008). This work makes the
assumption that yeast is a linear, time invariant system, and runs a signal (glucose) through the system
to observe the response. A periodic response to low-frequency fluctuations in glucose level is observed, but
there is little response to high-frequency fluctuations in glucose level. Thus, this study finds that yeast acts
as a low-pass filter for fluctuations in glucose level.

18

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 01: Introduction and Administrative Details

1.4.10 Synthetic Biology

lecture1_transcript.html#SyntheticBiology

Not only can we use computational approaches to model and analyze biological data collected from cells,
but we can also design cells that implement specific logic circuits to carry out novel functions. The task of
designing novel biological systems is known as synthetic biology.

A particularly notable success of synthetic biology is the improvement of artemesenin production. Arteme-
senin is a drug used to treat malaria. However, artemisinin was quite expensive to produce. Recently, a
strain of yeast has been engineered to synthesize a precursor to artemisinic acid at half of the previous cost.

1.4.11 Model organisms and human biology

Diverse model organisms exist for all aspects of human biology. Importance of using model organisms at
appropriate level of complexity.

Note: In this particular book, we’ll focus on human biology, and we’ll use examples from baker’s yeast
Saccharomyces cerevisiae, the fruitfly Drosophila melanogaster, the nematode worm Coenorhabditis elegans,
and the house mouse Mus musculus. We’ll deal with bacterial evolution only in the context of metagenomics
of the human microbiome.

19

6.047/6.878 Lecture 01: Introduction and Administrative Details

1.5 Introduction to algorithms and probabilistic inference

1. We will quickly review some basic probability by considering an alternate way to represent motifs: a
position weight matrix (PWM). We would like to model the fact that proteins may bind to motifs that
are not fully specified. That is, some positions may require a certain nucleotide (e.g. A), while others
positions are free to be a subset of the 4 nucleotides (e.g. A or C). A PWM represents the set of all
DNA sequences that belong to the motif by using a matrix that stores the probability of finding each
of the 4 nucleotides in each position in the motif. For example, consider the following PWM for a motif
with length 4:

1 2 3 4
A 0.6 0.25 0.10 1.0
G 0.4 0.25 0.10 0.0
T 0.0 0.25 0.40 0.0
C 0.0 0.25 0.40 0.0

We say that this motif can generate sequences of length 4. PWMs typically assume that the distribution
of one position is not influenced by the base of another position. Notice that each position is associated
with a probability distribution over the nucleotides (they sum to 1 and are nonnegative).

2. We can also model the background distribution of nucleotides (the distribution found across the genome):

A 0.1
G 0.4
T 0.1
C 0.4

Notice how the probabilities for A and T are the same and the probabilities of G and C are the same.
This is a consequence of the complementarity DNA which ensures that the overall composition of A
and T, G and C is the same overall in the genome.

3. Consider the sequence S = GCAA.

The probability of the motif generating this sequence is P (S|M) = 0.4× 0.25× 0.1× 1.0 = 0.01.

The probability of the background generating this sequence P (S|B) = 0.4× 0.4× 0.1× 0.1 = 0.0016.

4. Alone this isn’t particularly interesting. However, given fraction of sequences that are generated by
the motif, e.g. P (M) = 0.1, and assuming all other sequences are generated by the background
(P (B) = 0.9) we can compute the probability that the motif generated the sequence using Bayes’
Rule:

P (S)
P (|S) =

|M)P (M
M

P (S)

=
P (S|M)P (M)

P (S|B)P (B) + P (S|M)P (M)

0.01
=

× 0.1

0.0016× 0.9 + 0.01× 0.1
= 0.40984

20

6.047/6.878 Lecture 01: Introduction and Administrative Details

1.5.1 Probability distributions

1.5.2 Graphical probabilistic models

1.5.3 Bayes rules: priors, likelihood, posterior

1.5.4 Markov Chains and Sequential Models

1.5.5 Probabilistic inference and learning

1.5.6 Max Likelihood and Max A Posteriori Estimates

Bibliography

[1] lec1test. lec1test, lec1test.

21

6.047/6.878 Lecture 01: Introduction and Administrative Details

22

Part I

Comparing Genomes

23

CHAPTER

TWO

SEQUENCE ALIGNMENT AND DYNAMIC PROGRAMMING

Guilherme Issao Fujiwara, Pete Kruskal (2007)
Arkajit Dey, Carlos Pards (2008)
Victor Costan, Marten van Dijk (2009)
Andreea Bodnari, Wes Brown (2010)
Sarah Spencer (2011)
Nathaniel Parrish (2012)
Clément Pit-Claudel (2014)
Jesse Tordoff, Thrasyvoulos Karydis (2015)

Figures
2.1 Sequence alignment of Gal10-Gal1 between four yeast strains. Asterisks mark conserved

nucleotides. 25

2.2 Evolutionary changes of a genetic sequence . 25

2.3 Aligning human to mouse sequences is analogous to tracing 26

2.4 Example of longest common substring . 27

2.5 Example of longest common subsequence formulation . 27

2.6 Cost matrix for matches and mismatches . 28

2.7 Examples of Finonacci numbers in nature are ubiquitous. 30

2.8 The recursion tree for the fib procedure showing repeated subproblems. The size of the
tree is O(φ(n)), where φ is the golden ratio. 31

2.9 (Example) Initial setup for Needleman-Wunsch . 35

2.10 (Example) Half-way through the second step of Needleman-Wunsch 35

2.11 (Example) Tracing the optimal alignment . 36

2.12 Bounded dynamic programming example . 36

2.13 Recovering the sequence alignment with O(m+ n) space 37

2.14 Ortholog and paralog sequences . 40

2.1 Introduction

Sequence alignment is a powerful tool capable of revealing the patterns and functions of genes. If two genetic
regions are similar or identical, sequence alignment can demonstrate the conserved elements or differences
between them. Evolution has preserved two broad classes of functional elements in the genome. Such pre-
served elements between species are often homologs1 – either orthologous or paralogous sequences (refer
to Appendix 2.11.1). Both classes of conserved elements can help demonstrate the function or evolution-
ary history of a gene sequence. Primarily solved using computational methods (most frequently dynamic

1Homologous sequences are genomic sequences descended from a common ancestor.

25

6.047/6.878 Lecture 2: Sequence Alignment and Dynamic Programming

programming), sequence alignment is a fast and powerful way to find similarities among genes or genomes.
These notes discuss the sequence alignment problem, the technique of dynamic programming, and a specific
solution to the problem using this technique.

2.2 Aligning Sequences

Sequence alignment represents the method of comparing two or more genetic strands, such as DNA or RNA.
These comparisons help with the discovery of genetic commonalities and with the (implicit) tracing of strand
evolution. There are two main types of alignment:

• Global alignment: an attempt to align every element in a genetic strand, most useful when the genetic
strands under consideration are of roughly equal size. Global alignment can also end in gaps.

• Local alignment: an attempt to align regions of sequences that contain similar sequence motifs within
a larger context.

2.2.1 Example Alignment

Within orthologous gene sequences, there are islands of conservation, or relatively large stretches of nu-
cleotides that are preserved between generations. These conserved regions typically imply functional ele-
ments and vice versa. As an example, we considered the alignment of the Gal10-Gal1 intergenic region for four
different yeast species, the first cross-species whole genome alignment (Figure 2.1). As we look at this
alignment, we note that some areas are more similar than others, suggesting that these areas have been con-
served through evolution. In particular, we note some small conserved motifs such as CGG and CGC, which
in fact are functional elements in the binding of Gal4[8].2 This example highlights how evolutionary data
can help locate functional areas of the genome: per-nucleotide levels of conservation denote the importance
of each nucleotide, and exons are among the most conserved elements in the genome.

We have to be cautious with our interpretations, however, because conservation does sometimes occur
by random chance. In order to extract accurate biological information from sequence alignments we have
to separate true signatures from noise. The most common approach to this problem involves modeling
the evolutionary process. By using known codon substitution frequencies and RNA secondary structure
constraints, for example, we can calculate the probability that evolution acted to preserve a biological
function. See Chapter ?? for an in-depth discussion of evolutionary modeling and functional conservation
in the context of genome annotation.

2.2.2 Solving Sequence Alignment

Genomes change over time, and the scarcity of ancient genomes makes it virtually impossible to compare the
genomes of living species with those of their ancestors. Thus, we are limited to comparing just the genomes
of living descendants. The goal of sequence alignment is to infer the ‘edit operations’ that change a genome
by looking only at these endpoints.

We must make some assumptions when performing sequence alignment, if only because we must transform
a biological problem into a computationally feasible one and we require a model with relative simplicity and
tractability. In practice, sequence evolution is mostly due to nucleotide mutations, deletions, and insertions
(Figure 2.2). Thus, our sequence alignment model will only consider these three operations and will ignore
other realistic events that occur with lower probability (e.g. duplications).3

1. A nucleotide mutation occurs when some nucleotide in a sequence changes to some other nucleotide
during the course of evolution.

2. A nucleotide deletion occurs when some nucleotide is deleted from a sequence during the course of
evolution.
2Gal4 in fact displays a particular structure, comprising two arms that each bind to the same sequence, in reversed order.
3Interestingly, modeling decisions taken to improve tractability do not necessarily result in diminished relevance; for exam-

ple, accounting for directionality in the study of chromosome inversions yields polynomial-time solutions to an otherwise NP
problem.[6]

26

6.047/6.878 Lecture 2: Sequence Alignment and Dynamic Programming

Figure 2.1: Sequence alignment of Gal10-Gal1 between four yeast strains. Asterisks mark conserved nu-
cleotides.

3. A nucleotide insertion occurs when some nucleotide is added to a sequence during the course of evolution.

A! C! G! T! C! A! T! C! A!

A! C! G! T! G! A! T! C! A!
mutation!

A! G! T! G! T! C! A!

A! G! T! G! T! C! A!

deletion!

A! G! T! G! T! C! A!T!

ancestral!

derived!

A! G! T! G! T! C! A!T!
insertion!

sequence

sequence

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Figure 2.2: Evolutionary changes of a genetic sequence

Note that these three events are all reversible. For example, if a nucleotide N mutates into some nucleotide
M, it is also possible that nucleotide M can mutate into nucleotide N. Similarly, if nucleotide N is deleted,
the event may be reversed if nucleotide N is (re)inserted. Clearly, an insertion event is reversed by a
corresponding deletion event.

This reversibility is part of a larger design assumption: time-reversibility. Specifically, any event in our
model is reversible in time. For example, a nucleotide deletion going forward in time may be viewed as
a nucleotide insertion going backward in time. This is useful because we will be aligning sequences which
both exist in the present. In order to compare evolutionary relatedness, we will think of ourselves following
one sequence backwards in time to a common ancestor and then continuing forward in time to the other
sequence. In doing so, we can avoid the problem of not having an ancestral nucleotide sequence.

Note that time-reversibility is useful in solving some biological problems but does not actually apply to

27

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 2: Sequence Alignment and Dynamic Programming

Figure 2.3: Aligning human to mouse sequences is analogous to tracing
backward from the human to a common ancestor, then forward to the mouse

biological systems. For example, CpG4 may incorrectly pair with a TpG or CpA during DNA replication,
but the reverse operation cannot occur; hence this transformation is not time-reversible. To be very clear,
time-reversibility is simply a design decision in our model; it is not inherent to the biology5.

We also need some way to evaluate our alignments. There are many possible sequences of events that
could change one genome into another. Perhaps the most obvious ones minimize the number of events (i.e.,
mutations, insertions, and deletions) between two genomes, but sequences of events in which many insertions
are followed by corresponding deletions are also possible. We wish to establish an optimality criterion that
allows us to pick the ‘best’ series of events describing changes between genomes.

We choose to invoke Occam’s razor and select a maximum parsimony method as our optimality criterion.
That is, in general, we wish to minimize the number of events used to explain the differences between two
nucleotide sequences. In practice, we find that point mutations are more likely to occur than insertions and
deletions, and certain mutations are more likely than others[11]. Our parsimony method must take these
and other inequalities into account when maximizing parsimony. This leads to the idea of a substitution
matrix and a gap penalty, which are developed in the following sections. Note that we did not need to choose
a maximum parsimony method for our optimality criterion. We could choose a probabilistic method, for
example using Hidden Markov Models (HMMs), that would assign a probability measure over the space of
possible event paths and use other methods for evaluating alignments (e.g., Bayesian methods). Note the
duality between these two approaches: our maximum parsimony method reflects a belief that mutation events
have low probability, thus in searching for solutions that minimize the number of events we are implicitly
maximizing their likelihood.

2.3 Problem Formulations

In this section, we introduce a simple problem, analyze it, and iteratively increase its complexity until it
closely resembles the sequence alignment problem. This section should be viewed as a warm-up for Section
2.5 on the Needleman-Wunsch algorithm.

2.3.1 Formulation 1: Longest Common Substring

As a first attempt, suppose we treat the nucleotide sequences as strings over the alphabet A, C, G, and T.
Given two such strings, S1 and S2, we might try to align them by finding the longest common substring
between them. In particular, these substrings cannot have gaps in them.

As an example, if S1 = ACGTCATCA and S2 = TAGTGTCA (refer to Figure 2.4), the longest common
substring between them is GTCA. So in this formulation, we could align S1 and S2 along their longest
common substring, GTCA, to get the most matches. A simple algorithm would be to try aligning S1 with
different offsets of S2 and keeping track of the longest substring match found thus far. Note that this
algorithm is quadratic in the length of the shortest sequence, which is slower than we would prefer for such
a simple problem.

4p denotes the phosphate backbone in a DNA strand
5This is an example where understanding the biology helps the design greatly, and illustrates the general principle that

success in computational biology requires strong knowledge of the foundations of both CS and biology. Warning: computer
scientists who ignore biology will work too hard.

28

6.047/6.878 Lecture 2: Sequence Alignment and Dynamic Programming

Figure 2.4: Example of longest common substring
formulation

2.3.2 Formulation 2: Longest Common Subsequence (LCS)

Another formulation is to allow gaps in our subsequences and not just limit ourselves to substrings with no
gaps. Given a sequence X = (x1 ,.., xm), we formally define Z = (z1, . . . , zk) to be a subsequence of X if
there exists a strictly increasing sequence i1 < i2 < . . . < ik of indices of X such that for all j, 1 ≤ j ≤ k, we
have xij = zj(CLRS 350-1).

In the longest common subsequence (LCS) problem, we’re given two sequences X and Y and we want to
find the maximum-length common subsequence Z. Consider the example of sequences S1 = ACGTCATCA
and S2 = TAGTGTCA (refer to Figure 2.5). The longest common subsequence is AGTTCA, a longer match
than just the longest common substring.

Figure 2.5: Example of longest common subsequence formulation

29

6.047/6.878 Lecture 2: Sequence Alignment and Dynamic Programming

2.3.3 Formulation 3: Sequence Alignment as Edit Distance

Formulation

The previous LCS formulation is close to the full sequence alignment problem, but so far we have not specified
any cost functions that can differentiate between the three types of edit operations (insertion, deletions, and
substitutions). Implicitly, our cost function has been uniform, implying that all operations are equally likely.
Since substitutions are much more likely, we want to bias our LCS solution with a cost function that prefers
substitutions over insertions and deletions.

We recast sequence alignment as a special case of the classic Edit-Distance6 problem in computer science
(CLRS 366). We add varying penalties for different edit operations to reflect biological occurrences. One
biological reasoning for this scoring decision is the probabilities of bases being transcribed incorrectly during
polymerization. Of the four nucleotide bases, A and G are purines (larger, two fused rings), while C and T are
pyrimidines (smaller, one ring). Thus DNA polymerase7 is much more likely to confuse two purines or two
pyrimidines since they are similar in structure. The scoring matrix in Figure 2.6 models the considerations
above. Note that the table is symmetric - this supports our time-reversible design.

Figure 2.6: Cost matrix for matches and mismatches

Calculating the scores implies alternating between the probabilistic interpretation of how often biological
events occur and the algorithmic interpretation of assigning a score for every operation. The problem is
to the find the least expensive (as per the cost matrix) operation sequence which can transform the initial
nucleotide sequence into the final nucleotide sequence.

Complexity of Edit Distance

All algorithms to solve the edit distance between two strings operate in near-polynomial time. In 2015,
Backurs and Indyk [?] published a proof that edit distance cannot be solved faster than O(n2) in the
general case. This result depends on the Strong Exponential Time Hypothesis (SETH), which states that
NP-complete problems cannot be solved in subexponential time in the worse case.

2.3.4 Formulation 4: Varying Gap Cost Models

Biologically, the cost of creating a gap is more expensive than the cost of extending an already created gap.
Thus, we could create a model that accounts for this cost variation. There are many such models we could
use, including the following:

• Linear gap penalty: Fixed cost for all gaps (same as formulation 3).

• Affine gap penalty: Impose a large initial cost for opening a gap, then a small incremental cost for
each gap extension.

• General gap penalty: Allow any cost function. Note this may change the asymptotic runtime of
our algorithm.

6Edit-distance or Levenshtein distance is a metric for measuring the amount of difference between two sequences (e.g., the
Levenshtein distance applied to two strings represents the minimum number of edits necessary for transforming one string into
another).

7DNA polymerase is an enzyme that helps copy a DNA strand during replication.

30

6.047/6.878 Lecture 2: Sequence Alignment and Dynamic Programming

• Frame-aware gap penalty: Tailor the cost function to take into account disruptions to the coding
frame (indels that cause frame-shifts in functional elements generally cause important phenotypic
modifications).

2.3.5 Enumeration

Recall that in order to solve the Longest Common Substring formulation, we could simply enumerate all
possible alignments, evaluate each one, and select the best. This was because there were only O(n) alignments
of the two sequences. Once we allow gaps in our alignment, however, this is no longer the case. It is a known
issue that the number of all possible gapped alignments cannot be enumerated (at least when the sequences
are lengthy). For example, with two sequences of length 1000, the number of possible alignments exceeds
the number of atoms in the universe.

Given a metric to score a given alignment, the simple brute-force algorithm enumerates all possible
alignments, computes the score of each one, and picks the alignment with the maximum score. This leads
to the question, ‘How many possible alignments are there?’ If you consider only NBAs 8 n > m, the number
of alignments is (

n+m

m

)
(n+m)!

=
n!m!

≈ (2n)!

(n!)2
≈
√

4πn (2n)2n

e2n

(
√

2πn (n)n

en)2
=

22n

√ (2.1)
πn

This number grows extremely fast, and for values of n as small 30 is too big (> 1017) for this enumeration
strategy to be feasible. Thus, using a better algorithm than brute-force is a necessity.

2.4 Dynamic Programming

Before proceeding to a solution of the sequence alignment problem, we first discuss dynamic programming,
a general and powerful method for solving problems with certain types of structure.

2.4.1 Theory of Dynamic Programming

Dynamic programming may be used to solve problems with:

1. Optimal Substructure: The optimal solution to an instance of the problem contains optimal solutions
to subproblems.

2. Overlapping Subproblems: There are a limited number of subproblems, many/most of which are
repeated many times.

Dynamic programming is usually, but not always, used to solve optimization problems, similar to greedy
algorithms. Unlike greedy algorithms, which require a greedy choice property to be valid, dynamic program-
ming works on a range of problems in which locally optimal choices do not produce globally optimal results.
Appendix 2.11.3 discusses the distinction between greedy algorithms and dynamic programming in more
detail; generally speaking, greedy algorithms solve a smaller class of problems than dynamic programming.

In practice, solving a problem using dynamic programming involves two main parts: Setting up dynamic
programming and then performing computation. Setting up dynamic programming usually requires the
following 5 steps:

1. Find a ’matrix’ parameterization of the problem. Determine the number of dimensions (variables).

2. Ensure the subproblem space is polynomial (not exponential). Note that if a small portion of subproblems
are used, then memoization may be better; similarly, if subproblem reuse is not extensive, dynamic
programming may not be the best solution for the problem.

3. Determine an effective transversal order. Subproblems must be ready (solved) when they are needed, so
computation order matters.

8Non-Boring Alignments, or alignments where gaps are always paired with nucleotides.

31

6.047/6.878 Lecture 2: Sequence Alignment and Dynamic Programming

4. Determine a recursive formula: A larger problem is typically solved as a function of its subparts.

5. Remember choices: Typically, the recursive formula involves a minimization or maximization step. More-
over, a representation for storing transversal pointers is often needed, and the representation should be
polynomial.

Once dynamic programming is setup, computation is typically straight-forward:

1. Systematically fill in the table of results (and usually traceback pointers) and find an optimal score.

2. Traceback from the optimal score through the pointers to determine an optimal solution.

2.4.2 Fibonacci Numbers

Rabbits per generation Leaves per height

Romanesque spirals Nautilus size Coneflower spirals Leaf ordering

Figure 2.7: Examples of Finonacci numbers in nature are ubiquitous.

The Fibonacci numbers provide an instructive example of the benefits of dynamic programming. The
Fibonacci sequence is recursively defined as F0 = F1 = 1, Fn = Fn−1 + Fn for−2 n ≤ 2. We develop an
algorithm to compute the nth Fibonacci number, and then refine it first using memoization and later using
dynamic programming to illustrate key concepts.

The Näıve Solution

The simple top-down approach is to just apply the recursive definition. Listing 1 shows a simple Python
implementation.

1 # Assume n is a non -negative integer.

2 def fib(n):

3 if n == 0 or n == 1:

4 return 1

5 else:

6 return fib(n - 1) + fib(n - 2)

Listing 2.1: Python implementation for computing Fibonacci numbers recursively.

But this top-down algorithm runs in exponential time. That is, if T (n) is how long it takes to compute
the nth Fibonacci number, we have that T (n) = T (n − 1) + T (n − 2) + O(1), so T (n) = O(φn) 9. The
problem is that we are repeating work by solving the same subproblem many times.

9φ is the golden ratio, i.e. 1+
√
5

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

2

32

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 2: Sequence Alignment and Dynamic Programming

Figure 2.8: The recursion tree for the fib procedure showing repeated subproblems. The size of the tree is
O(φ(n)), where φ is the golden ratio.

The Memoization Solution

A better solution that still utilizes the top-down approach is to memoize the answers to the subproblems.
Listing 2 gives a Python implementation that uses memoization.

1 # Assume n is a non -negative integer.

2 fibs = {0: 1, 1: 1} # stores subproblem answers

3 def fib(n):

4 if n not in fibs:

5 x = fib(n - 2)

6 y = fib(n - 1)

7 fibs[n] = x + y

8 return fibs[n]

Listing 2.2: Python implementation for computing Fibonacci numbers using memoization.

Note that this implementation now runs in T (n) = O(n) time because each subproblem is computed at
most once.

The Dynamic Programming Solution

For calculating the nth Fibonacci number, instead of beginning with F (n) and using recursion, we can start
computation from the bottom since we know we are going to need all of the subproblems anyway. In this
way, we will omit much of the repeated work that would be done by the näıve top-down approach, and we
will be able to compute the nth Fibonacci number in O(n) time.

As a formal exercise, we can apply the steps outlined in section 2.4.1:

1. Find a ’matrix’ parameterization: In this case, the matrix is one-dimensional; there is only one
parameter to any subproblem F (x).

2. Ensure the subproblem space is polynomial: Since there are only n− 1 subproblems, the space is
polynomial.

3. Determine an effective transversal order: As mentioned above, we will apply a bottom-up transver-
sal order (that is, compute the subproblems in ascending order).

4. Determine a recursive formula: This is simply the well-known recurrance F (n) = F (n−1)+F (n−2).

5. Remember choices: In this case there is nothing to remember, as no choices were made in the recursive
formula.

Listing 3 shows a Python implementation of this approach.

33

6.047/6.878 Lecture 2: Sequence Alignment and Dynamic Programming

1 # Assume n is a non -negative integer

2 def fib(n):

3 x = y = 1

4 for i in range(1, n):

5 x, y = y, x + y

6 return x

Listing 2.3: Python implementation for computing Fibonacci numbers iteratively using dynamic
programming.

This method is optimized to only use constant space instead of an entire table since we only need the
answer to each subproblem once. But in general dynamic programming solutions, we want to store the
solutions to subproblems in a table since we may need to use them multiple times without recomputing
their answers. Such solutions would look somewhat like the memoization solution in Listing 2, but they
will generally be bottom-up instead of top-down. In this particular example, the distinction between the
memoization solution and the dynamic programming solution is minimal as both approaches compute all
subproblem solutions and use them the same number of times. In general, memoization is useful when not all
subproblems will be computed, while dynamic programming saves the overhead of recursive function calls,
and is thus preferable when all subproblem solutions must be calculated10. Additional dynamic programming
examples may be found online [7].

2.4.3 Sequence Alignment using Dynamic Programming

We are now ready to solve the more difficult problem of sequence alignment using dynamic programming,
which is presented in depth in the next section. Note that the key insight in solving the sequence alignment
problem is that alignment scores are additive. This allows us to create a matrix M indexed by i and j, which
are positions in two sequences S and T to be aligned. The best alignment of S and T corresponds with the
best path through the matrix M after it is filled in using a recursive formula.

By using dynamic programming to solve the sequence alignment problem, we achieve a provably optimal
solution, that is far more efficient than brute-force enumeration.

2.5 The Needleman-Wunsch Algorithm

We will now use dynamic programming to tackle the harder problem of general sequence alignment. Given
two strings S =(S1, . . . , Sn) and T =(T1, . . . , Tm), we want to find the longest common subsequence, which
may or may not contain gaps. Rather than maximizing the length of a common subsequence we want to
compute the common subsequence that optimizes the score as defined by our scoring function. Let d denote
the gap penalty cost and s(x; y) the score of aligning a base x and a base y. These are inferred from
insertion/deletion and substitution probabilities which can be determined experimentally or by looking at
sequences that we know are closely related. The algorithm we will develop in the following sections to solve
sequence alignment is known as the Needleman-Wunsch algorithm.

2.5.1 Dynamic programming vs. memoization

Before we dive into the algorithm, a final note on memoization is in order. Much like the Fibonacci problem,
the sequence alignment problem can be solved in either a top-down or bottom-up approach.

In a top-down recursive approach we can use memoization to create a potentially large dictionary indexed
by each of the subproblems that we are solving (aligned sequences). This requires O(n2m2) space if we index
each subproblem by the starting and end points of the subsequences for which an optimal alignment needs
to be computed. The advantage is that we solve each subproblem at most once: if it is not in the dictionary,
the problem gets computed and then inserted into dictionary for further reference.

In a bottom-up iterative approach we can use dynamic programming. We define the order of computing
sub-problems in such a way that a solution to a problem is computed once the relevant sub-problems have

10In some cases dynamic programming is virtually the only acceptable solution; this is the case in particular when dependency
chains between subproblems are long: in this case, the memoization-based solution recurses too deeply, and causes a stack
overflow

34

6.047/6.878 Lecture 2: Sequence Alignment and Dynamic Programming

been solved. In particular, simpler sub-problems will come before more complex ones. This removes the
need for keeping track of which sub-problems have been solved (the dictionary in memoization turns into a
matrix) and ensures that there is no duplicated work (each sub-alignment is computed only once).

Thus in this particular case, the only practical difference between memoization and dynamic programming
is the cost of recursive calls incurred in the memoization case (space usage is the same).

2.5.2 Problem Statement

Suppose we have an optimal alignment for two sequences S1...n and T1...m in which Si matches Tj . The
key insight is that this optimal alignment is composed of an optimal alignment between (S1, . . . , Si) and−1

(T1, . . . , Tj 1) and an optimal alignment between (S ,, S) and (T ,, T). This follows from a− i+1 n j+1 m

cut-and-paste argument: if one of these partial alignments is suboptimal, then we cut-and-paste a better
alignment in place of the suboptimal one. This achieves a higher score of the overall alignment and thus
contradicts the optimality of the initial global alignment. In other words, every subpath in an optimal path
must also be optimal. Notice that the scores are additive, so the score of the overall alignment equals the
addition of the scores of the alignments of the subsequences. This implicitly assumes that the sub-problems
of computing the optimal scoring alignments of the subsequences are independent. We need to biologically
motivate that such an assumption leads to meaningful results.

2.5.3 Index space of subproblems

We now need to index the space of subproblems. Let Fi,j be the score of the optimal alignment of (S1, . . . , Si)
and (T1, . . . , Tj). The space of subproblems is {Fi,j , i ∈ [0, |S|], j ∈ [0, |T |]}. This allows us to maintain an
(m+ 1)× (n+ 1) matrix F with the solutions (i.e. optimal scores) for all the subproblems.

2.5.4 Local optimality

We can compute the optimal solution for a subproblem by making a locally optimal choice based on the
results from the smaller sub-problems. Thus, we need to establish a recursive function that shows how the
solution to a given problem depends on its subproblems. And we use this recursive definition to fill up the
table F in a bottom-up fashion.

We can consider the 4 possibilities (insert, delete, substitute, match) and evaluate each of them based
on the results we have computed for smaller subproblems. To initialize the table, we set F0,j = −j · d and
Fi,0 = −i · d since those are the scores of aligning (T1, . . . , Tj) with j gaps and (S1,, Si) with i gaps (aka
zero overlap between the two sequences). Then we traverse the matrix column by column computing the
optimal score for each alignment subproblem by considering the four possibilities:

• Sequence S has a gap at the current alignment position.

• Sequence T has a gap at the current alignment position.

• There is a mutation (nucleotide substitution) at the current position.

• There is a match at the current position.

We then use the possibility that produces the maximum score. We express this mathematically by the
recursive formula for Fi,j :

35

6.047/6.878 Lecture 2: Sequence Alignment and Dynamic Programming

F (0, 0) = 0
Initialization : F (i, 0) = F (i− 1, 0)− d

F (0, j) = F (0, j − 1)− d

F (i− 1, j)− d insert gap inS
Iteration : F (i, j) = max

 F (i, j − 1)− d insert gap inT
F (i− 1, j − 1) + s(xi, yj) match or mutation

Termination : Bottom right

After traversing the matrix, the optimal score for the global alignment is given by Fm,n. The traversal
order needs to be such that we have solutions to given subproblems when we need them. Namely, to compute
Fi,j , we need to know the values to the left, up, and diagonally above Fi,j in the table. Thus we can traverse
the table in row or column major order or even diagonally from the top left cell to the bottom right cell.
Now, to obtain the actual alignment we just have to remember the choices that we made at each step.

2.5.5 Optimal Solution

Paths through the matrix F correspond to optimal sequence alignments. In evaluating each cell Fi,j we
make a choice by selecting the maximum of the three possibilities. Thus the value of each (uninitialized) cell
in the matrix is determined either by the cell to its left, above it, or diagonally to the left above it. A match
and a substitution are both represented as traveling in the diagonal direction; however, a different cost can
be applied for each, depending on whether the two base pairs we are aligning match or not. To construct the
actual optimal alignment, we need to traceback through our choices in the matrix. It is helpful to maintain
a pointer for each cell while filling up the table that shows which choice was made to get the score for that
cell. Then we can just follow our pointers backwards to reconstruct the optimal alignment.

2.5.6 Solution Analysis

The runtime analysis of this algorithm is very simple. Each update takes O(1) time, and since there are mn
elements in the matrix F, the total running time is O(mn). Similarly, the total storage space is O(mn). For
the more general case where the update rule is more complicated, the running time may be more expensive.
For instance, if the update rule requires testing all sizes of gaps (e.g. the cost of a gap is not linear), then
the running time would be O(mn(m+ n)).

2.5.7 Needleman-Wunsch in practice

Assume we want to align two sequences S and T, where
S = AGT
T = AAGC
The first step is placing the two sequences along the margins of a matrix and initializing the matrix cells.

To initialize we assign a 0 to the first entry in the matrix and then fill in the first row and column based on
the incremental addition of gap penalties, as in Figure 2.9 below. Although the algorithm could fill in the
first row and column through iteration, it is important to clearly define and set boundaries on the problem.

The next step is iteration through the matrix. The algorithm proceeds either along rows or along
columns, considering one cell at time. For each cell three scores are calculated, depending on the scores
of three adjacent matrix cells (specifically the entry above, the one diagonally up and to the left, and the
one to the left). The maximum score of these three possible tracebacks is assigned to the entry and the
corresponding pointer is also stored. Termination occurs when the algorithm reaches the bottom right corner.
In Figure 2.10 the alignment matrix for sequences S and T has been filled in with scores and pointers.

36

6.047/6.878 Lecture 2: Sequence Alignment and Dynamic Programming

- A G T

A

A

G

C

- 0 -2 -4 -6

-2

-4

-6

-8

Initialization:
•  Top left: 0
•  M(i,0)=M(i-1,0) - 2
•  M(0,j)=M(0,j-1) - 2

Update Rule:
M(i,j)=max{

}
Termination:

gap"
gap"

Figure 2.9: (Example) Initial setup for Needleman-Wunsch

Figure 2.10: (Example) Half-way through the second step of Needleman-Wunsch

The final step of the algorithm is optimal path traceback. In our example we start at the bottom right
corner and follow the available pointers to the top left corner. By recording the alignment decisions made
at each cell during traceback, we can reconstruct the optimal sequence alignment from end to beginning
and then invert it. Note that in this particular case, multiple optimal pathways exist (Figure 2.11). A
pseudocode implementation of the Needleman-Wunsch algorithm is included in Appendix 2.11.4

2.5.8 Optimizations

The dynamic algorithm we presented is much faster than the brute-force strategy of enumerating alignments
and it performs well for sequences up to 10 kilo-bases long. Nevertheless, at the scale of whole genome align-
ments the algorithm given is not feasible. In order to align much larger sequences we can make modifications
to the algorithm and further improve its performance.

Bounded Dynamic Programming

One possible optimization is to ignore Mildly Boring Alignments (MBAs), or alignments that have too many
gaps. Explicitly, we can limit ourselves to stay within some distance W from the diagonal in the matrix

37

6.047/6.878 Lecture 2: Sequence Alignment and Dynamic Programming

Figure 2.11: (Example) Tracing the optimal alignment

F of subproblems. That is, we assume that the optimizing path in F from F0,0 to Fm,n is within distance
W along the diagonal. This means that recursion (2.2) only needs to be applied to the entries in F within
distance W around the diagonal, and this yields a time/space cost of O((m+ n)W) (refer to Figure 2.12).

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Figure 2.12: Bounded dynamic programming example

Note, however, that this strategy is heuristic and no longer guarantees an optimal alignment. Instead it
attains a lower bound on the optimal score. This can be used in a subsequent step where we discard the
recursions in matrix F which, given the lower bound, cannot lead to an optimal alignment.

Linear Space Alignment

Recursion (2.2) can be solved using only linear space: we update the columns in F from left to right during
which we only keep track of the last updated column which costs O(m) space. However, besides the score

38

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 2: Sequence Alignment and Dynamic Programming

Fm,n of the optimal alignment, we also want to compute a corresponding alignment. If we use trace back,
then we need to store pointers for each of the entries in F, and this costs O(mn) space.

Figure 2.13: Recovering the sequence alignment with O(m+ n) space

It is also possible to find an optimal alignment using only linear space! The goal is to use divide and
conquer in order to compute the structure of the optimal alignment for one matrix entry in each step. Figure
2.13 illustrates the process. The key idea is that a dynamic programming alignment can proceed just as
easily in the reverse direction, starting at the bottom right corner and terminating at the top left. So if the
matrix is divided in half, then both a forward pass and a reverse pass can run at the same time and converge
in the middle column. At the crossing point we can add the two alignment scores together; the cell in the
middle column with the maximum score must fall in the overall optimal path.

We can describe this process more formally and quantitatively. First compute the row index u ∈
{1, . . . ,m} that is on the optimal path while crossing the n

2
th column. For 1 ≤ i ≤ m and n

2 ≤ j ≤ n

let Ci,j denote the row index that is on the optimal path to Fi,j while crossing the n
2

th column. Then, while
we update the columns of F from left to right, we can also update the columns of C from left to right. So,
in O(mn) time and O(m) space we are able to compute the score Fm,n and also Cm,n, which is equal to the

row index u ∈ {1, . . . ,m} that is on the optimal path while crossing the n
2

th column.
Now the idea of divide and conquer kicks in. We repeat the above procedure for the upper left u × n

2
submatrix of F and also repeat the above procedure for the lower right (m− u) × n

2 submatrix of F . This
can be done using O(m+ n) allocated linear space. The running time for the upper left submatrix is O(un2)

and the running time for the lower right submatrix is O((m−u)n
2), which added together gives a running time

of O(mn2) = O(mn).
We keep on repeating the above procedure for smaller and smaller submatrices of F while we gather more

and more entries of an alignment with optimal score. The total running time isO(mn)+O(mn2)+O(mn

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

)+... =4
O(2mn) = O(mn). So, without sacrificing the overall running time (up to a constant factor), divide and
conquer leads to a linear space solution (see also Section ?? on Lecture 3).

2.6 Multiple alignment

2.6.1 Aligning three sequences

Now that we have seen how to align a pair of sequences, it is natural to extend this idea to multiple sequences.
Suppose we would like to find the optimal alignment of 3 sequences. How might we proceed?

39

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 2: Sequence Alignment and Dynamic Programming

Recall that when we align two sequences S and T , we choose the maximum of three possibilities for
the final position of the alignment (sequence T aligned against a gap, sequence S aligned against a gap, or
sequence S aligned against sequence T):

Fi,j = max

Fi,j + d−1

Fi−1,j + d

Fi−1,j−1 + s(Si, Tj)

For three sequences S,T , and U , there are seven


possibilities for the final position of the alignment. That

is, there are three ways to have tw(o)gaps()in the() final position, three ways to have one gap, and one way to
have all three sequences aligned (3 + 3 + 3 = 7). The update rule is now:1 2 3F + s(S , i ,)−1,j,k i − −Fi,j + s(, T ,) −1,k − j −

− , Uk

i,j,k = max

 (,−)

F
Fi,j,k−1 + s

Fi 1 s


− ,j−1,k + (Si, Tj ,−)Fi 1,j,k 1 + s(S
− − i,−, Uk)

Fi,j−1,k−1 + s(−, Tj , Uk)

Fi−1,j−1,k−1 + s(Si, Tj , Uk)

where s is the function describing gap, match, and mismatch scores.

This approach, however, is exponential in the number of sequences we are aligning. If we have k sequences
of length n, computing the optimal alignment using a k-dimensional dynamic programming matrix takes
O((2n)k) time (the factor of 2 results from the fact that a k-cube has 2k vertices, so we need to take the
maximum of 2k− 1 neighboring cells for each entry in the score matrix). As you can imagine, this algorithm
quickly becomes impractical as the number of sequences increases.

2.6.2 Heuristic multiple alignment

One commonly used approach for multiple sequence alignment is called progressive multiple alignment. As-
sume that we know the evolutionary tree relating each of our sequences. Then we begin by performing
a pairwise alignment of the two most closely-related sequences. This initial alignment is called the seed
alignment. We then proceed to align the next closest sequence to the seed, and this new alignment replaces
the seed. This process continues until the final alignment is produced.

In practice, we generally do not know the evolutionary tree (or guide tree), this technique is usually
paired with some sort of clustering algorithm that may use a low-resolution similarity measure to generate
an estimation of the tree.

While the running time of this heuristic approach is much improved over the previous method (polynomial
in the number of sequences rather than exponential), we can no longer guarantee that the final alignment is
optimal.

Note that we have not yet explained how to align a sequence against an existing alignment. One possible
approach would be to perform pairwise alignments of the new sequence with each sequence already in the
seed alignment (we assume that any position in the seed alignment that is already a gap will remain one).
Then we can add the new sequence onto the seed alignment based on the best pairwise alignment (this
approach was previously described by Feng and Doolittle[4]). Alternatively, we can devise a function for
scoring the alignment of a sequence with another alignment (such scoring functions are often based on the
pairwise sum of the scores at each position).

Design of better multiple sequence alignment tools is an active area of research. Section 2.9 details some
of the current work in this field.

40

6.047/6.878 Lecture 2: Sequence Alignment and Dynamic Programming

2.7 Current Research Directions

2.8 Further Reading

2.9 Tools and Techniques

Lalign finds local alignments between two sequences. Dotlet is a browser-based Java applet for visualizing
the alignment of two sequences in a dot-matrix.

The following tools are available for multiple sequence alignment:

• Clustal Omega - A multiple sequence alignment program that uses seeded guide trees and HMM
profile-profile techniques to generate alignments.[10]

• MUSCLE - MUltiple Sequence Comparison by Log-Expectation[3]

• T-Coffee - Allows you to combine results obtained with several alignment methods[2]

• MAFFT - (Multiple Alignment using Fast Fourier Transform) is a high speed multiple sequence align-
ment program[5]

• Kalign - A fast and accurate multiple sequence alignment algorithm[9]

2.10 What Have We Learned?

2.11 Appendix

2.11.1 Homology

One of the key goals of sequence alignment is to identify homologous sequences (e.g., genes) in a genome. Two
sequences that are homologous are evolutionarily related, specifically by descent from a common ancestor.
The two primary types of homologs are orthologous and paralogous (refer to Figure 2.1411). Other forms of
homology exist (e.g., xenologs), but they are outside the scope of these notes.

Orthologs arise from speciation events, leading to two organisms with a copy of the same gene. For
example, when a single species A speciates into two species B and C, there are genes in species B and C that
descend from a common gene in species A, and these genes in B and C are orthologous (the genes continue
to evolve independent of each other, but still perform the same relative function).

Paralogs arise from duplication events within a species. For example, when a gene duplication occurs in
some species A, the species has an original gene B and a gene copy B′, and the genes B and B′ are paralogus.

Generally, orthologous sequences between two species will be more closely related to each other than
paralogous sequences. This occurs because orthologous typically (although not always) preserve function
over time, whereas paralogous often change over time, for example by specializing a gene’s (sub)function
or by evolving a new function. As a result, determining orthologous sequences is generally more important
than identifying paralogous sequences when gauging evolutionary relatedness.

2.11.2 Natural Selection

The topic of natural selection is a too large topic to summarize effectively in just a few short paragraphs;
instead, this appendix introduces three broad types of natural selection: positive selection, negative selection,
and neutral selection.

• Positive selection occurs when a trait is evolutionarily advantageous and increases an individual’s
fitness, so that an individual with the trait is more likely to have (robust) offspring. It is often
associated with the development of new traits.

11R.B. - BIOS 60579

41

http://www.ch.embnet.org/software/LALIGN_form.html
http://myhits.isb-sib.ch/cgi-bin/dotlet
http://www.ebi.ac.uk/Tools/msa/clustalo/
http://www.ebi.ac.uk/Tools/msa/muscle/
http://www.ebi.ac.uk/Tools/msa/tcoffee/
http://www.ebi.ac.uk/Tools/msa/mafft/
http://www.ebi.ac.uk/Tools/msa/kalign/

6.047/6.878 Lecture 2: Sequence Alignment and Dynamic Programming

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Figure 2.14: Ortholog and paralog sequences

• Negative selection occurs when a trait is evolutionarily disadvantageous and decreases an individual’s
fitness. Negative selection acts to reduce the prevalence of genetic alleles that reduce a species’ fitness.
Negative selection is also known as purifying selection due to its tendency to ’purify’ genetic alleles
until only the most successful alleles exist in the population.

• Neutral selection describes evolution that occurs randomly, as a result of alleles not affecting an indi-
vidual’s fitness. In the absence of selective pressures, no positive or negative selection occurs, and the
result is neutral selection.

2.11.3 Dynamic Programming v. Greedy Algorithms

Dynamic programming and greedy algorithms are somewhat similar, and it behooves one to know the
distinctions between the two. Problems that may be solved using dynamic programming are typically
optimization problems that exhibit two traits:

1. optimal substructure and

2. overlapping subproblems.

Problems solvable by greedy algorithms require both these traits as well as (3) the greedy choice
property. When dealing with a problem “in the wild,” it is often easy to determine whether it satisfies (1)
and (2) but difficult to determine whether it must have the greedy choice property. It is not always clear
whether locally optimal choices will yield a globally optimal solution.

For computational biologists, there are two useful points to note concerning whether to employ dynamic
programming or greedy programming. First, if a problem may be solved using a greedy algorithm, then it
may be solved using dynamic programming, while the converse is not true. Second, the problem structures
that allow for greedy algorithms typically do not appear in computational biology.

To elucidate this second point, it could be useful to consider the structures that allow greedy programming
to work, but such a discussion would take us too far afield. The interested student (preferably one with a
mathematical background) should look at matroids and greedoids, which are structures that have the greedy
choice property. For our purposes, we will simply state that biological problems typically involve entities
that are highly systemic and that there is little reason to suspect sufficient structure in most problems to
employ greedy algorithms.

42

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 2: Sequence Alignment and Dynamic Programming

2.11.4 Pseudocode for the Needleman-Wunsch Algorithm

The first problem in the first problem set asks you to finish an implementation of the Needleman-Wunsch
(NW) algorithm, and working Python code for the algorithm is intentionally omitted. Instead, this appendix
summarizes the general steps of the NW algorithm (Section 2.5) in a single place.

Problem: Given two sequences S and T of length m and n, a substitution matrix vU of matching scores,
and a gap penalty G, determine the optimal alignment of S and T and the score of the alignment.

Algorithm:

1. Create two m+ 1 by n+ 1 matrices A and B. A will be the scoring matrix, and B will be the traceback
matrix. The entry (i, j) of matrix A will hold the score of the optimal alignment of the sequences S[1, . . . , i]
and T [1, . . . , j], and the entry (i, j) of matrix B will hold a pointer to the entry from which the optimal
alignment was built.

2. Initialize the first row and column of the score matrix A such that the scores account for gap penalties,
and initialize the first row and column of the traceback matrix B in the obvious way.

3. Go through the entries (i, j) of matrix A in some reasonable order, determining the optimal alignment of
the sequences S[1, . . . , i] and T [1, . . . , j] using the entries (i − 1, j − 1), (i − 1, j), and (i, j − 1). Set the
pointer in the matrix B to the corresponding entry from which the optimal alignment at (i, j) was built.

4. Once all entries of matrices A and B are completed, the score of the optimal alignment may be found in
entry (m,n) of matrix A.

5. Construct the optimal alignment by following the path of pointers starting at entry (m,n) of matrix B
and ending at entry (0, 0) of matrix B.

Bibliography

[1] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algo-
rithms. The MIT Press, London, third edition, 1964.

[2] Paolo Di Tommaso, Sebastien Moretti, Ioannis Xenarios, Miquel Orobitg, Alberto Montanyola, Jia-Ming
Chang, Jean-François Taly, and Cedric Notredame. T-Coffee: a web server for the multiple sequence
alignment of protein and RNA sequences using structural information and homology extension. Nucleic
Acids Research, 39(Web Server issue):W13–W17, 2011.

[3] Robert C Edgar. MUSCLE: multiple sequence alignment with high accuracy and high throughput.
Nucleic acids research, 32(5):1792–7, January 2004.

[4] D F Feng and R F Doolittle. Progressive sequence alignment as a prerequisite to correct phylogenetic
trees. Journal of Molecular Evolution, 25(4):351–360, 1987.

[5] Kazutaka Katoh, George Asimenos, and Hiroyuki Toh. Multiple alignment of DNA sequences with
MAFFT. Methods In Molecular Biology Clifton Nj, 537:39–64, 2009.

[6] John D. Kececioglu and David Sankoff. Efficient bounds for oriented chromosome inversion distance.
In Proceedings of the 5th Annual Symposium on Combinatorial Pattern Matching, CPM ’94, pages
307–325, London, UK, UK, 1994. Springer-Verlag.

[7] Manolis Kellis. Dynamic programming practice problems. http://people.csail.mit.edu/bdean/6.046/dp/,
September 2010.

[8] Manolis Kellis, Nick Patterson, Matthew Endrizzi, Bruce Birren, and Eric S Lander. Sequencing and
comparison of yeast species to identify genes and regulatory elements. Nature, 423(6937):241–254, 2003.

[9] Timo Lassmann and Erik L L Sonnhammer. Kalign–an accurate and fast multiple sequence alignment
algorithm. BMC Bioinformatics, 6(1):298, 2005.

43

http://people.csail.mit.edu/bdean/6.046/dp/

6.047/6.878 Lecture 2: Sequence Alignment and Dynamic Programming

[10] Fabian Sievers, Andreas Wilm, David Dineen, Toby J Gibson, Kevin Karplus, Weizhong Li, Rodrigo
Lopez, Hamish McWilliam, Michael Remmert, Johannes Söding, Julie D Thompson, and Desmond G
Higgins. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal
Omega. Molecular Systems Biology, 7(539):539, 2011.

[11] Zhaolei Zhang and Mark Gerstein. Patterns of nucleotide substitution, insertion and deletion in the
human genome inferred from pseudogenes. Nucleic Acids Research, 31(18):5338–5348, 2003.

44

CHAPTER

THREE

RAPID SEQUENCE ALIGNMENT AND DATABASE SEARCH

Heather Sweeney (Sep 20, 2015)
Eric Bartell (Sep 20, 2015)
Kathy Lin (Sep 11, 2014)
Maria Rodriguez (Sep 13, 2011)
Rushil Goel (Sep 16, 2010)
Eric Eisner -Guilhelm Richard (Sep 17, 2009)
Tural Badirkhnali (Sep 11, 2008)

Figures
3.1 Global Alignment . 44

3.2 Global Alignment . 45

3.3 Local Alignment . 46

3.4 Local alignments to detect rearrangements . 46

3.5 Semi-global Alignment . 46

3.6 Bounded-space computation . 48

3.7 Linear-space computation for optimal alignment score . 48

3.8 Space-saving optimization for finding the optimal alignment 48

3.9 Divide and Conquer . 49

3.10 Naive Karp-Rabin algorithm . 50

3.11 Final Karp-Rabin algorithm . 51

3.12 Pigeonhole Principle . 52

3.13 The BLAST Algorithm . 53

3.14 Educated String Matching . 56

3.15 Final String Matching . 56

3.16 Nucleotide match scores . 57

3.17 BLOSUM62 matrix for amino acids . 58

3.1 Introduction

In the previous chapter, we used dynamic programming to compute sequence alignments in O(n2). In
particular, we learned the algorithm for global alignment, which matches complete sequences with one
another at the nucleotide level. We usually apply this when the sequences are known to be homologous (i.e.
the sequences come from organisms that share a common ancestor).

The biological significance of finding sequence alignments is to be able to infer the most likely set of
evolutionary events such as point mutations/mismatches and gaps (insertions or deletions) that occurred in
order to transform one sequence into the other. To do so, we first assume that the set of transformations with

45

6.047/6.878 Lecture 3 - Rapid Sequence Alignment and Database Search

the lowest cost is the most likely sequence of transformations. By assigning costs to each transformation type
(mismatch or gap) that reflect their respective levels of evolutionary difficulty, finding an optimal alignment
reduces to finding the set of transformations that result in the lowest overall cost.

We achieve this by using a dynamic programming algorithm known as the Needleman-Wunsch algorithm.
Dynamic programming uses optimal substructures to decompose a problem into similar sub-problems. The
problem of finding a sequence alignment can be nicely expressed as a dynamic programming algorithm since
alignment scores are additive, which means that finding the alignment of a larger sequence can be found
by recursively finding the alignments of smaller subsequences. The scores are stored in a matrix, with
one sequence corresponding to the columns and the other sequence corresponding to the rows. Each cell
represents the transformation required between two nucleotides corresponding to the cell’s row and column.
An alignment is recovered by tracing back through the dynamic programming matrix (shown below). The
dynamic programming approach is preferable to a greedy algorithm that simply chooses the transition with
minimum cost at each step because a greedy algorithm does not guarantee that the overall result will give
the optimal or lowest-cost alignment.

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Figure 3.1: Global Alignment

To summarize the Needleman-Wunsch algorithm for global alignment:

We compute scores corresponding to each cell in the matrix and record our choice (memoization) at that
step i.e. which one of the top, left or diagonal cells led to the maximum score for the current cell.
We are left with a matrix full of optimal scores at each cell position, along with pointers at each cell
reflecting the optimal choice that leads to that particular cell.

We can then recover the optimal alignment by tracing back from the cell in the bottom right corner (which
contains the score of aligning one complete sequence with the other) by following the pointers reflecting
locally optimal choices, and then constructing the alignment corresponding to an optimal path followed
in the matrix.

The runtime of Needleman-Wunsch algorithm is O(n2) since for each cell in the matrix, we do a finite
amount of computation. We calculate 3 values using already computed scores and then take the
maximum of those values to find the score corresponding to that cell, which is a constant time (O(1))
operation.

To guarantee correctness, it is necessary to compute the cost for every cell of the matrix. It is possible
that the optimal alignment may be made up of a bad alignment (consisting of gaps and mismatches)
at the start, followed by many matches, making it the best alignment overall. These are the cases that
traverse the boundary of our alignment matrix. Thus, to guarantee the optimal global alignment, we
need to compute every entry of the matrix.

Global alignment is useful for comparing two sequences that are believed to be homologous. It is less
useful for comparing sequences with rearrangements or inversions or aligning a newly-sequenced gene against
reference genes in a known genome, known as database search. In practice, we can also often restrict the
alignment space to be explored if we know that some alignments are clearly sub-optimal.

This chapter will address other forms of alignment algorithms to tackle such scenarios. It will first intro-
duce the Smith-Waterman algorithm for local alignment for aligning subsequences as opposed to complete
sequences, in contrast to the Needleman-Wunsch algorithm for global alignment. Later on, an overview
will be given of hashing and semi-numerical methods like the Karp-Rabin algorithm for finding the longest

46

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 3 - Rapid Sequence Alignment and Database Search

(contiguous) common substring of nucleotides. These algorithms are implemented and extended for inexact
matching in the BLAST program, one of the most highly cited and successful tools in computational biology.
Finally, this chapter will go over BLAST for database searching as well as the probabilistic foundation of
sequence alignment and how alignment scores can be interpreted as likelihood ratios.

Outline:

1. Introduction

• Review of global alignment (Needleman-Wunsch)

2. Global alignment vs. Local alignment vs. Semi-global alignment

• Initialization, termination, and update rules for Global alignment (Needleman-Wunsch) vs. Local
alignment (Smith-Waterman) vs. Semi-global alignment

• Varying gap penalties, algorithmic speedups

3. Linear-time exact string matching

• Karp-Rabin algorithm and semi-numerical methods

• Hash functions and randomized algorithms

4. The BLAST algorithm and inexact matching

• Hashing with neighborhood search

• Two-hit blast and hashing with combs

5. Pre-processing for linear-time string matching

• Fundamental pre-processing

• Suffix Trees

• Suffix Arrays

• The Burrows-Wheeler Transform

6. Probabilistic foundations of sequence alignment

• Mismatch penalties, BLOSUM and PAM matrices

• Statistical significance of an alignment score

3.2 Global alignment vs. Local alignment vs. Semi-global align-
ment

A global alignment is defined as the end-to-end alignment of two strings s and t.
A local alignment of string s and t is an alignment of substrings of s with substrings of t.
In general are used to find regions of high local similarity. Often, we are more interested in finding local

alignments because we normally do not know the boundaries of genes and only a small domain of the gene
may be conserved. In such cases, we do not want to enforce that other (potentially non-homologous) parts of
the sequence also align. Local alignment is also useful when searching for a small gene in a large chromosome
or for detecting when a long sequence may have been rearranged (Figure 4).

A semi-global alignment of string s and t is an alignment of a substring of s with a substring of t.
This form of alignment is useful for overlap detection when we do not wish to penalize starting or ending

gaps. For finding a semi-global alignment, the important distinctions are to initialize the top row and
leftmost column to zero and terminate end at either the bottom row or rightmost column.

The algorithm is as follows:

47

6.047/6.878 Lecture 3 - Rapid Sequence Alignment and Database Search

Figure 3.2: Global Alignment

Figure 3.3: Local Alignment

Figure 3.4: Local alignments to detect rearrangements

Figure 3.5: Semi-global Alignment

Initialization : F (i, 0) = 0

F (0, j) = 0

F (i− 1, j)− d
Iteration : F (i, j) = max

 F (i, j − 1)− d
F (i− 1, j − 1) + s(xi, yj)

Termination : Bottom row or Right column

48

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 3 - Rapid Sequence Alignment and Database Search

3.2.1 Using Dynamic Programming for local alignments

In this section we will see how to find local alignments with a minor modification of the Needleman-Wunsch
algorithm that was discussed in the previous chapter for finding global alignments.

To find global alignments, we used the following dynamic programming algorithm (Needleman-Wunsch
algorithm):

Initialization : F (0, 0) = 0  F (i− 1, j)− d
Iteration : F (i, j) = max F (i, j − 1)− d

F (i− 1, j − 1) + s(xi, yj)

Termination : Bottom right

For finding local alignments we only need to modify the Needleman-Wunsch algorithm slightly to start
over and find a new local alignment whenever the existing alignment score goes negative. Since a local
alignment can start anywhere, we initialize the first row and column in the matrix to zeros. The iteration
step is modified to include a zero to include the possibility that starting a new alignment would be cheaper
than having many mismatches. Furthermore, since the alignment can end anywhere, we need to traverse
the entire matrix to find the optimal alignment score (not only in the bottom right corner). The rest of the
algorithm, including traceback, remains unchanged, with traceback indicationg an end at a zero, indicating
the start of the optimal alignment.

These changes result in the following dynamic programming algorithm for local alignment, which is also
known as the :

Initialization : F (i, 0) = 0

F (0, j) = 0  0
F (i d

Iteration : F (i, j) = max
− 1, j)−

F (i, j − 1)− d
F (i− 1, j − 1) + s(xi, yj)

Termination : Anywhere



3.2.2 Algorithmic Variations

Sometimes it can be costly in both time and space to run these alignment algorithms. Therefore, this section
presents some algorithmic variations to save time and space that work well in practice.

One method to save time, is the idea of bounding the space of alignments to be explored. The idea is
that good alignments generally stay close to the diagonal of the matrix. Thus we can just explore matrix
cells within a radius of k from the diagonal. The problem with this modification is that this is a heuristic
and can lead to a sub-optimal solution as it doesn’t include the boundary cases mentioned at the beginning
of the chapter. Nevertheless, this works very well in practice. In addition, depending on the properties of the
scoring matrix, it may be possible to argue the correctness of the bounded-space algorithm. This algorithm
requires O(k ∗m) space and O(k ∗m) time.

We saw earlier that in order to compute the optimal solution, we needed to store the alignment score in
each cell as well as the pointer reflecting the optimal choice leading to each cell. However, if we are only
interested in the optimal alignment score, and not the actual alignment itself, there is a method to compute
the solution while saving space. To compute the score of any cell we only need the scores of the cell above,
to the left, and to the left-diagonal of the current cell. By saving the previous and current column in which
we are computing scores, the optimal solution can be computed in linear space.

If we use the principle of divide and conquer, we can actually find the optimal alignment with linear
space. The idea is that we compute the optimal alignments from both sides of the matrix i.e. from the
left to the right, and vice versa. Let u = bn2 c. Say we can identify v such that cell (u, v) is on the optimal

49

6.047/6.878 Lecture 3 - Rapid Sequence Alignment and Database Search

Figure 3.6: Bounded-space computation

Figure 3.7: Linear-space computation for optimal alignment score

alignment path. That means v is the row where the alignment crosses column u of the matrix. We can find
the optimal alignment by concatenating the optimal alignments from (0,0) to (u, v) plus that of (u, v) to
(m,n), where m and n is the bottom right cell (note: alignment scores of concatenated subalignments using
our scoring scheme are additive. So we have isolated our problem to two separate problems in the the top
left and bottom right corners of the DP matrix. Then we can recursively keep dividing up these subproblems
to smaller subproblems, until we are down to aligning 0-length sequences or our problem is small enough
to apply the regular DP algorithm. To find v the row in the middle column where the optimal alignment
crosses we simply add the incoming and outgoing scores for that column.

Figure 3.8: Space-saving optimization for finding the optimal alignment

One drawback of this divide-and-conquer approach is that it has a longer runtime. Nevertheless, the
runtime is not dramatically increased. Since v can be found using one pass of regular DP, we can find v
for each column in O(mn) time and linear space since we don’t need to keep track of traceback pointers
for this step. Then by applying the divide and conquer approach, the subproblems take half the time since
we only need to keep track of the cells diagonally along the optimal alignment path (half of the matrix of
the previous step) That gives a total run time of O(mn(1 + 1

2 + 1

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

+ . . .)) = O(2MN) = O(mn) (using the4
sum of geometric series), to give us a quadratic run time (twice as slow as before, but still same asymptotic
behavior). The total time will never exceed 2MN (twice the time as the previous algorithm). Although the
runtime is increased by a constant factor, one of the big advantages of the divide-and-conquer approach is
that the space is dramatically reduced to O(N).

50

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 3 - Rapid Sequence Alignment and Database Search

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Figure 3.9: Divide and Conquer

Q: Why not use the bounded-space variation over the linear-space variation to get both linear time and
linear space?

A: The bounded-space variation is a heuristic approach that can work well in practice but does not guarantee
the optimal alignment.

3.2.3 Generalized gap penalties

Gap penalties determine the score calculated for a subsequence and thus affect which alignment is selected.
The normal model is to use a where each individual gap in a sequence of gaps of length k is penalized equally
with value p. This penalty can be modeled as w(k) = k ∗ p.
Depending on the situation, it could be a good idea to penalize differently for, say, gaps of different lengths.
One example of this is a in which the incremental penalty decreases quadratically as the size of the gap
grows. This can be modeled as w(k) = p + q ∗ k + r ∗ k2. However, the trade-off is that there is also cost
associated with using more complex gap penalty functions by substantially increasing runtime.
This cost can be mitigated by using simpler approximations to the gap penalty functions. The is a fine
intermediate: you have a fixed penalty to start a gap and a linear cost to add to a gap; this can be modeled
as w(k) = p+ q ∗ k.
You can also consider more complex functions that take into consideration the properties of protein coding
sequences. In the case of protein coding region alignment, a gap of length mod 3 can be less penalized
because it would not result in a frame shift.

3.3 Linear-time exact string matching

While we have looked at various forms of alignment and algorithms used to find such alignments, these
algorithms are not fast enough for some purposes. For instance, we may have a 100 nucleotide sequence
which we want to search for in the whole genome, which may be over a billion nucleotides long. In this case,
we want an algorithm with a run-time that depends on the length of query sequence, possibly with some
pre-processing on the database, because processing the entire genome for every query would be extremely
slow. For such problems, we enter the realm of randomized algorithms where instead of worrying about the
worst-case performance, we are more interested in making sure that the algorithm is linear in the expected
case. When looking for exact(consecutive) matches of a sequence, the Karp-Rabin algorithm interprets such
a match numerically. There are many other solutions to this problem and some of them that can ensure the
problem is linear in the worst case such as: the Z-algorithm, Boyer-Moore and Knuth-Morris-Pratt algorithm,
algorithms based on suffix trees, suffix arrays, etc. (discussed in the “Lecture 3 addendum” slides)

3.3.1 Karp-Rabin Algorithm

This algorithm tries to match a particular pattern to a string, which is the basic principle of database search.
The problem is as follows: in text T of length n we are looking for pattern P of length m. Strings are mapped
to numbers to enable fast comparison. A naive version of the algorithm involves mapping the string P and

51

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 3 - Rapid Sequence Alignment and Database Search

m-length substrings of T sinto numbers x and y, respectively, sliding x along T at every offset until there is
a match of the numbers.

Figure 3.10: Naive Karp-Rabin algorithm

However, one can see that the algorithm, as stated, is in fact non-linear for two reasons:

1. Computing each yi takes more than constant time (it is in fact linear if we naively compute each
number from scratch for each subsequence)

2. Comparing x and yi can be expensive if the numbers are very large which might happen if the pattern
to be matched is very long

To make the algorithm faster, we first modify the procedure for calculating yi in constant time by using
the previously computed number, yi− 1. We can do this using some bit operations: a subtraction to remove
the high-order bit, a multiplication to shift the characters left, and an addition to append the low-order
digit. For example, in Figure 10, we can compute y2 from y1 by

• removing the highest order bit: 23590 mod 10000 = 3590

• shifting left: 3590 ∗ 10 = 35900

• adding the new low-order digit: 35900 + 2 = 35902

Our next issue arises when we have very long sequences to compare. This causes our calculations to be
with very large numbers, which becomes no longer linear time. To keep the numbers small to ensure efficient
comparison, we do all our computations modulo p (a form of hashing), where p reflects the word length
available to us for storing numbers, but is small enough such that the comparison between x and yi is doable
in constant time.
: Using a function to map data values to a data set of fixed size.

Because we are using hashing, mapping to the space of numbers modulo p can result in spurious hits due
to hashing collisions, and so we modify the algorithm to deal with such spurious hits by explicitly verifying
reported hits of the hash values. Hence, the final version of the Karp-Rabin algorithm is:

To compute the expected runtime of Karp-Rabin, we must factor in the expect cost of verification. If we
can show the probability of spurious hits is small, the expected runtime is linear.

Questions:

Q: What if there are more than 10 characters in the alphabet?

A: In such a case, we can just modify the above algorithm by including more digits i.e. by working in a
base other than 10, e.g. say base 256. But in general, when hashing is used, strings are mapped into
a space of numbers and hence the strings are interpreted numerically.

Q: How do we apply this to text?

52

6.047/6.878 Lecture 3 - Rapid Sequence Alignment and Database Search

Figure 3.11: Final Karp-Rabin algorithm

A: A hash function is used that changes the text into numbers that are easier to compare. For example, if
the whole alphabet is used, letters can be assigned a value between 0 and 25, and then be used similar
to a string of numbers.

Q: Why does using modulus decrease the computation time?

A: Modulus can be applied to each individual part in the computation while preserving the answer. For
instance: imagine our current text is ”314152” and word length is 5. After making our first computation
on ”31415”, we move our frame over to make our second computation, which is:
14152 = (31415− 3 ∗ 10000) ∗ 10 + 2(mod13)
= (7− 3 ∗ 3) ∗ 10 + 2(mod13)
= 8(mod13)
This computation can be done now in linear time.

Q: Are there provisions in the algorithm for inexact matches?

A: The above algorithm only works when there are regions of exact similarity between the query sequence
and the database. However, the BLAST algorithm, which we look at later, extends the above ideas
to include the notion of searching in a biologically meaningful neighborhood of the query sequence to
account for some inexact matches. This is done by searching in the database for not just the query
sequence, but also some variants of the sequence up to some fixed number of changes.

In general, in order to reduce the time for operations on arguments like numbers or strings that are
really long, it is necessary to reduce the number range to something more manageable. Hashing is a general
solution to this and it involves mapping keys k from a large universe U of strings/numbers into a hash of
the key h(k) which lies in a smaller range, say [1...m]. There are many hash function that can be used, all
with different theoretical and practical properties. The two key properties that we need for hashing are:

1. Reproducibility if x = y, then h(x) = h(y). This is essential for our mapping to make sense.

2. Uniform output distribution This implies that regardless of the input distribution, the output distri-
bution is uniform. i.e. if x! = y, then P (h(x) = h(y)) = 1/m, irrespective of the input distribution.
This is a desirable property to reduce the chance of spurious hits.

An interesting idea that was raised was that it might be useful to have locality sensitive hash functions
from the point of view of use in neighborhood searches, such that points in U that are close to each other
are mapped to nearby points by the hash function. The notion of Random projections, as an extension of
the BLAST algorithm, is based on this idea. Also, it is to be noted that modulo doesnt satisfy property 2
above because it is possible to have input distributions (e.g. all multiples of the number vis--vis which the

53

6.047/6.878 Lecture 3 - Rapid Sequence Alignment and Database Search

modulo is taken) that result in a lot of collisions. Nevertheless, choosing a random number as the divisor of
the modulo can avoid many collisions.

Working with hashing increases the complexity of analyzing the algorithm since now we need to compute
the expected run time by including the cost of verification. To show that the expected run time is linear, we
need to show that the probability of spurious hits is small.

3.4 The BLAST algorithm (Basic Local Alignment Search Tool)

The BLAST algorithm looks at the problem of sequence database search, wherein we have a query, which
is a new sequence, and a target, which is a set of many old sequences, and we are interested in knowing
which (if any) of the target sequences is the query related to. One of the key ideas of BLAST is that it
does not require the individual alignments to be perfect; once an initial match is identified, we can fine-tune
the matches later to find a good alignment which meets a threshold score. Also, BLAST exploits a distinct
characteristic of database search problems: most target sequences will be completely unrelated to the query
sequence, and very few sequences will match.

However, correct (near perfect) alignments will have long substrings of nucleotides that match perfectly.
E.g. if we looking for sequences of length 100 and are going to reject matches that are less than 90%
identical, we need not look at sequences that do not even contain a consecutive stretch of less than 10
matching nucleotides in a row. We base this assumption on the : if m items are put in n containers and
m>n, at least 2 items must be put in one of the n containers.

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Figure 3.12: Pigeonhole Principle

In addition, in biology, functional DNA is more likely to be conserved, and therefore the mutations that
we find will not actually be distributed randomly, but will be clustered in nonfunctional regions of DNA
while leaving long stretches of functional DNA untouched. Therefore because of the pigeonhole principle
and because highly similar sequences will have stretches of similarity, we can pre-screen the sequences for
common long stretches. This idea is used in BLAST by breaking up the query sequence into W-mers and
pre-screening the target sequences for all possible W −mers by limiting our seeds to be W −mers in the
neighborhood that meet a certain threshold.

The other aspect of BLAST that allows us to speed up repeated queries is the ability to preprocess a
large database of DNA off-line. After preprocessing, searching for a sequence of length m in a database of
length n will take only O(m) time. The key insights that BLAST is based on are the ideas of hashing and
neighborhood search that allows one to search for W −mers, even when there are no exact-matches.

3.4.1 The BLAST algorithm

The steps are as follows:

1. Split query into overlapping words of length W (the W -mers)

2. Find a “neighborhood” of similar words for each word (see below)

54

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 3 - Rapid Sequence Alignment and Database Search

3. Lookup each word in the neighborhood in a hash table to find the location in the database where each
word occurs. Call these the seeds, and let S be the collection of seeds.

4. Extend the seeds in S until the score of the alignment drops off below some threshold X.

5. Report matches with overall highest scores

Figure 3.13: The BLAST Algorithm

The pre-processing step of BLAST makes sure that all substrings of W nucleotides will be included in
our database (or in a hash table). These are called the W -mers of the database. As in step 1, we first split
the query by looking at all substrings of W consecutive nucleotides in the query. To find the neighborhood
of these W -mers, we then modify these sequences by changing them slightly and computing their similarity
to the original sequence. We generate progressively more dissimilar words in our neighborhood until our
similarity measure drops below some threshold T . This affords us flexibility to find matches that do not have
exactly W consecutive matching characters in a row, but which do have enough matches to be considered
similar, i.e. to meet a certiain threshold score.

Then, we look up all of these words in our hash table to find seeds of W consecutive matching nucleotides.
We then extend these seeds to find our alignment using the Smith-Waterman algorithm for local alignment,
until the score drops below a certain threshold X. Since the region we are considering is a much shorter
segment, this will not be as slow as running the algorithm on the entire DNA database.

It is also interesting to note the influence of various parameters of BLAST on the performance of the
algorithm vis-a-vis run-time and sensitivity:

• W Although large W would result in fewer spurious hits/collisions, thus making it faster, there are
also tradeoffs associated, namely: a large neighborhood of slightly different query sequences, a large
hash table, and too few hits. On the other hand, if W is too small, we may get too many hits which
pushes runtime costs to the seed extension/alignment step.

• T If T is higher, the algorithm will be faster, but you may miss sequences that are more evolutionarily
distant. If comparing two related species, you can probably set a higher T since you expect to find
more matches between sequences that are quite similar.

• X Its influence is quite similar to T in that both will control the sensitivity of the algorithm. While
W and T affect the total number of hits one gets, and hence affect the runtime of the algorithm
dramatically, setting a really stringent X despite less stringent W and T , will result runtime costs
from trying unnecessary sequences that would not meet the stringency of X. So, it is important to
match the stringency of X with that of W and T to avoid unnecessary computation time.

55

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 3 - Rapid Sequence Alignment and Database Search

3.4.2 Extensions to BLAST

• Filtering Low complexity regions can cause spurious hits. For instance, if our query has a string of
copies of the same nucleotide e.g. repeats of AC or just G, and the database has a long stretch of the
same nucleotide, then there will be many many useless hits. To prevent this, we can either try to filter
out low complexity portions of the query or we can ignore unreasonably over-represented portions of
the database.

• Two-hit BLAST The idea here is to use double hashing wherein instead of hashing one long W -mer,
we will hash two small W-mers. This allows us to find small regions of similarity since it is much more
likely to have two smaller W -mers that match rather than one long W -mer. This allows us to get a
higher sensitivity with a smaller W, while still pruning out spurious hits. This means that we’ll spend
less time trying to extend matches that don’t actually match. Thus, this allows us to improve speed
while maintaining sensitivity.

Q: For a long enough W, would it make sense to consider more than 2 smaller W -mers?

A: It would be interesting to see how the number of such W -mers influences the sensitivity of the
algorithm. This is similar to using a comb, described next.

• Combs This is the idea of using non-consecutive W -mers for hashing. Recall from your biology
classes that the third nucleotide in a triplet usually doesnt actually have an effect on which amino acid
is represented. This means that each third nucleotide in a sequence is less likely to be preserved by
evolution, since it often doesnt matter. Thus, we might want to look for W -mers that look similar
except in every third codon. This is a particular example of a comb. A comb is simply a bit mask
which represents which nucleotides we care about when trying to find matches. We explained above
why 110110110 . . . (ignoring every third nucleotide) might be a good comb, and it turns out to
be. However, other combs are also useful. One way to choose a comb is to just pick some nucleotides
at random. Rather than picking just one comb for a projection, it is possible to randomly pick a set
of such combs and project the W-mers along each of these combs to get a set of lookup databases.
Then, the query string can also be projected randomly along these combs to lookup in these databases,
thereby increasing the probability of finding a match. This is called Random Projection. Extending
this, an interesting idea for a final project is to think of different techniques of projection or hashing
that make sense biologically. One addition to this technique is to analyze false negatives and false
positives, and change the comb to be more selective. Some papers that explore additions to this search
include Califino-Rigoutsos’93, Buhler’01, and Indyk-Motwani’98.

• PSI-BLAST Position-Specific Iterative BLAST create summary profiles of related proteins using
BLAST. After a round of BLAST, it updates the score matrix from the multiple alignment, and then
runs subsequent rounds of BLAST, iteratively updating the score matrix. It builds a Hidden Markov
Model to track conservation of specific amino acids. PSI-BLAST allows detection of distantly-related
proteins.

3.5 Pre-processing for linear-time string matching

The hashing technique at the core of the BLAST algorithm is a powerful way of string for rapid lookup. A
substantial time is invested to process the whole genome, or a large set of genomes, in advance of obtaining
a query sequence. Once the query sequence is obtained, it can be similarly processed and its parts searched
against the indexed database in linear time.

In this section, we briefly describe four additional ways of pre-processing a database for rapid string
lookup, each of which has both practical and theoretical importance.

3.5.1 Suffix Trees

Suffix trees provide a powerful tree representation of substrings of a target sequence T, by capturing all
suffixes of T in a radix tree.

56

6.047/6.878 Lecture 3 - Rapid Sequence Alignment and Database Search

Representation of a sequence in a suffix tree

Searching a new sequence against a suffix tree

Linear-time construction of suffix trees

3.5.2 Suffix Arrays

For many genomic applications, suffix trees are too expensive to store in memory, and more efficient rep-
resentations were needed. Suffix arrays were developed specifically to reduce the memory consumption of
suffix trees, and achieve the same goals with a significantly reduced space need.

Using suffix arrays, any substring can be found by doing a binary search on the ordered list of suffixes.
By thus exploring the prefix of every suffix, we end up searching all substrings.

3.5.3 The Burrows-Wheeler Transform

An even more efficient representation than suffix trees is given by the Burrows-Wheeler Transform (BWT),
which enables storing the entire hashed string in the same number of characters as the original string
(and even more compactly, as it contains frequent homopolymer runs of characters that can be more easily
compresed). This has helped make programs that can run even more efficiently.

We first consider the BWT matrix, which is an extension of a suffix array, in that it contains not only
all suffixes in sorted (lexicographic) order, but it appends to each suffix starting at position i the prefix
ending at position i− 1, each row thus containing a full rotation of the original string. This enables all the
suffix-array and suffix-tree operations, of finding the position of suffixes in time linear in the query string.

The key difference from Suffix Arrays is space usage, where instead of storing all suffixes in memory,
which even for suffix arrays is very expensive, only the last column of the BWT matrix is stored, based on
which the original matrix can be recovered.

An auxiliary array can be used to speed things even further and avoid having to repeat operations of
finding the first occurrence of each character in the modified suffix array.

Lastly, once the positions of 100,000s of substrings are found in the modified string (the last column of the
BTW matrix), these coordinates can be transformed to the original positions, saving runtime by amortizing
the cost of the transformation across the many many reads.

The BWT has had a very strong impact on short-string matching algorithms, and nearly all the fastest
read mappers are currently based on the Burrows-Wheeler Transform.

3.5.4 Fundamental pre-processing

This is a variation of processing that has theoretical interest but has found relatively little practical use in
bioinformatics. It relies on the Z vector, that contains at each position i the length of the longest prefix of a
string that also matches the substring starting at i. This enables computing the L and R (Left and Right)
vectors that denote the end of the longest duplicate substrings that contains the current position i.

3.5.5 Educated String Matching

The Z algorithm enables an easy computation of both the Boyer-Moore and the Knuth-Morris-Pratt
algorithms for linear-time string matching. These algorithms use information gathered at every comparison

57

6.047/6.878 Lecture 3 - Rapid Sequence Alignment and Database Search

when matching strings to improve string matching to O(n).
The naive algorithm is as follows: it compares its string of length m character by character to the sequence.
After comparing the entire string, if there are any mismatches, it moves to the next index and tries again.
This completes in O(m ∗ n) time.
One improvement to this algorithm is to discontinue the current comparison if a mismatch is found. However,
this still completes in O(m ∗ n) time when the string we are comparing matches the entire sequence.

Figure 3.14: Educated String Matching

The key insight comes from learning from the internal redundancy in the string to compare, and using
that to make bigger shifts down the target sequence. When a mistake is made, all bases in the current
comparison can be used to move the frame considered for the next comparison further down. As seen below,
this greatly reduces the number of comparisons required, decreasing runtime to O(n).

Figure 3.15: Final String Matching

3.6 Probabilistic Foundations of Sequence Alignment

As described above, the BLAST algorithm uses a scoring (substitution) matrix to expand the list of W -mers
in order to look for and determine an approximately matching sequence during seed extension. Also, a scoring
matrix is used in evaluating matches or mismatches in the alignment algorithms. But how do we construct
this matrix in the first place? How do you determine the value of s(xi, yj) in global/local alignment?

The idea behind the scoring matrix is that the score of alignment should reflect the probability that two
similar sequences are homologous i.e. the probability that two sequences that have a bunch of nucleotides in
common also share a common ancestry. For this, we look at the likelihood ratios between two hypotheses.

1. Hypothesis 1: – That the alignment between the two sequence is due to chance and the sequences
are, in fact, unrelated.

2. Hypothesis 2: – That the alignment is due to common ancestry and the sequences are actually
related.

Then, we calculate the probability of observing an alignment according to each hypothesis. Pr(x, y|U) is
the probability of aligning x with y assuming they are unrelated, while Pr(x, y|R) is the probability of the

58

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 3 - Rapid Sequence Alignment and Database Search

Figure 3.16: Nucleotide match scores

alignment, assuming they are related. Then, we define the alignment score as the log of the likelihood ratio
between the two:

P (x,y
S ≡ log

|R)

P (x,y|U)

(3.1)

Since a sum of logs is a log of products, we can get the total score of the alignment by adding up the
scores of the individual alignments. This gives us the probability of the whole alignment, assuming each
individual alignment is independent. Thus, an additive matrix score exactly gives us the probability that the
two sequences are related, and the alignment is not due to chance. More formally, considering the case of
aligning proteins, for unrelated sequences, the probability of having an n-residue alignment between x and y
is a simple product of the probabilities of the individual sequences since the residue pairings are independent.

That is,

x = {x1 . . . xn}
y = {y1 . . . xn}
qa = P (amino acid a)

n

q
i

∏n
P (x,y|U) = xi

qyi
=1 i

∏
=1

For related sequences, the residue pairings are no longer independent so we must use a different joint
probability, assuming that each pair of aligned amino acids evolved from a common ancestor:

pab = P (evolution gave rise to a in x and b in y)
n

P (x,y|R) =
i

∏
pxiyi

=1

Then, the likelihood ratio between the two is given by:

P (x,y|R)

P (x,y|U)
=

∏n
i=1 pxiyi∏n

i=1 qxi

∏n
i=1 qyi

=

∏n
i=1 pxiyi
n
i=1 qxi

qyi

Since we eventually want to compute a sum of scores

∏
and probabilities require add products, we take the

log of the product to get a handy summation:

59

6.047/6.878 Lecture 3 - Rapid Sequence Alignment and Database Search

S ≡ log
P (x,y|R)

P (x,y|U)

v =
∑
i

log

(
pxiyi

qxi
qyi

)
≡

∑
s(xi, yi)

i

(3.2)

Thus, the substitution matrix score for a given pair a, b is give by

ab
s(a,) = log

(
p

b
qaqb

)
The above expression is then used to crank out a substitution matrix like the BLOSUM62 for amino

acids. It is interesting to note that the score of a match of an amino acid with itself depends on the amino
acid itself because the frequency of random occurrence of an amino acid affects the terms used in calculating
the likelihood ratio score of alignment. Hence, these matrices capture not only the sequence similarity of the
alignments, but also the chemical similarity of various amino acids.

Figure 3.17: BLOSUM62 matrix for amino acids

3.7 Current Research Directions

3.8 Further Reading

BLAST related algorithms: Califino-Rigoutsos’93, Buhler’01, and Indyk-Motwani’98

60

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 3 - Rapid Sequence Alignment and Database Search

3.9 Tools and Techniques

3.10 What Have We Learned?

In this section we explored alignment algorithms beyond global alignment. We began by reviewing our use
of dynamic programming to solve global alignment problems using the Needleman-Wunsch algorithm. We
then the explored alternatives of local (Smith-Waterman) and semi-global alignments. We then discussed
using hash function to match exact strings in linear time (Karp-Rabin) as well as doing a neighborhood
search, investigating similar sequences in probabilistic linear time (pigeonhole principle, combs, 2-hit blast,
random projections). We have also addressed using pre-processing for linear time string matching, as well
as the probabilistic background for sequence alignment.

Bibliography

61

6.047/6.878 Lecture 3 - Rapid Sequence Alignment and Database Search

62

CHAPTER

FOUR

COMPARATIVE GENOMICS I: GENOME ANNOTATION

Quanquan Liu (2013),
Mark Smith, Yarden Katz
(Partially adapted from notes by:
Angela Yen, Christopher Robde, Timo Somervuo and Saba Gul)

Figures
4.1 Exon conservation from mammals to fish. 64

4.2 Comparative identification of functional elements in 12 Drosophila species. 66

4.3 A comparison between two genomic regions with different selection rates ω. 66

4.4 Unusual patterns of substitution . 67

4.5 Increase in power to detect small constrained elements . 68

4.6 HOXB5 conservation across mammalian species. 69

4.7 Modeling mutations using rate matrices. 69

4.8 Measuring genome–wide excess constraint. 70

4.9 Detecting functional elements from their evolutionary signature. A Distribution of con-
straint for the whole genome against ancestral repeats (background). B Difference between
whole genome and background constraint. C Discovery of functional elements from excess
constraint. Novel elements are shown in red. D Enrichment of elements for regions of
excess constraint. 71

4.10 Coverage depth across different sets of elements. 72

4.11 Different mutation patterns in protein–coding and non–protein–coding regions. 72

4.12 Evolutionary signatures of protein-coding genes . 73

4.13 RNA with secondary stem–loop structure . 74

4.14 Silent point mutations . 75

4.15 Protein-coding vs. non-protein-coding conserved regions 76

4.16 Reading frame conservation. 77

4.17 Rejected open reading frame. 78

4.18 Null and alternate model rate matrices. 79

4.19 Probability that a region is protein-coding . 80

4.20 Prediction of new genes and exons using evolutionary signatures. 81

4.21 OPRL1 neurotransmitter: a novel translational read–through candidate. 82

4.22 Stop codon suppression interpretations. 83

4.23 Z–curve for Caki. 83

4.24 miRNA hairpin structure. 84

4.25 miRNA characteristic conservation pattern. 84

4.26 Novel miRNA Evidence 1. 85

4.27 Novel miRNA Evidence 2. 85

63

6.047/6.878 Lecture 4: Comparative Genomics I: Genome Annotation

4.28 miRNA detection decision tree. 86

4.29 CG31044 and CG33311 Transcripts. 87

4.30 TAATTA regulatory motif. 87

4.1 Introduction

In this chapter we will explore the emerging field of comparative genomics, primarily through examples of
multiple species genome alignments (work done by the Kellis lab.) One approach to the analysis of genomes
is to infer important gene functions through applying an understanding of evolution to search for expected
evolutionary patterns. Another approach is to discover evolutionary trends by studying genomes themselves.
Taken together, evolutionary insight and large genomic datasets offer great potential for discovery of novel
biological phenomena.

A recurring theme of this work is to take a global computational approach to analyzing elements of genes
and RNAs encoded in the genome and use it to find interesting new biological phenomena. We can do this
by seeing how individual examples “diverge” or differ from the average case. For example, by examining
many protein–coding genes, we can identify features representative of that class of loci. We can then come
up with highly accurate tests for distinguishing protein–coding from non–protein–coding genes. Often, these
computational tests, based on thousands of examples, will be far more definitive than conventional low–
throughput wet lab tests. (Such tests can include mass spectrometry to detect protein products, in cases
where we want to know if a particular locus is protein coding.)

4.1.1 Motivation and Challenge

As the cost of genome sequencing continues to drop, the availability of sequenced genome data has exploded.
However, analysis of the data has not kept up, while there are many interesting biological phenomena lying
undiscovered in the endless strings of ATGCs. The goal of comparative genomics is to leverage the vast
amounts of information available to look for biological patterns.

As the name suggests, comparative genomics does not focus on one specific set of genomes. The problem
with purely focusing on the single genome level is that key evolutionary signatures are missed. Comparative
genomics solves this problem by comparing genomes from many species that evolved from a common ancestor.
As evolution changes a species’s genome, it leaves behind traces of its presence. We will see later in this
chapter that evolution discriminates between portions of a genome on the basis of biological function. By
exploiting this correlation between evolutionary fingerprints and the biological role of a genomic subsequence,
comparative genomics is able to direct wet lab research to interesting portions of the genome and discover
new biological phenomena.

FAQ

Q: Why do mutations only accumulate in certain regions of the genome, whereas other regions are
conserved?

A: In non-functional regions of DNA, accumulated mutations are kept because they do not disturb
the function of the DNA. In functional regions, these mutations can lead to decreased fitness;
these mutations are then discarded from the species by natural selection.

We can glean much information about evolution through studying genomics, and, similarly, we can learn
about the genome through studying evolution. For example, from the principle of “survival of the fittest,”
we can compare related species to discover which portions of the genome are functional elements. The
evolutionary process introduces mutations into any genome. In non-functional regions of DNA, accumulated
mutations are kept because they do not disturb the function of the DNA. However, in functional regions,
accumulated mutations often lead to decreased fitness. Thus, these fitness-decreasing mutations are not
likely to perpetuate to future generations. As time progresses, evolutionarily unfit organisms are likely to

64

6.047/6.878 Lecture 4: Comparative Genomics I: Genome Annotation

not survive and their genes thin out. By comparing surviving species’ genomes with their ancestors’ genomes,
we can see which portions constitute functional elements and which constitute “junk DNA.”

To date various important biological markers and phenomena have been discovered through comparative
genomics methods. For example, CRISPRs (Clustered Regularly Interspaced Short Palindromic Repeats),
found in bacteria and archaea, were first discovered through comparative genomics. Follow–up experiments
revealed that they provide adaptive immunity to plasmids and phages. Another example, which we will look
at later in this chapter, is the phenomenon of stop–codon read–through, where stop codons are occasionally
ignored during the process of translation phase of protein biosynthesis. Without comparative genomics to
guide them, experimentalists might have ignored both of these features for many years.

Without a system for interpreting and identifying important features in genomes, all of the DNA sequences
on earth are just a meaningless sea of data. However, we cannot ignore the importance of both computer
science and biology in comparative genomics. Without knowledge of biology, one might miss the signatures of
synonymous substitutions or frame shift mutations. On the other hand, ignoring computational approaches
would lead to an inability to parse ever larger datasets emerging from sequencing centers. Comparative
genomics require rare multidisciplinary skills and insight.

This is a particularly exciting time to enter the field of comparative genomics, because the field is mature
enough that there are tools and data available to make discoveries. But it is young enough that important
findings will likely continue to be made for many years.

4.1.2 Importance of many closely–related genomes

In order to resolve significant biological features we need both sufficient similarity to enable comparison and
sufficient divergence to identify signatures of change over evolutionary time. This is difficult to achieve in
a pairwise comparison. We improve the resolution of our analysis by extending analysis to many genomes
simultaneously with some clusters of similar organisms and some dissimilar organisms. A simple analogy is
one of observing an orchestra. If you place a single microphone, it will be difficult to decipher the signal
coming from the entire system, because it will be overwhelmed by the local noise from the single point
of observation, the nearest instrument. If you place many microphones distributed across the orchestra at
reasonable distances, then you get a much better perspective not only on the overall signal, but also on the
structure of the local noise. Similarly, by sequencing many genomes across the tree of life we are able to
distinguish the biological signals of functional elements from the noise of neutral mutations. This is because
nature selects for conservation of functional elements across large phylogenetic distances while constantly
introducing noise through mutagenic processes operating at shorter time scales.

In this chapter, we will assume that we already have a complete genome–wide alignment of multiple
closely–related species, spanning both coding and non–coding regions. In practice, constructing complete
genome assemblies and whole–genome alignments is a very challenging problem; that will be the topic of the
next chapter.

FAQ

Q: Why is there more resolving power when the evolutionary distance or branch length between
species increases?

A: If we are comparing two species like human and chimp that are very close to each other, we
expect to see little to no mutations. This gives us little discriminative power because we
see no difference between the number of mutations in functional elements vs. the number of
mutations in non-functional elements. However, as we increase the evolutionary time between
species, we expect to see more mutations, but what we actually see are a notable decrease in
the observed number of mutations in certain regions of the genome. We can conclude that
these regions are functional regions. Therefore, our confidence in perceived functional elements
increases as branch length increases.

65

6.047/6.878 Lecture 4: Comparative Genomics I: Genome Annotation

FAQ

Q: Why is it better to have many closely related species for the same branch length rather than
one distantly related species?

A: As branch length increases between distantly related species, even functional elements are not
conserved. Furthermore, reliably aligning genes from distantly related relatives of the same
species is difficult if not impossible using current technology such as BLAST.

4.1.3 Comparative genomics and evolutionary signatures

Given a genome-wide alignment, we can subsequently analyze the level of conservation of functional elements
in each of the genomes considered. Using the UCSC genome browser, one may see a level of conservation for
every gene in the human genome derived from aligning the genomes of many other species. In Figure 4.1
below, we see a DNA sequence represented on the x–axis, while each “row” represents a different species. The
y–axis within each row represents the amount of conservation for that species in that part of the chromosome
(though other species that are not shown were also used to calculate conservation). Higher bars correspond
with greater conservation.

From this figure, we can see that there are blocks of conservation separated by regions that are not
conserved. The 12 exons (highlighted by red rectangles) are mostly conserved across species, but sometimes,
certain exons are missing; for example, zebrafish is missing exon 9. However, we also see that there is a spike
in some species (as circled in red) that do not correspond to a known protein coding gene. This tells us
that some intronic regions have also been evolutionarily conserved, since DNA regions that do not code for
proteins can still be important as functional elements, such as RNA, microRNA, and regulatory motifs. By
observing how regions are conserved, instead of just looking at the amount of conservation, we can observe
‘evolutionary signatures’ of conservation for different functional elements.

The pattern of mutation/insertion/deletion can help us distinguish different types of functional elements
in the genome. Different functional elements are under different selective pressures and by considering
which selective pressures each element is under, we can develop evolutionary signatures characteristic of
each function. For example, we see the difference in evolutionary signatures as exhibited by protein-coding
genes as opposed to regulatory motifs...etc.

Figure 4.1: Exons (boxed in red) are deeply conserved from mammals to fish. Other elements are also
strongly conserved, such as the circled peak near the center of the graph. This may be a regulatory element
found in mammals but not in aves or fish.

66

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 4: Comparative Genomics I: Genome Annotation

FAQ

Q: Given an alignment of genes from multiple species, what can you measure to determine the
level of conservation of a specific gene(s)?

A: One simple method is just to look at the alignment score for each gene. If one wants to distinguish
between highly conserved protein coding segments from non-protein coding segments, one may
also look at codon conservation. However, in both of these approaches, we have to consider
the position of each species being compared in the phylogenetic tree. A pairwise comparison
score that is lower between two species separated by a greater distance in the phylogenetic tree
than the pairwise score between two closely related species would not necessarily imply lower
conservation.

4.2 Conservation of genomic sequences

4.2.1 Functional elements in Drosophila

In a 2007 paper1, Stark et al. identified evolutionary signatures of different functional elements and predicted
function using conserved signatures. One important finding is that across evolutionary time, genes tend to
remain in a similar location. This is illustrated by Figure 4.2, which shows the result of a multiple alignment
on orthologous segments of genomes from twelve Drosophila species. Each genome is represented by a
horizontal blue line, where the top line represents the reference sequence. Grey lines connect orthologous
functional elements, and it is clear that their positions are generally conserved across the different species.

FAQ

Q: Why is it significant that the position of orthologous elements is conserved?

A: The fact that positions are conserved is what allows us to make comparisons across species.
Otherwise, we would not be able to align non-coding regions reliably.

Drosophila is a great species to study because, in fact, the separation of fruit flies is greater than that
of mammals. This brings us to an interesting side-note, that of which species to select when looking at
conservation signatures. You don’t want to have very similar species (such as humans and chimpanzees,
which share 98% of the genome), because it would be difficult to distinguish regions that are different from
ones that are the same. When comparing species to humans, the right level of conservation to look at is
the mammals. Specifically, most research done in this field is done using 29 eutherian mammals (placental
mammals, no marsupials or monotremes) to study. Another things to take into account is branch-length
differences between two species. Your ideal subjects of study would be a few closely related (short branch-
length) species, to avoid problems of interpretation that arise with a long branch-length mutations, such as
back-mutations.

4.2.2 Rates and patterns of selection

Now that we have established that there is structure to the evolution of genomic sequences, we can begin
analyzing specific features of the conservation. For this section, let us consider genomic data at the level of
individual nucleotides. Later on in this chapter we will see that we can also analyze amino acid sequences.

We may estimate the intensity of a constraint of selection ω by making a probabilities model of the
substitution rate inferred from genome alignment data. Using a Maximum Likelihood (ML) estimation of
ω can provide us with the rate of selection ω as well as the log odds score that the rate is non-natural.

1http://www.nature.com/nature/journal/v450/n7167/abs/nature06340.html

67

http://www.nature.com/nature/journal/v450/n7167/abs/nature06340.html

6.047/6.878 Lecture 4: Comparative Genomics I: Genome Annotation

Figure 4.2: Comparative identification of functional elements in 12 Drosophila species. Grey lines indicate
the alignment of orthologous regions. Color indicates direction of transcription.

One property that this measures that we may consider is the rate of nucleotide substitution in a genome.
Figure 4.3 shows two nucleotide sequences from a collection of mammals. One of the sequences is subject to
normal rates of change, while the other demonstrates a reduced rate. Hence we may hypothesize that the
latter sequence is subject to a greater level of evolutionary constraint, and may represent a more biologically
important section of the genome.

Figure 4.3: A comparison between two genomic regions with different selection rates ω. The sequence on
the left demonstrates normal rates of mutation, while the sequence on the right shows a high conservation
level, as evidenced by the reduced number of mutations.

We can further detect unusual patterns of selection π by looking at a probabilistic model of a stationary
distribution that is different from the background distribution. The ML estimation of π provides us with
the Probability Weight Matrix (PWM) for each k-mer in the genome as well as the log odds score for
substitutions that are unusual (e.g. one base changing to one and only one other base). As one may see
from Figure 4.4, specific letters matter because some bases selectively change to one (or two other bases),
and the specific base it changes to may suggest what the function of the sequence may be.

We can increase our detection power of constraint elements by looking at more species, as shown in
Figure 4.5 where we see a dramatic increase in the power to detect small constrained elements.

4.3 Excess Constraint

In most regions of the genome where we see conservation across species, we expect there to be at least some
amount of synonymous substitution. These are “silent” nucleotide substitutions that modify a codon in
such a way that the amino acid it encodes is unchanged. In a 2011 paper2, Lindblad–Toh et al. studied

2http://www.nature.com/nature/journal/v478/n7370/full/nature10530.html

68

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://www.nature.com/nature/journal/v478/n7370/full/nature10530.html
http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 4: Comparative Genomics I: Genome Annotation

Figure 4.4: This sequence displays an unusual substitution rate of substituting C with G and vice versa.

evolutionary constraint in the human genome by doing comparative analysis of 29 mammalian species. They
found that among the 29 genomes, the average nucleotide site showed 4.5 substitutions per site.

Given such a high average substitution rate, we do not expect to see perfect conservation across all regions
that are conserved. For example, ignoring all other effects, the probability of a 12–mer remaining fixed across
all 29 species is less than 10−25. Thus, regions which are nearly perfectly conserved across multiple species
stand out as being unique and worthy of further study. One such region is shown in Figure 4.6.

4.3.1 Causes of Excess Constraint

The question is what evolutionary pressures cause certain regions to be so perfectly conserved? The following
were all mentioned in class as possibilities:

• Could it be that there is a special structure of DNA shielding this area from mutation?

• Is there some special error correcting machinery that sits at this spot?

• Can the cell use the methylation state of the two copies of DNA as an error correcting mechanism?
This mechanism would rely on the fact that the new copy of DNA is unmethylated, and therefore the
DNA replication machinery could check the new copy against the old methylated copy.

• Maybe the next generation can’t survive if this region is mutated?

Another possible explanation is that selection is occurring to conserve specific codons. Some codons are
more efficient than others: for example, higher abundant proteins that need rapid translation might select
codons that give the most efficient translation rate, while other proteins might select for codons that give
less efficient translation.

Still, these regions seem too perfectly conserved to be explained by codon usage alone. What else can
explain excess constraint? There must be some degree of accuracy needed at the nucleotide level that keeps
these sequences from diverging.

It could be that we are looking at the same region in two species that have only recently diverged or
that there is a specific genetic mechanism protecting this area. However, it is more likely that so much
conservation is a sign of protein coding regions that simultaneously encode other functional elements. For
example, the HOXB5 gene shows obvious excess constraint, and there is evidence that the 5’ end of the
HOXB5 ORF encodes both protein and an RNA secondary structure.

69

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 4: Comparative Genomics I: Genome Annotation

Figure 4.5: By increasing the number of mammals studied, we see an increase in the constrained k-mers and
base pairs that are detectable.

Regions that encode more than one type of functional element are under overlapping selective pressures.
There might be pressure in the protein coding space to keep the amino acid sequence corresponding to this
region the same, combined with pressure from the RNA space to keep a nucleotide sequence that preserves
the RNA’s secondary structure. As a result of these two pressures to keep codons for the same amino acids
and to produce the same RNA structure, the region is likely to show much less tolerance for any synonymous
substitution patterns.

The process of estimating evolutionary constraint from genomic alignment data across multiple species
follows the steps below:

• Count the number of edit operations (i.e. the number of substitutions and/or deletions/insertions)

• Estimate the number of mutations including back-mutations

• Incorporate information about the neighborhood elements of the conserved element by looking at
”conservation windows”

• Estimate the probability of a constrained “hidden state” through using Hidden Markov Models

• Use phylogeny to estimate tree mutation rate (i.e. reject substitutions that should occur along the
tree)

• Allow different portions of the tree to have different mutation rates

4.3.2 Modeling Excess Constraint

To better study region of excess constraint, we develop mathematical models to systematically measure the
amount of synonymous and non-synonymous conservation of different regions. We will measure two rates:
codon and nucleotide conservation.

To represent the null model, we can build rate matrices (4× 4 in the nucleotide case and 64× 64 for the
codon case) that give the rates of substitutions between either codons or nucleotides for a unit time. We
estimate the rates in the null model by looking at a ton of data and estimating the probabilities of each type
of substitution. See Figure 4.18a in 4.5.2 for an example of a null matrix for the codon case.

• λs: the rate of synonymous substitutions

70

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 4: Comparative Genomics I: Genome Annotation

Figure 4.6: Many genomic regions, such as HOXB5, show more conservation than we would expect in normal
conserved coding regions. Among the 29 species under study, all but 7 of them had the exact same nucleotide
sequence. The green areas are areas that have undergone evolutionary mutations.

Figure 4.7: We can model mutations using rate matrices, as shown here for nucleotide substitutions on the
left and codon substitutions on the right. In each matrix, the cell in the mth row and nth column represents
the likelihood that the mth symbol will mutate into the nth symbol. The darker the color, the less likely
the mutation.

• λn: the rate of nonsynonymous substitutions

For example, if λs = 0.5, then the rate of synonymous substitutions is half of what is expected from the
null model in that region. We can then evaluate the statistical significance of the rate estimates we obtain,
and find regions where the rate of substitution is much lower than expected.

Using a null model here helps us account for biases in alignment coverage of certain codons and also
accounts for the possibility of codon degeneracy, in which case we would expect to see a much higher rate
of substitutions. We will learn how to combine such models with phylogenic methods when we talk about
phylogenic trees and evolution later on in the course.

Applying this model shows that the sequences in the first translated codons, cassette exons (exons that
are present in one mRNA transcript but absent in an isoform of the transcript), and alternatively spliced
regions have especially low rates of synonymous substitutions.

4.3.3 Excess Constraint in the Human Genome

In this section, we will examine the problem of determining the total proportion of the human genome under
excess constraint. In particular, we will revisit the work of Lindblad–Toh et al. (2011), which compared 29
mammalian genomes. They measured conservation levels throughout the genome by applying the process
described in the previous section to 50–mers. By considering only 50–mers which were part of ancestral
repeats, it is possible to determine a background level of conservation. We can imagine that the intensities of
conservation among the 50–mers are distributed according to a hidden probability distribution, as illustrated
in Figure 4.8. In the figure, the background curve represents the distribution of constraint in the absence

71

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

© source unknown. All rights reserved. This content is
excluded from our Creative Commons license. For more
information,see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 4: Comparative Genomics I: Genome Annotation

of special mechanisms for excess constraint, as determined by looking at ancestral repeats, while the signal
(foreground) curve represents the actual distribution of the genome. The signal curve has more conservation
overall due to the purifying effects of natural selection.

Figure 4.8: Measuring genome–wide excess constraint. See accompanying text for explanation.

We may wish to investigate specific regions of the genome which are under excess constraint by setting
a threshold level of conservation and examining regions which are more conserved. In the illustration, this
corresponds to considering all 50–mers which fall to the right of one of the orange lines. We see that while
this method does indeed give us regions under excess constraint, it also gives us false positives. This is
because even in the absence of purifying selection and other effects, certain regions will be heavily conserved,
simply due to random chance. Setting the threshold higher, such as by using the dotted orange line as
our threshold, reduces the proportion of false positives (FP) to true positives (TP), while also lowering the
number of true positives detected, thus trading higher specificity for lower sensitivity.

However, not all hope is lost. It is possible to empirically measure both the background (BG) and
foreground (FG) signal curves, as described above. Once that is done, the area of the region between them,
which is shaded in gray in Figure 4.8, can be determined by integration. This area represents the proportion
of the genome which is under excess constraint. Because the curves overlap, we cannot detect all conserved
elements but we can estimate the total amount of excess constraint. This number of estimated constraint
turns out to be about 5% of the human genome, depending on how large a window is used. Those regions
are likely to all be functional, but since about 1.5% of the human genome is protein–coding, we can infer
that the remaining 3.5% consists of functional, non–coding elements, most of which probably play regulatory
roles.

We have seen that evolutionary constraint over the whole genome can be estimated by evaluating genomic
constraint against a background distribution. Lindblad-Toh et al. (2011) compare genome conservation
across 29 mammals against a background calculated from ancestral repeat elements to find regions with excess
constraint (Figure 4.9A and B). Annotation of evolutionarily constrained bases reveals that the majority
of discovered regions are intergenic and intronic and demonstrates that going from four (HMRD) to 29
mammalian genomes increases the power of this analysis primarily in non-coding regions (Figure 4.9C). The
most constrained regions in the genome are coding regions (Figure 4.9D).

As shown in Figure 4.9, the increase from HMRD to a 29 genome alignment vastly improves the power

72

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 4: Comparative Genomics I: Genome Annotation

Figure 4.9: Detecting functional elements from their evolutionary signature. A Distribution of constraint
for the whole genome against ancestral repeats (background). B Difference between whole genome and
background constraint. C Discovery of functional elements from excess constraint. Novel elements are
shown in red. D Enrichment of elements for regions of excess constraint.

of this analysis. However, while the amount of intergenic elements detected increased significantly, detection
is still limited by the fact that non-functional elements have much lower species coverage depth in multiple
alignments than functional regions (Figure 4.10). For example, ancestral repeats (AR, µ = 11.4) have a much
lower average coverage depth than exons (µ = 20.9). On one hand, this shows evidence of selection against
insertions and deletions in functional elements, which are not examined in the analysis of base constraint.
On the other, it also complicates the analysis of evolutionary constraint, as such work must then handle
varying coverage across the genome.

4.3.4 Examples of Excess Constraint

Examples of excess constraint have been found in the following cases:

• Most Hox genes show overlapping constraint regions. In particular, as mentioned above the first 50
amino acids of HOXB5 are almost completely conserved. In addition, HOXA2 shows overlapping
regulatory modules. These two loci encode developmental enhancers, providing a mechanism for tissue
specific expression.

• ADAR: the main regulator of mRNA editing, has a splice variant where a low synonymous substitution
rate was found at a resolution of 9 codons.

• BRCA1: Hurst and Pal (2001) found a low rate of synonymous substitutions in certain regions of
BRCA1, the main gene involved in breast cancer. They hypothesized that purifying selection is occur-
ring in these regions. (This claim was refuted by Schmid and Yang (2008) who claim this phenomenon
is the artifact of a sliding window analysis).

• THRA/NR1D1: these genes, also involved in breast cancer, are part of a dual coding region that codes
for both genes and is highly conserved.

73

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 4: Comparative Genomics I: Genome Annotation

Figure 4.10: Coverage depth across different sets of elements.

• SEPHS2: has a hairpin involved in selenocysteine recoding. Because this region must select codons to
both conserve the protein’s amino acid sequence and the nucleotides to keep the same RNA secondary
structure, it shows excess constraint.

4.3.5 Measuring constraint at individual nucleotides

By measuring evolutionary constraint at individual nucleotides instead of blocks of the sequence, we may find
individual transcription factor binding sites, position-specific bias within motif instances, and reveal motif
consensus among most species. Specifically, we can detect SNPs that disrupt conserved regulatory motifs
and determine the level of evolution by looking at every nucleotide in the gene. By looking at nucleotides
individually, we can find SNPs that are important in the function of a specific sequence.

4.4 Diversity of evolutionary signatures: An Overview of Selec-
tion Patterns

Independently of the substitution rate, we may also consider the pattern of substitutions in a particular
nucleotide subsequence. Consider a sequence of nucleotides which encodes a protein. Due to tRNA wobble,
a mutation in the third nucleotide of a codon is less likely to affect the final protein than a mutation in
the other positions. Hence we expect to see a pattern of increased substitutions on the third position when
looking at protein–coding subsequences of the genome. This is indeed verified experimentally, as shown in
Figure 4.11.

Figure 4.11: Different mutation patterns in protein–coding and non–protein–coding regions. Asterisks in-
dicate that the nucleotide was conserved across all species. Note that within the protein–coding exon,
nucelotides 1 and 2 of each codon tend to be conserved, while codon 3 is allowed to vary more, which is
consistent with the phenomenon of wobble.

74

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 4: Comparative Genomics I: Genome Annotation

FAQ

Q: In Figure 4.11, we also see nucleotide substitutions in groups of three or sixes. Why is this the
case?

A: Insertions and deletions in groups of threes and sixes also contribute to preserving the reading
frame. If all the nucleotides are deleted in one codon, the rest of the codons are unaffected
during amino acid translation. However, if we delete a number of nucleotides that is not a
multiple of three (i.e. we only delete part of some codon), then the translation of the rest of
the codons become nonsensical since the reading frame has been shifted.

In Figure 4.12, we can see one more feature of protein-coding genes. The boundaries of conservation are
very distinct and they lie near splice sites. Periodic mutations (in multiples of three) begin to occur after
the splice site boundary.

Figure 4.12: In addition to reading frame conservation and substitutions every third nucleotide, we also see
sharp conservation boundaries that pinpoint splice sites.

As we can see with detecting protein-coding genes, it is not only important to consider the substitution
rate but also the pattern of substitutions. By observing how regions are conserved, instead of just looking at
the amount of conservation, we can observe ‘evolutionary signatures’ of conservation for different functional
elements.

4.4.1 Selective Pressures On Different Functional Elements

Different functional elements have different selective pressures (due to their structure and other character-
istics); some changes (insertions, deletions, or mutations) that can be extremely harmful to one functional
element may be innocuous to another. By figuring out what the “signatures” are for different elements, we
can more accurately annotate a region by observing the patterns of conservation it shows.

Such a pattern is called an evolutionary signature: a pattern of change that is tolerated within elements
that still preserve their function. An evolutionary signature is different from the degree of conservation in
that you tolerate mutation, but only specific types of mutations in specific places. Evolutionary signatures
arise because evolution and natural selection are acting on different levels in certain functional elements. For
instance, in a protein-coding gene evolution is acting on the level of amino acids, and so natural selection
willl not filter out nucleotide changes which do not affect the amino acid sequence. Whereas a structural
RNA will have pressure to preserve nucleotide pairs, but not necessarily individual nucleotides.

75

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 4: Comparative Genomics I: Genome Annotation

Importantly, the pattern of conservation has a distinct phylogenetic structure. More similar species
(mammals) group together with shared conserved domains that fish lack, suggesting a mammalian specific
innovation, perhaps for regulatory elements not shared by fish. Meanwhile, some features are globally
conserved, suggesting a universal significance, such as protein coding. Initial approximate annotation of
protein coding regions in the human genome was possible using the simple heuristic that if it was conserved
from human to fish it likely served as a protein coding region.

An interesting idea for a final project would be to map divergences in the multiple alignment and call
these events “births” of new coding elements. By focusing on a particular element (say microRNAs) one
could identify periods of innovation and isolate portions of a phylogenetic tree enriched for certain classes of
these elements.

The rest of the chapter will focus on quantifying the degree to which a sequence follows a given pattern.
Kellis compared the process of evolution to exploring a fitness landscape, with the fitness score of a particular
sequence constrained by the function it encodes. For example, protein coding genes are constrained by
selection on the translated product, so synonymous substitutions in the third base pair of a codon are
tolerated.

Below is a summary of the expected patterns followed by various functional elements:

• Protein–coding genes exhibit particular frequencies of codon substitution as well as reading frame
conservation. This makes sense because the significance of the genes is the proteins they code for;
therefore, changes that result in the same or similar amino acids can be easily tolerated, while a tiny
change that drastically changes the resulting protein can be considered disastrous. In addition to the
error correction of the mismatch repair system and DNA polymerase itself, the redundancy of the
genetic code provides an additional level of intrinsic error correction/tolerance.

• Structural RNA is selected based on the secondary sequence of the transcribed RNA, and thus requires
compensatory changes. For example, some RNA has a secondary stem–loop structure such that sections
of its sequence bind to other sections of its sequence in its “stem”, as shown in figure 4.13.

Courtesy of Sakurambo on wikipedia. Image in the public domain.

Figure 4.13: RNA with secondary stem–loop structure

Imagine that a nucleotide (A) and its partner (T) bind to each other in the stem, and then (A) mutates
to a (C). This would ruin the secondary structure of the RNA. To correct this, either the (C) would
mutate back to an (A), or the (T) would mutate to a (G). Then the (C)-(G) pair would maintain
the secondary structure. This is called a compensatory mutation. Therefore, in RNA structures, the
amount of change to the secondary structure (e.g. stem–loop) is more important than the amount of
change in the primary structure (just the sequence). Understanding the effects of changes in RNA
structure requires knowledge of the secondary structure. The likely secondary structure of an RNA
can be determined by modeling the stability of many possible conformations and choosing the most
likely conformation.

• MicroRNA is a molecule that is ejected from the nucleus into the cytoplasm. Their characteristic trait
is that they also have the hairpin (stem–loop) structure illustrated in Figure 4.13, but a section of the
stem is complementary to a portion of mRNA.

When microRNA binds its complementary sequence to the respective portion of mRNA, it degrades
the mRNA. This means that it is a post–transcriptional regulator, since it’s being used to limit the

76

https://en.wikipedia.org/wiki/Kissing_stem-loop#/media/File:Stem-loop.svg

6.047/6.878 Lecture 4: Comparative Genomics I: Genome Annotation

production of a protein (translation) after transcription. MicroRNA is conserved differently than
structural RNA. Due to its binding to an mRNA target, the region of binding is much more conserved
to maintain target specificity.

• Finally, regulatory motifs are conserved in sequence (to bind particular interacting protein partners)
but not necessarily in location. Regulatory motifs can move around since they only need to recruit a
factor to a particular region. Small changes (insertions and deletions) that preserve the consensus of
the motif are tolerated, as are changes upstream and downstream that move the location of the motif.

When trying to understand the role of conservation in functional class prediction, an important question
is how much of observed conservation can be explained by known patterns. Even after accounting for
“random” conservation, roughly 60% of non–random conservation in the fly genome was not accounted for
— that is, we couldn’t identify it as a protein–coding gene, RNA, microRNA, or regulatory motif. The fact
that they remain conserved however suggests a functional role. That so much conserved sequence remains
poorly understood underscores that many exciting questions remain to be answered. One final project for
6.047 in the past was using clustering (unsupervised learning) to account for the other conservation. It
developed into an M.Eng project, and some clusters were identified, but the function of these clusters was,
and is, still unclear. It’s an open problem!

4.5 Protein–Coding Signatures

In slide 12, we see three examples of conservation: an intronic sequence with poor conservation, a coding
region with high conservation, and a non–coding region with high conservation, meaning it is probably a
functional element. As we saw at the beginning of this section, the important characteristic of protein–
coding regions to remember is that codons (triples of nucleotides) code for amino acids, which make up
proteins. This results in the evolutionary signature of protein–coding regions, as shown in slide 13: (i)
reading–frame conservation and (ii) codon–substitution patterns. The intuition for this signature is relatively
straightforward.

Figure 4.14: Some point mutations to DNA sequence do not change protein translation

Firstly, reading frame conservation makes sense, since an insertion or deletion of one or two nucleotides
will “shift” how all the following codons are read. However, if an insertion or deletion happens in a multiple
of 3, the other codons will still be read in the same way, so this is a less significant change. Secondly, it
makes sense that some mutations are less harmful than others, since different triplets can code for the same
amino acids (a conservative substitution, as evident from the matrix below), and even mutations that result
in a different amino acid may be evolutionarily neutral if the substitutions occur with similar amino acids
in a domain of the protein where exact amino acid properties are not required. These distinctive patterns
allow us to “color” the genome and clearly see where the exons are, as shown in Figure 4.15.

When using these patterns in distinguishing evolutionary signatures, we have to make sure to consider
the ideas below:

77

© source unknown. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 4: Comparative Genomics I: Genome Annotation

Figure 4.15: By coloring the types of insertions/deletions/substitutions that occur on a sequence, we can see
patterns or evolutionary signatures that distinguish a protein-coding conserved region from a non-protein-
coding conserved region.

• Quantify the distinctiveness of all 642 possible codon substitutions by considering synonymous (frequent
in protein-coding sequences) and nonsense (more frequent in non-coding than coding sequences) regions.

• Model the phylogenetic relationship among the species: multiple apparent substitutions may be ex-
plained by one evolutionary event.

• Tolerate uncertainty in the input such as unknown ancestral sequences and gaps in alignment (missing
data).

• Report the certainty or uncertainty of the result: quantify the confidence that a given alignment is
protein-coding using various units such as p-value, bits, decibans...etc.

4.5.1 Reading–Frame Conservation (RFC)

Now that we know about this pattern of conservation in protein coding genes, we can develop methods to
determine if a gene is protein-coding or if it is not.

By scoring the pressure to stay in the same reading frame we can quantify how likely a region is to be
protein–coding or not. As shown in slide 20, we can do this by having a target sequence (Scer, the genome
of S. cerevisiae), and then aligning a selecting sequence (Spar, S. paradoxus) to it and calculating what
proportion of the time the selected sequence matches the target sequence’s reading frame.

Since we don’t know where the reading frame starts in the selected sequence, we align three times to try
all possible offsets:

(Sparf1,Sparf2,Sparf3)

From these, we choose the alignment where the selected sequence is most often in sync with the target
sequence. For example, we can begin numbering the nucleotides “1, 2, 3...etc.” until we reach a gap that
we do not number. Or we can start numbering the nucleotides “2, 3, 1...etc.” where each triplet of “1,2,3”
represents a codon.

78

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 4: Comparative Genomics I: Genome Annotation

Finally, for the best alignment, we calculate the percentage of nucleotides that are out of frame — if it
is above a cutoff, this selected species “votes” that this region is a protein–coding region , and if it is low,
this species “votes” that this is an intergenic region. The “votes” are tallied from all the species to sum to
the RFC score.

Figure 4.16: Two alignments showing conservation pattern differences between gene and intergenic sequences.
Red boxes represent gaps that shift the coding frame, and gray boxes are non-frame-shifting gaps (in multiples
of three). Green regions are conserved, and yellow ones are mutated. Note the pattern of “match, match,
mismatch” in the protein-coding sequence that indicates synonymous mutations.

This method is not robust to sequencing error. We can compensate for these errors by using a smaller
scanning window and observing local reading frame conservation.

The method was shown to have 99.9% specificity and 99% sensitivity when applied to the yeast genome.
When applied to 2000 hypothetical ORFs (open reading frames, or proposed genes)3 in yeast, it rejected 500
of these putative protein coding genes as not being protein coding.

Similarly, 4000 hypothetical genes in the human genome were rejected by this method. This model created
a specific hypothesis (that these DNA sequences were unlikely to code for proteins) that has subsequently
been supported with experimental confirmation that the regions do not code for proteins in vivo.4

This represents an important step forward for genome annotation, because previously it was difficult to
conclude that a DNA sequence was non–coding simply from lack of evidence. By narrowing the focus and
creating a new null hypothesis (that the gene in question appears to be a non–coding gene) it became much
easier to not only accept coding genes, but to reject non–coding genes with computational support. During
the discussion of reading frame conservation in class, we identified an exciting idea for a final project which
would be to look for the birth of new functional proteins resulting from frame shift mutations.

4.5.2 Codon–Substitution Frequencies (CSFs)

The second signature of protein coding regions, the codon substitution frequencies, acts on multiple levels of
conservation. To explore these frequencies, it is helpful to remember that codon evolution can be modeled

3Kellis M, Patterson N, Endrizzi M, Birren B, Lander E. S. 2003. Sequencing and comparison of yeast species to identify
genes and regulatory elements. Science. 423: 241–254.

4Clamp M et al. 2007. Distinguishing protein–coding and noncoding genes in the human genome. PNAS. 104: 19428–19433.

79

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 4: Comparative Genomics I: Genome Annotation

Figure 4.17: Red boxes represent frame-shifting gaps, and gaps in multiples of three are uncolored. Conserved
and mutated regions are green and yellow, respectively.

by conditional probability distributions (CPDs) — the likelihood of a descendant having a codon b where
an ancestor had codon a an amount of time t ago.

The most conservative event is exact maintenance of the codon. A mutation that codes for the same
amino acid may be conservative but not totally synonymous, because of species specific codon usage biases.
Even mutations that alter the identity of the amino acid might be conservative if they code for amino acids
with similar biochemical properties.

We use a CPD in order to capture the net effect of all of these considerations. To calculate these CPDs,
we need a “rate” matrix, Q, which measures the exchange rate for a unit time; that is, it indicates how often
codon a in species 1 is substituted for codon b in species 2, for a unit branch length. Then, by using eQt, we
can estimate the frequency of substitution at time t.

When the CPD is considered in conjunction with the topology of a network graph representing the
evolutionary tree, it has a approximately (2L − 2) · 642 parameters, where L is the number of leaves in
the tree (species in the evolutionary phylogeny). This number of parameters is derived from the number
of entries in Q and the number of independent branch lengths, t. Estimates of these parameters can be
determined by MLE from training data.

The CPD is defined in terms of eQt as follows:

Pr(child = a|parent = b; t) = [eQt]a,b (4.1)

The intuition, is that as time increases, the probability of substitutions increase, while at the “initial”
time (t = 0), eQt is the identity matrix, since every codon is guaranteed to be itself. But how do we get the
rate matrix?

• Q is “learned” from the sequences, by using Expectation–Maximization, for example. Many known
protein-coding sequences are used as training data (or non-coding regions when generating that model).

• Given the parameters of the model, we can use Felsenstein’s algorithm[1] to compute the probability
of any alignment, while taking into account phylogeny, given the substitution model (the E–step).

Likelihood(Q) = Pr(Training Data;Q, t) (4.2)

• Then, given the alignments and phylogeny, we can choose the parameters (the rate matrix: Q, and
branch lengths: t) that maximize the likelihood of those alignments in the M–step; for example, to
estimate Q, we can count the number of times one codon is substituted for another in the alignment.
The argument space consists of thousands of possibilities for Q and t. This space is represented by Q.
Q̂ is the parameter that maximizes the likelihood:

Q̂ = argmaxQ(Likelihood(Q)) (4.3)

Other maximization strategies include: expectation maximization, gradient ascent, simulated anneal-
ing, spectral decomposition. Branch length, t, can be optimized using the same method simultaneously.

80

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 4: Comparative Genomics I: Genome Annotation

FAQ

Q: How does the branch length contribute to determining the rate matrix?

A: The branch lengths specify how much “time” passed between any two nodes. The rate matrix
describes the relative frequencies of codon substitutions per unit branch length.

With two estimated rate matrices, the calculated probabilities of any given alignment is different for
Pr(Leaves;Qc,t)each matrix. Now, we can compare the likelihood ratio, , that the alignment came from aPr(Leaves;QN ,t)

protein-coding region as opposed to coming from a non-protein-coding region.

(a) Rate matrix QN estimated from
non–coding regions

(b) Rate matrix Qc estimated from
known coding regions.

Figure 4.18: Rate matrices for the null and alternate models. A lighter color means substitution is more
likely.

Now that we know how to obtain our model, we note that, given the specific pattern of codon substitution
frequencies for protein–coding, we want two models so that we can distinguish between coding and non–
coding regions. Figures 4.18a and 4.18b show rate matrices for intergenic and genic regions, respectively. A
number of salient features present themselves in the codon substitution matrix (CSM) for genes. Note that
the main diagonal element has been removed, because the frequency of a triplet being exchanged for itself
will obviously be much higher than any other exchange. Nevertheless,

1. it is immediately obvious that there is a strong diagonal element in the protein coding regions.

2. We also note certain high–scoring off diagonal elements in the coding CSM: these are substitutions
that are close in function rather than in sequence, such as 6–fold degenerate codons or very similar
amino acids.

3. We also note dark vertical stripes, which indicate these substitutions are especially unlikely. These
columns correspond to stop codons, since substitutions to this triplet would significantly alter protein
function, and thus are strongly selected against.

On the other hand, in the matrix for intergenic regions, the exchange rates are more uniform. In these
regions, what matters is the mutational proximity, i.e. the edit distance or number of changes from one
sequence to another. Genetic regions are dictated by selective proximity, or the similarity in amino acid
sequence of the protein resulting from the gene.

Now that we have the two rate matrices for the two regions, we can calculate the probabilities that each
matrix generated the genomes of the two species. This can be done by using Felsenstein’s algorithm, and
adding up the “score” for each pair of corresponding codons in the two species. Finally, we can calculate the
likelihood ratio that the alignment came from a coding region to a non–coding region by dividing the two

81

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 4: Comparative Genomics I: Genome Annotation

scores — this demonstrates our confidence in our annotation of the sequence. If the ratio is greater than 1,
we can guess that it is a coding region, and if it is less than 1, then it is a non–coding region. For example,
in Figure 4.16, we are very confident about the respective classifications of each region.

It should be noted, however, that although the “coloring” of the sequences confirms our classifications,
the likelihood ratios are calculated independently of the ‘coloring,’ which uses our knowledge of synonymous
or conservative substitutions. This further implies that this method automatically infers the genetic code
from the pattern of substitutions that occurs, simply by looking at the high scoring substitutions. In species
with a different genetic code, the patterns of codon exchange will be different; for example, in Candida
albumin, the CTG codes for serine (polar) rather than leucine (hydrophobic), and this can be deduced from
the CSMs. However, no knowledge of this is required by the method; instead, we can deduce this a posteriori
from the CSM.

In summary, we are able to distinguish between non–coding and coding regions of the genome based
on their evolutionary signatures, by creating two separate 64 by 64 rate matrices: one measuring the rate
of codon substitutions in coding regions, and the other in non–coding regions. The rate matrix gives the
exchange rate of codons or nucleotides over a unit time.

We used the two matrices to calculate two probabilities for any given alignment: the likelihood that it
came from a coding region and the likelihood that it came from a non–coding region. Taking the likelihood
ratio of these two probabilities gives a measure of confidence that the alignment is protein–coding as demon-
strated in Figure 4.19. Using this method we can pick out regions of the genome that evolve according to
the protein coding signature.

Figure 4.19: As we can see in the figure that the likelihood ratio is positive for sequences that are likely to
be protein coding and negative for sequences that are not likely to be protein coding.

We will see later how to combine this likelihood ratio approach with phylogenetic methods to find
evolutionary patterns of protein coding regions.

However, this method only lets us find regions that are selected at the translational level. The key point
is that here we are measuring for only protein coding selection. We will see today how we can look for other
conserved functional elements that exhibit their own unique signatures.

4.5.3 Classification of Drosophila Genome Sequences

We have seen that using these RFC and CSF metrics allows us to classify exons and introns with extremely
high specificity and sensitivity. The classifiers that use these measures to classify sequences can be imple-
mented using a HMM or semi–Markov conditional random field (SMCRF). CRFs allow the integration of
diverse features that do not necessarily have a probabilistic nature, whereas HMMs require us to model ev-

82

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 4: Comparative Genomics I: Genome Annotation

erything as transition and emission probabilities. CRFs will be discussed in an upcoming lecture. One might
wonder why these more complex methods need to be implemented, when the simpler method of checking
for conservation of the reading frame worked well. The reason is that in very short regions, insertions and
deletions will be very infrequent, even by chance, so there won’t be enough signal to make the distinction
between protein–coding and non–protein–coding regions. In the figure below, we see a DNA sequence along
the x–axis, with the rows representing an annotated gene, amount of conservation, amount of protein–coding
evolutionary signature, and the result of Viterbi decoding using the SMCRF, respectively.

Figure 4.20: Evolutionary signatures can predict new genes and exons. The star denotes a new exon, which
was predicted using the three comparative genomics tests, and later verified using cDNA sequencing.

This is one example of how utilization of the protein–coding signature to classify regions has proven very
successful. Identification of regions that had been thought to be genes but that did not have high protein–
coding signatures allowed us to strongly reject 414 genes in the fly genome previously classified as CGid–only
genes, which led FlyBase curators to delete 222 of them and flag another 73 as uncertain. In addition, there
were also definite false negatives, as functional evidence existed for the genes under examination. Finally, in
the data, we also see regions with both conversation, as well as a large protein–coding signature, but had not
been previously marked as being parts of genes, as in Figure 4.20. Some of these have been experimentally
tested and have been show to be parts of new genes or extensions of existing genes. This underscores the
utility of computational biology to leverage and direct experimental work.

4.5.4 Leaky Stop Codons

Stop codons (TAA, TAG, TGA in DNA and UAG, UAA, UGA in RNA) typically signal the end of a gene.
They clearly reflect translation termination when found in mRNA and release the amino acid chain from the
ribosome. However, in some unusual cases, translation is observed beyond the first stop codon. In instances
of single read–through, there is a stop codon found within a region with a clear protein–coding signature
followed by a second stop–codon a short distance away. An example of this in the human genome is given
in Figure 4.21. This suggests that translation continues through the first stop codon. Instances of double
read–through, where two stop codons lie within a protein coding region, have also been observed. In these
instances of stop codon suppression, the stop codon is found to be highly conserved, suggesting that these
skipped stop codons play an important biological role.

Translational read–through is conserved in both flies, which have 350 identified proteins exhibiting stop
codon read–through, and humans, which have 4 identified instances of such proteins. They are observed
mostly in neuronal proteins in adult brains and brain expressed proteins in Drosophila.

The kelch gene exhibits another example of stop codon suppression at work. The gene encodes two ORFs
with a single UGA stop codon between them. Two proteins are translated from this sequence, one from the
first ORF and one from the entire sequence. The ratio of the two proteins is regulated in a tissue–specific
manner. In the case of the kelch gene, a mutation of the stop codon from UGA to UAA results in a loss of
function, suggesting that tRNA suppression is the mechanism behind stop codon suppression.

83

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 4: Comparative Genomics I: Genome Annotation

Figure 4.21: OPRL1 neurotransmitter: one of the four novel translational read–through candidates in the
human genome. Note that the region after the first stop codon exhibits an evolutionary signature similar to
that of the coding region before the stop codon, indicating that the stop codon is “suppressed”.

An additional example of stop codon suppression is Caki, a protein active in the regulation of neurotrans-
mitter release in Drosophila. Open reading frames (ORFs) are DNA sequences which contain a start and
stop codon. In Caki, reading the gene in the first reading frame (Frame 0) results in significantly more ORFs
than reading in Frame 1 or Frame 2 (a 440 ORF excess). Figure 4.22 lists twelve possible interpretations for
the ORF excess. However, because the excess is observed only in Frame 0, only the first 4 interpretations
are likely:

• Stop–codon readthrough: the stop codon is suppressed when the ribosome pulls in tRNA that pairs
incorrectly with the stop codon.

• Recent nonsense: Perhaps some recent nonsense mutation is causing stop codon readthrough.

• A to I editing: Unlike we previously thought, RNA can still be edited after transcription. In some case
the A base is changed to an I, which can be read as a G. This could change a TGA stop codon to a
TGG, which encodes an amino acid. However, this phenomenon is only found in a couple of cases.

• Selenocysteine, the “21st amino acid”: Sometimes when the TGA codon is read by a certain loop which
leads to a specific fold of the RNA, it can be decoded as selenocysteine. However, this only happens
in four fly proteins, so can’t explain all of stop codon suppression.

Among these four, three of them (recent nonsense, A to I editing, and selenocysteine) account for only 17
of the cases. Hence, it seems that read–through must be responsible for most if not all of the remaining cases.
In addition, biased stop codon usage is observed hence ruling out other processes such as alternative splicing
(where RNA exons following transcription are reconnected in multiple ways leading to multiple proteins) or
independent ORFs.

Read–through regions can be determined in a single species based on their pattern of codon usage. The
Z–curve as shown in Figure 4.23 measures codon usage patterns in a region of DNA. From the figure, one
can observe that the read–through region matches the distribution before the regular stop codon. After the
second stop however, the region matches regions found after regular stops.

Another suggestion offered in class was the possibility of ribosome slippage, where the ribosome skips
some bases during translation. This might cause the ribosome to skip past a stop codon. This event occurs
in bacterial and viral genomes, which have a greater pressure to keep their genomes small, and therefore can
use this slipping technique to read a single transcript in each different reading frame. However, humans and
flies are not under such extreme pressure to keep their genomes small. Additionally, we showed above that
the excess we observe beyond the stop codon is frame specific to frame 0, suggesting that ribosome slipping
is not responsible.

Cells are stochastic in general and most processes tolerate mistakes at low frequencies. The system isn’t
perfect and stop codon leaks happen. However, the following evidence suggests that stop codon read–through
is not random but instead subject to regulatory control:

• Perfect conservation of read–through stop codons is observed in 93% of cases, which is much higher
than the 24% found in background.

• Increased conservation is observed upstream of the read–through stop codon.

84

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 4: Comparative Genomics I: Genome Annotation

Figure 4.22: Various interpretations of stop codon suppression. See text for explanation.

Figure 4.23: Z–curve for Caki. Note that the codon usage in the read through region is similar to that in
the region before the first stop codon.

• Stop codon bias is observed. TGAC is the most frequent sequence found at the stop codon in read–

85

6.047/6.878 Lecture 4: Comparative Genomics I: Genome Annotation

through and the least frequent found at normal terminated stop codons. It is known to be a “leaky”
stop codon. TAAA is found almost universally only in non–read–through instances.

• Unusually high numbers of GCA repeats observed through read–through stop codons.

• Increased RNA secondary structure is observed following transcription suggesting evolutionarily con-
served hairpins.

4.6 microRNA (miRNA) Gene Signatures

One example of functional genomic regions subject to high levels of conservation are sequences encoding
microRNAs (miRNAs). miRNAs are RNA molecules that bind to complementary sequences in the 3’ un-
translated region of targeted mRNA molecules, causing gene silencing.

Figure 4.24: The hairpin structure of a microRNA. Note that miRNA* denotes the strand on the opposite
side of the hairpin, which has the same sequence as the mRNA molecules that are suppressed by the miRNA.

How do we find evolutionary signatures for miRNA genes and their targets, and can we use these to gain
new insights on their biological functions? We will see that this is a challenging task, as miRNAs leave a
highly conserved but very subtle evolutionary signal.

4.6.1 Computational Challenge

Predicting the location of miRNA genes and their targets is a computationally challenging problem. We can
look for “hairpin” regions, where we find nucleotide sequences that are complementary to each other and
predict a hairpin structure. But out of 760,355 miRNA–like hairpins found in the cell, only 60–100 were
true miRNAs. So to make any test that will give us regions statistically likely to be miRNAs, we need a test
with 99.99% specificity.

Figure 4.25 is an example of the conservation pattern for miRNA genes. You can see the two hairpin
structures conserved in the red and blue regions, with a region of low conservation in the middle. This
pattern is characteristic of miRNAs.

Figure 4.25: Characteristic conservation pattern of miRNAs. The number of asterisks below a nucleotide
indicates the number of species where it is conserved. The blue and red highly conserved regions represent
the complementary strands of the miRNA, as in figure 4.24.

By analyzing evolutionary and structural features specific to miRNA, we can use combinations of these
features to pick out regions of miRNAs with >4,500-fold enrichment compared to random hairpins. The
following are examples of features that help pick out miRNAs:

86

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 4: Comparative Genomics I: Genome Annotation

• miRNAs bind to highly conserved target motifs in the 3’ UTR

• miRNAs can be found in introns of known genes

Figure 4.26: Novel miRNA in intron

• miRNAs have a preference for the positive strand of DNA and for transcription factors

• miRNAs are typically not found in exonic and repetitive elements of the genome (counter-example in
Figure 4.29).

• Novel miRNAs may cluster with known miRNAs, especially if they are in the same family or have a
common origin

Figure 4.27: Novel and Known miRNA clustered.

These features of miRNA-coding regions can be grouped into structural families, enabling classifiers to be
built based on known RNAs in each family. Energy considerations for RNA structure can be used to support
this classification into families. Within each family, orthologous conservation(genes in different species for
same function with common ancestral gene) and paralogous conservation (duplicated genes within same
species that evolved to serve different functions) occurs.

Evolutionary Structural
Correlation with conservation profile Hairpin stability (MFE z-score)
MFE of the consensus fold Number of asymmetric loops
Structure conservation index Number of symmetric loops

We can combine several features into one test by using a decision tree, as illustrated in Figure 4.28.
At each node of the tree, a test is applied which determines which branch will be followed next. The tree
is traversed starting from the root until a terminal node is reached, at which point the tree will output a
classification. A decision tree can be trained using a body of classified genome subsequences, after which
it can be used to predict whether new subsequences are miRNAs or not. In addition, many decision trees
can be combined into a “random forest,” where several decision trees are trained. When a new nucleotide
sequence needs to be classified, each tree votes on whether or not it is an miRNA, and then the votes are
aggregated to determine the final classification.

Applying this technique to the fly genome showed 101 hairpins above the 0.95 cutoff, rediscovering 60
of 74 of known miRNAs, predicting 24 novel miRNAs that were experimentally validated, and finding an
additional 17 candidates that showed evidence of diverse function.

4.6.2 Unusual miRNA Genes

The following four “surprises” were found when looking at specific miRNA genes:

87

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 4: Comparative Genomics I: Genome Annotation

Figure 4.28: A possible decision tree for miRNA detection. The features used in this tree are minimum free
energy, conservation profile correlation, structure conservation index, number of loops, and stability.

Surprise 1 Both strands might be expressed and functional. For instance, in the miR–iab–4 gene, expression of
the sense and antisense strands are seen in distinct embryonic domains. Both strands score > 0.95 for
miRNA prediction.

Surprise 2 Some miRNAs might have multiple 5’ ends for a single miRNA arm, giving evidence for an imprecise
start site. This could give rise to multiple mature products, each potentially with its own functional
targets.

Surprise 3 High scoring miRNA* regions (the star arm is complementary to the actual miRNA sequence) are
very highly expressed, giving rise to regions of the genome that are both highly expressed and contain
functional elements.

Surprise 4 Both miR–10 and miR–10* have been shown to be very important Hox regulators, leading to the
prediction that miRNAs could be “master Hox regulators”. Pages 10 and 11 of the first set of lecture
5 slides show the importance of miRNAs that form a network of regulation for different Hox genes.

88

6.047/6.878 Lecture 4: Comparative Genomics I: Genome Annotation

4.6.3 Example: Re-examining ’dubious’ protein-coding genes

Two genes, CG31044 and CG33311 were independently rejected because their conservation patterns did not
match those characteristic of a protein evolutionary signatures (see Section 4.5). They were identified as
precursor miRNA based on genomic properties and high expression levels (Lin et al.). This is a rare example
of miRNA being found in previously exonic sequences and illustrates the challenge of identifying miRNA
evolutionary signatures.

Figure 4.29: Existing annotations and transcription levels in ’dubious’ protein-coding regions.

4.7 Regulatory Motifs

Another class of functional element that is highly conserved across many genomes contains regulatory motifs.
A regulatory motif is a highly conserved sequence of nucleotides that occurs many times throughout the
genome and serves some regulatory function. For instance, these motifs might characterize enhancers,
promoters, or other genomic elements.

Figure 4.30: TAATTA is a hexamer that appears as a conserved element throughout the genome in many
different functional elements, including here. It is an example of a regulatory motif.

4.7.1 Computationally Detecting Regulatory Motifs

Computational methods have been developed to measure conservation of regulatory motifs across the genome,
and to find new unannotated motifs de novo. Known motifs are often found in regions with high conservation,
so we can increase our testing power by testing for conservation, and then finding signatures for regulatory
motifs.

Evaluating the pattern of conservation for known motifs versus the “null model” of regions without motifs
gives the following signature:

Conservation within: Gal4 (known motif region) Controls
All intergenic regions 13% 2%

Intergenic: coding 13%: 3% 2%:7%
Upstream: downstream 12: 0 1:1

89

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 4: Comparative Genomics I: Genome Annotation

So as we can see, regions with regulatory motifs show a much higher degree of conservation in intergenic
regions and upstream of the gene of interest.

To discover novel motifs, we can use the following pipeline:

• Pick a motif “seed” consisting of two groups of three non–degenerate characters with a variable size
gap in the middle.

• Use a conservation ratio to rank the seed motifs

• Expand the seed motifs to fill in the bases around the seeds using a hill climbing algorithm.

• Cluster to remove redundancy.

Discovering motifs and performing clustering has led to the discovery of many motif classes, such as tissue
specific motifs, function specific motifs, and modules of cooperating motifs.

4.7.2 Individual Instances of Regulatory Motifs

To look for expected motif regions, we can first calculate a branch–length score for a region suspected to be
a regulatory motif, and then use this score to give us a confidence level of how likely something is to be a
real motif.

The branch length score (BLS) sums evidence for a given motif over branches of a phylogenetic tree.
Given the pattern of presence or absence of a motif in each species in the tree, this score evaluates the total
branch length of the sub–tree connecting the species that contain the motif. If all species have the motif,
the BLS is 100%. Note more distantly related species are given higher scores, since they span a longer
evolutionary distance. If a predicted motif has spanned such a long evolutionary time frame, it is likely it is
a functional element rather than just a region conserved by random chance.

To create a null model, we can choose control motifs. The null model motifs should be chosen to have
the same composition as the original motif, to not be too similar to each other, and to be dissimilar from
known motifs. We can get a confidence score by comparing the fraction of motif instances to control motifs
at a given BLS score.

4.8 Current Research Directions

4.9 Further Reading

1. For more on constraint calculations and identification, refer to Lindblad-Toh’s et. al.’s “A high-resolution
map of human evolutionary constraint using 29 mammals”.

2. For more on translational read–through and evolutionary signature, refer to Lin et. al.’s “Revisiting
the protein-coding gene catalog of Drosophila melanogaster using 12 fly genomes”.

4.10 Tools and Techniques

1. For sequence alignment of proteins, see http://mafft.cbrc.jp/alignment/software/.
2. For prediction of genes through frameshifts in prokaryotes, see GeneTack.

4.11 Bibliography

Bibliography

[1] Joseph Felsenstein. Evolutionary trees from dna sequences: A maximum likelihood approach. Journal
of Molecular Evolution, 17:368–376, 1981. 10.1007/BF01734359.

90

http://mafft.cbrc.jp/alignment/software/

CHAPTER

FIVE

GENOME ASSEMBLY AND WHOLE-GENOME ALIGNMENT

Melissa Gymrek, Liz Tsai, Rebecca Taft (2012), Keshav Dhandhania (2012), Joe Vitti (2013), Matt Fox
(2014)

Figures
5.1 We can use evolutionary signatures to find genomic functional elements, and in turn can

study mechanisms of evolution by looking at patterns of genomic variation and change. . 91

5.2 Here is a quick look at a few platforms that can be used to read genomes. 92

5.3 Shotgun sequencing involves randomly shearing a genome into small fragments so they can
be sequenced, and then computationally reassembling them into a continuous sequence. . 93

5.4 Constructing a sequence from read overlap . 93

5.5 We can visualize the process of merging fragments into contigs by letting the nodes in a
graph represent reads and edges represent overlaps. By removing the transitively inferable
edges (the pink edges in this image), we are left with chains of reads ordered to form contigs. 94

5.6 Overcollapsed contigs are caused by repetetive regions of the genome which cannot be
distinguished from one another during sequencing. Branching patterns of alignment that
arise during the process of merging fragments into contigs are a strong indication that one
of the regions may be overcollapsed. 95

5.7 In this graph connecting contigs, repeated region X has indegree and outdegree equal to
2. The target seqence shown at the top can be inferred from the links in the graph. 95

5.8 Mate pairs help us determine the relative order of contigs in order to link them into into
supercontigs. 96

5.9 We derive the multiple alignment consensus sequence by weighted voting at each base. . . 96

5.10 Constructing a string graph. 97

5.11 Constructing a string graph . 97

5.12 Example of string graph undergoing removal of transitive edges. 98

5.13 Example of string graph undergoing chain collapsing. 98

5.14 Left: Flow resolution concept. Right: Flow resolution example. 99

5.15 The Needleman-Wunsch algorithm for alignments of 2 and 3 genomes. 101

5.16 We can save time when performing a global alignment by first finding all the local align-
ments and then chaining them together along the diagonal with restricted dynamic pro-
gramming. 101

5.17 Glocal alignment allows for the possibility of duplications, inversion, and translocations. . 102

5.18 The steps to run the SLAGAN algorithm are A. Find all the local alignments, B. Build a
rough homology map, and C. globally align the consistent parts using the regular LAGAN
algorithm . 103

5.19 Using the concepts of glocal alignment, we can discover inversions, translocations, and
other homologous relations between different species such as human and mouse. 103

5.20 Graph of S. cerevisae and S. bayanus gene correspondence. 104

91

6.047/6.878 Lecture 5: Genome Assembly and Whole-Genome Alignment

5.21 Illustration of gene correspondence for S.cerevisiae Chromosome VI (250-300bp). 104

5.22 Dynamic view of a changing gene. 105

5.23 Mechanisms of chromosomal evolution. 106

5.24 Moving further back in evolutionary time for Saccharomyces. 107

5.25 Gene Correspondence for S.cerevisiae chromosomes and K.waltii scaffolds. 108

5.26 Gene interleaving shown by sister regions in K.waltii and S.cerevisae 108

5.27 S-LAGAN results. 109

5.28 S-LAGAN results for IGF locus. 109

5.29 S-LAGAN results for IGF locus. 109

92

6.047/6.878 Lecture 5: Genome Assembly and Whole-Genome Alignment

5.1 Introduction

In the previous chapter, we saw the importance of comparative genomics analysis for discovering functional
elements. In “part IV” of this book, we will see how we can use comparative genomics for studying gene
evolution across species and individuals. In both cases however, we assumed that we had access to complete
and aligned genomes across multiple species.

In this chapter, we will study the challenges of genome assembly and whole-genome alignment that are the
foundations of whole-genome comparative genomics methodologies. First, we will study the core algorithmic
principles underlying many of the most popular genome assembly methods available today. Second, we
will study the problem of whole-genome alignment, which requires understanding mechanisms of genome
rearrangement (e.g. segmental duplication and other translocations). The two problems of genome assembly
and whole-genome alignment are similar in nature, and we close by discussing some of the parallels between
them.

Figure 5.1: We can use evolutionary signatures to find genomic functional elements, and in turn can study
mechanisms of evolution by looking at patterns of genomic variation and change.

5.2 Genome Assembly I: Overlap-Layout-Consensus Approach

Many areas of research in computational biology rely on the availability of complete whole-genome sequence
data. Yet the process to sequence a whole genome is itself non-trivial and an area of active research. The
problem lies in the fact that current genome-sequencing technologies cannot continuously read from one end
of a long genome sequence to the other; they can only accurately sequence small sections of base pairs (ranging
from 100 to a few thousand, depending on the method), called reads. Therefore, in order to construct a
sequence of millions or billions of base pairs (such as the human genome), computational biologists must find
ways to combine smaller reads into larger, continuous DNA sequences. FIrst, we will examine aspects of the
experiemental setup for the overlap-layout-consensus approach, and then we will move forward to learning
about how to combine reads and learn information from them

5.2.1 Setting up the experiment

The first challenge that must be tackled when setting up this experiment is that we need to start with
many copies of each chromosome in order to use this approach. This number is on the order of 105. It is
important to note that the way we obtain these copies is very important and will affect our outcomes later
on as it many of the comparisons we make will depend on consistent data. The first way that we may think
to get this much data is to amplify a given genome. However, amplification does damage which will throw
off our algorithms in later steps and cause worse results. Another possible method would be to inbreed
the genome to get many copies of each chromosome. If you are looking to get rid of polymorphism, this

93

6.047/6.878 Lecture 5: Genome Assembly and Whole-Genome Alignment

may be a good technique, but we also lose valuable data from the polymorphic sites when we inbreed. A
suggested method for obtaining this data is to use one individual, though the organism would need to be
rather large. We could also use techniques such as progeny of one or progeny of two to get as few versions of
each chromosome as possible. This will get high sequencing depth on each chromosome, which is the reason
we want all chromosomes to be as similar as possible.

Next, let’s look as how we could decide on our read lengths given current technology. Looking at (Fig-
ure 5.2), we can see that a cost-benefit analysis must be done to decide which platform to use on a given
project. With current technology, we commonly use HiSeq2500 with a read length of about 250, though this
is rapidly changing.

Figure 5.2: Here is a quick look at a few platforms that can be used to read genomes.

Finally, let’s look at a few sequences that cause trouble when using platforms with short reads. Sequences
with high GC content (e.g. GGCGGCGATC), low GC content (e.g. AAATAATCAA), or low complexity
(e.g. ATATATATA) can cause trouble with short reads. This is still an active area of research, but some
possible explanations include Polymerase slippage and DNA denaturing too easily or not easily enough.

This section will examine one of the most successful early methods for computationally assembling a
genome from a set of DNA reads, called shotgun sequencing (Figure 5.3). Shotgun sequencing involves
randomly shearing multiple copies of the same genome into many small fragments, as if the DNA were shot
with a shotgun. Typically, the DNA is actually fragmented using either sonication (brief bursts from an
ultrasound) or a targeted enzyme designed to cleave the genome at specific sequence motifs. Both of these
methods can be tuned to create fragments of varying sizes.

After the DNA has been amplified and fragmented, the technique developed by Frederick Sanger in 1977
called chain-termination sequencing (also called Sanger sequencing) is used to sequence the fragments. In
brief, fragments are extended by DNA polymerase until a dideoxynucleotriphosphate is incorporated; these
special nucleotides cause the termination of a fragment’s extension. The length of the fragment therefore
becomes a proxy for where a given ddNTP was added in the sequence. One can run four separate reactions,
each with a different ddNTP (A, G, C, T) and then run out the results on a gel in order to determine the
relative ordering of bases. The result is many sequences of bases with corresponding per-base quality scores,
indicating the probability that each base was called correctly. The shorter fragments can be fully sequenced,
but the longer fragments can only be sequenced at each of their ends since the quality diminishes significantly

94

6.047/6.878 Lecture 5: Genome Assembly and Whole-Genome Alignment

Figure 5.3: Shotgun sequencing involves randomly shearing a genome into small fragments so they can be
sequenced, and then computationally reassembling them into a continuous sequence.

after about 500-900 base pairs. These paired-end reads are called mate pairs. In the rest of this section, we
discuss how to use the reads to construct much longer sequences, up to the size of entire chromosomes.

5.2.2 Finding overlapping reads

To combine the DNA fragments into larger segments, we must find places where two or more reads over-
lap, i.e. where the beginning sequence of one fragment matches the end sequence of another fragment. For
example, given two fragments such as ACGTTGACCGCATTCGCCATA and GACCGCATTCGCCATACG-
GCATT, we can construct a larger sequence based on the overlap: ACGTTGACCGCATTCGCCATACGGCATT
(Figure 5.4).

Figure 5.4: Constructing a sequence from read overlap

One method for finding matching sequences is the Needleman-Wunsch dynamic programming algorithm,
which was discussed in chapter 2. The Needleman-Wunsch method is impractical for genome assembly,
however, since we would need to perform millions of pairwise-alignments, each taking O(n2) time, in order
to construct an entire genome from the DNA fragments.

A better approach is to use the BLAST algorithm (discussed in chapter 3) to hash all the k-mers (unique
sequences of length k) in the reads and find all the locations where two or more reads have one of the k-mers
in common. This allows us to achieve O(kn) efficiency rather than O(n2) pairwise comparisons. k can be any
number smaller than the size of the reads, but varies depending on the desired sensitivity and specificity. By
adjusting the read length to span the repetitive regions of the genome, we can correctly resolve these regions

95

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 5: Genome Assembly and Whole-Genome Alignment

and come very close to the ideal of a complete, continuous genome. One popular overlap-layout-consensus
assembler called Arachne uses k = 24 [2].

Given the matching k-mers, we can align each of the corresponding reads and discard any matches that
are less than 97% similar. We do not require that the reads be identical since we allow for the possibility of
sequencing errors and heterozygosity (i.e., a diploid organism like a human may have two different variants
at a polymorphic site).

5.2.3 Merging reads into contigs

Using the techniques described above to find overlaps between DNA fragments, we can piece together
larger segments of continuous sequences called contigs. One way to visualize this process is to create a graph
in which all the nodes represent reads, and the edges represent overlaps between the reads (Figure 5.5).
Our graph will have transitive overlap; that is, some edges will connect disparate nodes that are already
connected by intermediate nodes. By removing the transitively inferable overlaps, we can create a chain of
reads that have been ordered to form a larger contig. These graph transformations are discussed in greater
depth in section 5.3.1 below. In order to get a better understanding of the size of contigs, we calculate
something known as N50. Because measures of contig length tend to be highly sensitive to the smallest
contig cutoff, N50 is calculated as the length-weighted median. For a human, N50 is usually close to 125 kb.

Figure 5.5: We can visualize the process of merging fragments into contigs by letting the nodes in a graph
represent reads and edges represent overlaps. By removing the transitively inferable edges (the pink edges
in this image), we are left with chains of reads ordered to form contigs.

In theory, we should be able to use the above approach to create large contigs from our reads as long as
we have adequate coverage of the given region. In practice, we often encounter large sections of the genome
that are extremely repetitive and as a result are difficult to assemble. For example, it is unclear exactly how
to align the following two sequences: ATATATAT and ATATATATAT. Due to the extremely low information
content in the sequence pattern, they could overlap in any number of ways. Furthermore, these repetitive
regions may appear in multiple locations in the genome, and it is difficult to determine which reads come
from which locations. Contigs made up of these ambiguous, repetitive reads are called overcollapsed contigs.

In order to determine which sections are overcollapsed, it is often possible to quantify the depth of coverage
of fragments making up each contig. If one contig has significantly more coverage than the others, it is a
likely candidate for an overcollapsed region. Additionally, several unique contigs may overlap one contig in
the same location, which is another indication that the contig may be overcollapsed (Figure 5.6).

96

6.047/6.878 Lecture 5: Genome Assembly and Whole-Genome Alignment

Figure 5.6: Overcollapsed contigs are caused by repetetive regions of the genome which cannot be distin-
guished from one another during sequencing. Branching patterns of alignment that arise during the process
of merging fragments into contigs are a strong indication that one of the regions may be overcollapsed.

After fragments have been assembled into contigs up to the point of a possible repeated section, the result
is a graph in which the nodes are contigs, and the edges are links between unique contigs and overcollapsed
contigs (Figure 5.7).

Figure 5.7: In this graph connecting contigs, repeated region X has indegree and outdegree equal to 2. The
target seqence shown at the top can be inferred from the links in the graph.

5.2.4 Laying out contig graph into scaffolds

Once our fragments are assembled into contigs and contig graphs, we can use the larger mate pairs to link
contigs into supercontigs or scaffolds. Mate pairs are useful both to orient the contigs and to place them in
the correct order. If the mate pairs are long enough, they can often span repetitive regions and help resolve
the ambiguities described in the previous section (Figure 5.8).

97

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 5: Genome Assembly and Whole-Genome Alignment

Figure 5.8: Mate pairs help us determine the relative order of contigs in order to link them into into
supercontigs.

Unlike contigs, supercontigs may contain some gaps in the sequence due to the fact that the mate pairs
connecting the contigs are only sequenced at the ends. Since we generally know how long a given mate
pair is we can estimate how many base pairs are missing, but due to the randomness of the cuts in shotgun
sequencing, we may not have the data available to fill in the exact sequence. Filling in every single gap can
be extremely expensive, so even the most completely assembled genomes usually contain some gaps.

5.2.5 Deriving consensus sequence

The goal of genome assembly is to create one continuous sequence, so after the reads have been aligned
into contigs, we need to resolve any differences between them. As mentioned above, some of the overlapping
reads may not be identical due to sequencing errors or polymorphism. We can often determine when there
has been a sequencing error when one base disagrees with all the other bases aligned to it. Taking into
account the quality scores on each of the bases, we can usually resolve these conflicts fairly easily. This
method of conflict resolution is called weighted voting (Figure 5.9). Another alternative is to ignore the
frequencies of each base and take the maximum quality letter as the consensus. Sometimes, you will want
to keep all of the bases that form a polymorphic set because it can be important information. In this case,
we would be unable to use these methods to derive a consensus sequence.

Figure 5.9: We derive the multiple alignment consensus sequence by weighted voting at each base.

In some cases, it is not possible to derive a consensus if, for example, the genome is heterozygous and
there are equal numbers of two different bases at one location. In this case, the assembler must choose a
representative.

Did You Know?
Since polymorphism can significantly complicate the assembly of diploid genomes, some researchers
induce several generations of inbreeding in the selected species to reduce the amount of heterozygosity
before attempting to sequence the genome.

98

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 5: Genome Assembly and Whole-Genome Alignment

In this section, we saw an algorithm to do genome assembly given reads. However, this algorithm works
well when the reads are 500 - 900 bases long or more, which is typical of Sanger sequencing. Alternate
genome assembly algorithms are required is the reads we get from our sequencing methods are much shorter.

5.3 Genome Assembly II: String graph methods

Shotgun sequencing, which is a more modern and economic method of sequencing, gives reads that around
100 bases in length. The shorter length of the reads results in a lot more repeats of length greater than that
of the reads. Hence, we need new and more sophisticated algorithms to do genome assembly correctly.

5.3.1 String graph definition and construction

The idea behind string graph assembly is similar to the graph of reads we saw in section 5.2.2. In short,
we are constructing a graph in which the nodes are sequence data and the edges are overlap, and then trying
to find the most robust path through all the edges to represent our underlying sequence.

Figure 5.10: Constructing a string graph.

Starting from the reads we get from Shotgun sequencing, a string graph is constructed by adding an edge
for every pair of overlapping reads. Note that the vertices of the graph denote junctions, and the edges
correspond to the string of bases. A single node corresponds to each read, and reaching that node while
traversing the graph is equivalent to reading all the bases upto the end of the read corresponding to the
node. For example, in figure 5.10, we have two overlapping reads A and B and they are the only reads we
have. The corresponding string graph has two nodes and two edges. One edge doesn’t have a vertex at its
tail end, and has A at its head end. This edge denotes all the bases in read A. The second edge goes from
node A to node B, and only denotes the bases in B-A (the part of read B which is not overlapping with A).
This way, when we traverse the edges once, we read the entire region exactly once. In particular, notice that
we do not traverse the overlap of read A and read B twice.

Figure 5.11: Constructing a string graph

99

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 5: Genome Assembly and Whole-Genome Alignment

There are a couple of subtleties in the string graph (figure 5.11) which need mentioning:

• We have two different colors for nodes since the DNA can be read in two directions. If the overlap is
between the reads as is, then the nodes receive same colors. And if the overlap is between a read and
the complementary bases of the other read, then they receive different colors.

• Secondly, if A and B overlap, then there is ambiguity in whether we draw an edge from A to B, or
from B to A. Such ambuigity needs to be resolved in a consistent manner at junctions caused due to
repeats.

Figure 5.12: Example of string graph undergoing removal of transitive edges.

Figure 5.13: Example of string graph undergoing chain collapsing.

After constructing the string graph from overlapping reads, we:-

• Remove transitive edges: Transitive edges are caused by transitive overlaps, i.e. A overlap B overlaps
C in such a way that A overlaps C. There are randomized algorithms which remove transitive edges in
O(E) expected runtime. In figure 5.12, you can see the an example of removing transitive edges.

100

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 5: Genome Assembly and Whole-Genome Alignment

• Collapse chains: After removing the transitive edges, the graph we build will have many chains where
each node has one incoming edge and one outgoing edge. We collapse all these chains to a single edge.
An example of this is shown in figure 5.13.

5.3.2 Flows and graph consistency

After doing everything mentioned above we will get a pretty complex graph, i.e. it will still have a number
of junctions due to relatively long repeats in the genome compared to the length of the reads. We will now
see how the concepts of flows can be used to deal with repeats.

First, we estimate the weight of each edge by the number of reads we get corresponds to the edge. If
we have double the number of reads for some edge than the number of DNAs we sequenced, then it is fair
to assume that this region of the genome gets repeated. However, this technique by itself is not accurate
enough. Hence sometimes we may make estimates by saying that the weight of some edge is ≥ 2, and not
assign a particular number to it.

Figure 5.14: Left: Flow resolution concept. Right: Flow resolution example.

We use reasoning from flows in order to resolve such ambiguities. We need to satisfy the flow constraint
at every junction, i.e. the total weight of all the incoming edges must equal the total weight of all the
outgoing edges. For example, in the figure 5.14 there is a junction with an incoming edge of weight 1, and
two outgoing edges of weight ≥ 0 and ≥ 1. Hence, we can infer that the weights of the outgoing edges are
exactly equal to 0 and 1 respectively. A lot of weights can be inferred this way by iteratively applying this
same process throughout the entire graph.

5.3.3 Feasible flow

Once we have the graph and the edge weights, we run a min cost flow algorithm on the graph. Since larger
genomes may not a have unique min cost flow, we iteratively do the following:

• Add ε penalty to all edges in solution

• Solve flow again - if there is an alternate min cost flow it will now have a smaller cost relative to the
previous flow

• Repeat until we find no new edges

101

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 5: Genome Assembly and Whole-Genome Alignment

After doing the above, we will be able to label each edge as one of the following

• Required: edges that were part of all the solutions

• Unreliable: edges that were part of some of the solutions

• Not required: edges that were not part of any solution

5.3.4 Dealing with sequencing errors

There are various sources of errors in the genome sequencing procedure. Errors are generally of two
different kinds, local and global.

Local errors include insertions, deletions and mutations. Such local errors are dealt with when we are
looking for overlapping reads. That is, while checking whether reads overlap, we check for overlaps while
being tolerant towards sequencing errors. Once we have computed overlaps, we can derive a consensus
by mechanisms such as removing indels and mutations that are not supported by any other read and are
contradicted by at least 2.

Global errors are caused by other mechasisms such as two different sequences combining together before
being read, and hence we get a read which is from different places in the genome. Such reads are called
chimers. These errors are resolved while looking for a feasible flow in the network. When the edge corre-
sponding to the chimer is in use, the amount of flow going through this edge is smaller compared to the flow
capacity. Hence, the edge can be detected and then ignored.

Each step of the algorithm is made as robust and resilient to sequencing errors as possible. And the
number of DNAs split and sequenced is decided in a way so that we are able to construct most of the DNA
(i.e. fulfill some quality assurance such as 98% or 95%).

5.3.5 Resources

Some popular genome assemblers using String Graphs are listed below

• Euler (Pevzner, 2001/06) : Indexing → deBruijn graphs → picking paths → consensus

• Valvel (Birney, 2010) : Short reads → small genomes → simplification → error correction

• ALLPATHS (Gnerre, 2011) : Short reads → large genomes → jumping data → uncertainty

5.4 Whole-Genome Alignment

Once we have access to whole-genome sequences for several different species, we can attempt to align them
in order to infer the path that evolution took to differentiate these species. In this section we discuss some
of the methods for performing whole-genome alignments between multiple species.

5.4.1 Global, local, and ’glocal’ alignment

The Needleman-Wunsch algorithm discussed in chapter 2 is the best way to generate an optimal alignment
between two or more genome sequences of limited size. At the level of whole genomes, however, the O(n2)
time bound is impractical. Furthermore, in order to find an optimal alignment between k different species,
the time for the Needleman-Wunsch algorithm is extended to O(nk). For genomes that are millions of bases
long, this run time is prohibitive (Figure 5.15).

102

6.047/6.878 Lecture 5: Genome Assembly and Whole-Genome Alignment

Figure 5.15: The Needleman-Wunsch algorithm for alignments of 2 and 3 genomes.

One alternative is to use an efficient local alignment tool such as BLAST to find all of the local alignments,
and then chain them together along the diagonal to form global alignments. This approach can save a
significant amount of time, since the process of finding local alignments is very efficient, and then we only
need to perform the time-consuming Needleman-Wunsch algorithm in the small rectangles between local
alignments (Figure 5.16).

Figure 5.16: We can save time when performing a global alignment by first finding all the local alignments
and then chaining them together along the diagonal with restricted dynamic programming.

Another novel approach to whole genome alignment is to extend the local alignment search to include
inversions, duplications and translocations. Then we can chain these elements together using the least-cost
transformations between sequences. This approach is commonly called glocal alignment, since it seeks to
combine the best of local and global alignment to create the most accurate picture of how genomes evolve
over time (Figure 5.17).

5.4.2 Lagan: Chaining local alignments

LAGAN is a popular software toolkit that incorporates many of the above ideas and can be used for local,
global, glocal, and multiple alignments between species.

103

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 5: Genome Assembly and Whole-Genome Alignment

Figure 5.17: Glocal alignment allows for the possibility of duplications, inversion, and translocations.

The regular LAGAN algorithm consists of finding local alignments, chaining local alignments along the
diagonal, and then performing restricted dynamic programming to find the optimal path between local
alignments.

Multi-LAGAN uses the same approach as regular LAGAN but generalizes it to multiple species alignment.
In this algorithm, the user must provide a set of genomes and a corresponding phylogenetic tree. Multi-
LAGAN performs pairwise alignment guided by the phylogenetic tree. It first compares highly related
species, and then iteratively compares more and more distant species.

Shuffle-LAGAN is a glocal alignment tool that finds local alignments, builds a rough homology map, and
then globally aligns each of the consistent parts (Figure 5.18). In order to build a homology map, the
algorithm chooses the maximum scoring subset of local alignments based on certain gap and transformation
penalties, which form a non-decreasing chain in at least one of the two sequences. Unlike regular LAGAN, all
possible local alignment sequences are considered as steps in the glocal alignment, since they could represent
translocations, inversions and inverted translocations as well as regular untransformed sequences. Once
the rough homology map has been built, the algorithm breaks the homologous regions into chunks of local
alignments that are roughly along the same continuous path. Finally, the LAGAN algorithm is applied to
each chunk to link the local alignments using restricted dynamic programming.

By running Shuffle-LAGAN or other glocal alignment tools, we can discover inversions, translocations,
and other homologous relations between different species. By mapping the connections between these rear-
rangements, we can gain insight into how each species evolved from the common ancestor (Figure 5.19).

5.5 Gene-based region alignment

An alternative way for aligning multiple genomes anchors genomic segments based on the genes that
they contain, and uses the correspondence of genes to resolve corresponding regions in each pair of species.
A nucleotide-level alignment is then constructed based on previously-described methods in each multiply-
conserved region.

Because not all regions have one-to-one correspondence and the sequence is not static, this is more difficult:
genes undergo divergence, duplication, and losses and whole genomes undergo rearrangements. To help
overcome these challenges, researchers look at the amino-acid similarity of gene pairs across genomes and
the locations of genes within each genome.

104

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 5: Genome Assembly and Whole-Genome Alignment

Figure 5.18: The steps to run the SLAGAN algorithm are A. Find all the local alignments, B. Build a rough
homology map, and C. globally align the consistent parts using the regular LAGAN algorithm

Figure 5.19: Using the concepts of glocal alignment, we can discover inversions, translocations, and other
homologous relations between different species such as human and mouse.

105

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 5: Genome Assembly and Whole-Genome Alignment

Figure 5.20: Graph of S. cerevisae and S. bayanus gene correspondence.

Gene correspondence can be represented by a weighted bipartite graph with nodes representing genes with
coordinates and edges representing weighted sequence similarity (Figure 5.20). Orthologous relationships
are one-to-one matches and paralogous relationships are one-to-many or many-to-many matches. The graph
is first simplified by eliminating spurious edges and then edges are selected based on available information
such as blocks of conserved gene order and protein sequence similarity.

The Best Unambiguous Subgroups (BUS) algorithm can then be used to resolve the correspondence of
genes and regions. BUS extends the concept of best-bidirectional hits and uses iterative refinement with an
increasing relative threshold. It uses the complete bipartite graph connectivity with integrated amino acid
similarity and gene order information.

Did You Know?
A bipartite graph is a graph whose vertices can be split into two disjoint sets U and V such that
every edge connects a vertex in U to a vertex in V.

Figure 5.21: Illustration of gene correspondence for S.cerevisiae Chromosome VI (250-300bp).

106

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 5: Genome Assembly and Whole-Genome Alignment

In the example of a correctly resolved gene correspondence of S.cerevisiae with three other related species,
more than 90% of the genes had a one-to-one correspondence and regions and protein families of rapid change
were identified.

5.6 Mechanisms of Genome Evolution

Once we have alignments of large genomic regions (or whole genomes) across multiple related species, we
can begin to make comparisons in order to infer the evolutionary histories of those regions.

Rates of evolution vary across species and across genomic regions. In S. cerevisiae, for example, 80%
of ambiguities are found in 5% of the genome. Telomeres are repetitive DNA sequences at the end of
chromosomes which protect the ends of the chromosomes from deterioration. Telomere regions are inherently
unstable, tending to undergo rapid structural evolution, and the 80% of variation corresponds to 31 of the
32 telomeric regions. Gene families contained within these regions such as HXT, FLO, COS, PAU, and YRF
show significant evolution in number, order, and orientation. Several novel and protein-coding sequences
can be found in these regions. Since very few genomic rearrangements are found in S. cerevisiae aside from
the telomeric regions, regions of rapid change can be identified by protein family expansions in chromosome
ends.

Figure 5.22: Dynamic view of a changing gene.

Geness evolve at different rates. For example as illustrated in Figure 5.22, on one extreme, there is
YBR184W in yeast which shows unusually low sequence conservation and exhibits numerous insertions
and deletions across species. On the other extreme there is MatA2, which shows perfect amino acid and nu-
cleotide conservation. Mutation rates often also vary by functional classification. For example, mitochondrial
ribosomal proteins are less conserved than ribosomal proteins.

107

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 5: Genome Assembly and Whole-Genome Alignment

The fact that some genes evolve more slowly in one species versus another may be due to factors such as
longer life cycles. Lack of evolutionary change in specific genes, however, suggests that there are additional
biological functions which are responsible for the pressure to conserve the nucleotide sequence. Yeast can
switch mating types by switching all their A and α genes and MatA2 is one of the four yeast mating-type
genes (MatA2, Matα2, MatA1, Matα1). Its role could potentially be revealed by nucleotide conservation
analysis.

Fast evolving genes can also be biologically meaningful. Mechanisms of rapid protein change include:

• Protein domain creation via stretches of Glutamine (Q) and Asparagine (N) and protein-protein inter-
actions,

• Compensatory frame-shifts which enable the exploration of new reading frames and reading/creation
of RNA editing signals,

• Stop codon variations and regulated read-through where gains enable rapid changes and losses may
result in new diversity

• Inteins, which are segments of proteins that can remove themselves from a protein and then rejoin the
remaining protein, gain from horizontal transfers of post-translationally self-splicing inteins.

We now look at differences in gene content across different species (S.cerevisiae, S.paradoxus, S.mikatae,
and S.bayanus.) A lot can be revealed about gene loss and conversion by observing the positions of paralogs
across related species and observing the rates of change of the paralogs. There are 8-10 genes unique to
each genome which are involved mostly with metabolism, regulation and silencing, and stress response. In
addition, there are changes in gene dosage with both tandem and segment duplications. Protein family
expansions are also present with 211 genes with ambiguous correspondence. All in all however, there are few
novel genes in the different species.

5.6.1 Chromosomal Rearrangements

These are often mediated by specific mechanisms as illustrated for Saccharomyces in Figure5.23.
[Matt Fox]Fig11ChromEvolImageissuperblurryasfarasIcansee.Whereeverthiswasfound, itshouldbereplacedwithahigherqualityversion, orremovedifthatisimpossible.

Figure 5.23: Mechanisms of chromosomal evolution.

108

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 5: Genome Assembly and Whole-Genome Alignment

Translocations across dissimilar genes often occur across transposable genetic elements (Ty elements in
yeast for example). Transposon locations are conserved with recent insertions appearing in old locations
and long terminal repeat remnants found in other genomes. They are evolutionarily active however (for
example with Ty elements in yeast being recent), and typically appear in only one genome. The evolution-
ary advantage of such locationally conserved transposons may lie in the possibility of mediating reversible
arrangements. Inversions are often flanked by tRNA genes in opposite transcriptional orientation. This may
suggest that they originate from recombination between tRNA genes.

5.7 Whole Genome Duplication

Figure 5.24: Moving further back in evolutionary time for Saccharomyces.

As you trace species further back in evolutionary time, you have the ability to ask different sets of questions.
In class, the example used was K. waltii, which dates to about 95 millions years earlier than S.cerevisiae and
80 million years earlier than S.bayanus.

Looking at the dotplot of S.cerevisiae chromosomes and K.waltii scaffolds, a divergence was noted along
the diagonal in the middle of the plot, whereas most pairs of conserved region exhibit a dot plot with a
clear and straight diagonal. Viewing the segment at a higher magnification (Figure 5.25), it seems that
S.cerevisiae sister fragments all map to corresponding K.waltii scaffolds.

Schematically (Figure 5.26) sister regions show gene interleaving. In duplicate mapping of centromeres,
sister regions can be recognized based on gene order. This observed gene interleaving provides evidence of
complete genome duplication.

5.8 Additional figures

109

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 5: Genome Assembly and Whole-Genome Alignment

Figure 5.25: Gene Correspondence for S.cerevisiae chromosomes and K.waltii scaffolds.

Figure 5.26: Gene interleaving shown by sister regions in K.waltii and S.cerevisae

Bibliography

[1] Embl allextron database - cassette exons.

[2] Batzoglou S et al. Arachne: a whole-genome shotgun assembler. Genome Res, 2002.

[3] Manolis Kellis. Lecture slides 04: Comparative genomics i. September 21,2010.

[4] Manolis Kellis. Lecture slides 05.1: Comparative genomics ii. September 23, 2010.

[5] Manolis Kellis. Lecture slides 05.2: Comparative genomics iii, evolution. September 25,2010.

[6] Nikolaus Rajewsky Kevin Chen. The evolution of gene regulation by transcription factors and micrornas.
Nature Reviews Genetics, 2007.

110

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 5: Genome Assembly and Whole-Genome Alignment

S-LAG
A

N
 RESU

LTS (TO
D

O
: AXIS LA

BELS/U
N

ITS??)

Figure 5.27: S-LAGAN results.

S
-LA

G
A

N
 (IG

F R
E

G
IO

N
)

Figure 5.28: S-LAGAN results for IGF locus.

S
-LA

G
A

N
 (IG

F R
E

G
IO

N
)

Figure 5.29: S-LAGAN results for IGF locus.

[7] Douglas Robinson and Lynn Cooley. Examination of the function of two kelch proteins generated by
stop codon suppression. Development, 1997.

[8] Stark. Discovery of functional elements in 12 drosophila genomes using evolutionary signatures. Nature,
2007.

111

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 5: Genome Assembly and Whole-Genome Alignment

[9] Angela Tan. Lecture 15 notes: Comparative genomics i: Genome annotation. November 4, 2009.

112

CHAPTER

SIX

BACTERIAL GENOMICS– MOLECULAR EVOLUTION AT THE
LEVEL OF ECOSYSTEMS

Guest Lecture by Eric Alm
Scribed by Deniz Yorukoglu (2011)

Figures
6.1 A tree of life displaying rates of gene birth, duplication, loss, and horizontal gene transfer

at each branching point. 113

6.2 Rates of new gene birth, duplication, loss and horizontal gene transfer during Archean
Gene Expansion . 114

6.3 Abundance levels of different bacterial groups in control patients, Crohn’s disease patients
and patients with ulcerative colitis. 115

6.4 Gut bacterial abundances plotted through time for the two donors participating in HuGE
project. 116

6.5 Description of how to read a horizon plot. 116

6.6 Horizon plot of Donor B in HuGE study. 117

6.7 Horizon plot of Donor A in HuGE study. 118

6.8 Day-to-day bacterial abundance correlation matrices of Donor A and Donor B. 118

6.9 Rate of horizontal gene transfer between different bacterial groups taken from non-human
sites, human sites, same site within human, and different sites within human. 120

6.10 Rate of horizontal gene transfer between bacterial groups sampled from the same continent
and from different continents. 120

6.11 Rate of horizontal gene transfer between different human and non-human sites (top right)
and the percentage of antiboitic resistance genes among horizonta gene transfers (bottom
left). 121

6.1 Introduction

With the magnitude and diversity of bacterial populations in human body, human microbiome has many
common properties with natural ecosystems researched in environmental biology. As a field with a large num-
ber of quantitative problems to tackle, bacterial genomics offers an opportunity for computational biologist
to be actively involved in the progress of this research area.

There are approximately 1014 microbial cells in an average human gut, whereas there are only 1013 human
cells in a human body in total. Furthermore, there are 1012 external microbial cells living on our skin. From
a cell count perspective, this corresponds to 10 times more bacterial cells in our body than our own cells.
From a gene count perspective, there are 100 times more genes belonging to the bacteria living in/on us than
to our own cells. For this reason, these microbial communities living in our bodies are an integral part of

113

6.047/6.878 Lecture 6: Bacterial Genomics – Molecular Evolution at the Level of Ecosystems

what makes us human and we should research upon these genes that are not directly encoded in our genome,
but still have a significant effect on our physiology.

6.1.1 Evolution of microbiome research

Earlier stages of microbiome research were mostly based on data collection and analysis of surveys of bacterial
groups present in a particular ecosystem. Apart from collecting data, this type of research also involved
sequencing of bacterial genomes and identification of gene markers for determining different bacterial groups
present in the sample. The most commonly used marker for this purpose is 16S rRNA gene, which is a
section of the prokaryotic DNA that codes for ribosomal RNA. Three main features of 16S gene that makes
it a very effective marker for microbiome studies are: (1) its short size (∼1500 bases) that makes it cheaper
to sequence and analyze, (2) high conservation due to exact folding requirements of the ribosomal RNA it
encodes for, and (3) its specificity to prokaryote organisms that allows us to differentiate from contaminant
protist, fungal, plant and animal DNAs.

A further direction in early microbial research was inferring rules from generated datasets upon microbial
ecosystems. These studies investigated initially generated microbial data and tried to understand rules of
microbial abundance in different types of ecosystems and infer networks of bacterial populations regarding
their co-occurrence, correlation and causality with respect to one another.

A more recent type of microbial research takes a predictive approach and aims to model the change of
bacterial populations in an ecosystem through time making use of differential equations. For example, we
can model the rate of change for the population size of a particular bacterial group in human gut as an
ordinary differential equation (ODE) and use this model to predict the size of the population at a future
time point by integrating over the time interval.

We can further model change of bacterial populations with respect to multiple parameters, such as time
and space. When we have enough data to represent microbial populations temporally and spatially, we can
model them using partial differential equations (PDEs) for making predictions using multivariate functions.

6.1.2 Data generation for microbiome research

Data generation for microbiome research usually follows the following work-flow: (1) a sample of microbial
ecosystem is taken from the particular site being studied (e.g. a patient’s skin or a lake), (2) the DNAs of the
bacteria living in the sample are extracted, (3) 16S rDNA genes are sequenced, (4) conserved motifs in some
fraction of the 16S gene (DNA barcodes) are clustered into operational taxonomic units (OTUs), and
(5) a vector of abundance is constructed for all species in the sample. In microbiology, bacteria are classified
into OTUs according to their functional properties rather than species, due to the difficulty in applying the
conventional species definition to the bacterial world.

In the remainder of the lecture, a series of recent studies that are related to the field of bacterial genomics
and human microbiome studies are described.

6.2 Study 1: Evolution of life on earth

This study [2] is inspired from a quote by Max Delbruck: ”Any living cell carries with it the experience
of a billion years of experimentation by its ancestors”. In this direction, it is possible to find evidence
in the genomes of living organisms for ancient environmental changes with large biological impacts. For
instance, the oxygen that most organisms currently use would have been extremely toxic to almost all life on
earth before the accumulation of oxygen via oxygenic photosynthesis. It is known that this event happened
approximately 2.4 billion years ago and it caused a dramatic transformation of life on earth.

A dynamic programming algorithm was developed in order to infer gene birth, duplication, loss and
horizontal gene transfer events given the phylogeny of species and phylogeny of different genes. Horizontal
gene transfer is the event in which bacteria transfer a portion of their genome to other bacteria from
different taxonomic groups.

Figure 6.1 shows an overview of these inferred events in a phylogenetic tree focusing on prokaryote life.
In each node, the size of the pie chart represents the amount of genetic change between two branches and
each colored slice stands for the rate of a particular genetic modification event. Starting from the root of the

114

6.047/6.878 Lecture 6: Bacterial Genomics – Molecular Evolution at the Level of Ecosystems

tree, we see that almost the entire pie chart is represented by newly born genes represented by red. However,
around 2.5 billion years ago green and blue slices become more prevalent, which represent rate of horizontal
gene transfer and gene duplication events.

© Lawrence David. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Figure 6.1: A tree of life displaying rates of gene birth, duplication, loss, and horizontal gene transfer at
each branching point.

In Figure 6.2, a large spike can be seen during Archean eon representing large amount of genetic change
on earth occurring during this particular time period. This study looked for enzymatic activity of genes that
were born in this eon different from the genes that were already present. On the right hand side of Figure
6.2, logarithmic enrichment levels of different metabolites are displayed. Most enriched metabolites produced
by these genes were discovered to be functional in oxidation reduction and electron transport. Overall, this
study suggests that life invented modern electron transport chain around 3.3 billion years ago and around
2.8 billion years ago organisms evolved to use the same proteins that are used for producing oxygen also to
breathe oxygen.

6.3 Study 2: Pediatric IBD study with Athos Boudvaros

In some diseases such as Inflammatory Bowel Disease (IBD); if the disease is not diagnosed and monitored
closely, the results can be very severe, such as the removal of the patient’s colon. On the other hand, currently
existing most reliable diagnosis methods are very invasive (e.g. colonoscopy). An alternative approach for
diagnosis can be abundance analysis of the microbial sample taken from the patients’ colon. This study aims
to predict the disease state of the subject from bacterial abundances in stool samples taken from the patient.

105 samples were collected for this study among the patients of Dr. Athos Boudvaros; some of them

115

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 6: Bacterial Genomics – Molecular Evolution at the Level of Ecosystems

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: David, Lawrence A., and Eric J. Alm. "Rapid Evolutionary Innovation
during an Archaean Genetic Expansion." Nature 469, no. 7328 (2011): 93-96.

Figure 6.2: Rates of new gene birth, duplication, loss and horizontal gene transfer during Archean Gene
Expansion

displaying IBD symptoms and others different diseases (control group). In Figure 6.3, each row block
represents a set of bacterial groups at a taxonomic level (phylum level at the top and genus level at the
bottom) and each column block represents a different patient group: control patients, Crohn’s disease (CD),
and ulcerative colitis (UC). The only significant single biomarker was E. Coli, which is not seen in control
and CD patients but seen in about a third of the UC patients. There seems to be no other single bacterial
group that gives significant classification between the patient groups from these abundance measures.

Since E. Coli abundance is not a clear-cut single bacterial biomarker, using it as a diagnostic tool would
yield low accuracy classification. On the other hand, we can take the entire bacterial group abundance dis-
tribution and feed them into a random forest and estimate cross-validation accuracy. After the classification
method was employed, it was able to tell with 90% accuracy if the patient is diseased or not. This suggests
that it is a competitive method with respect to other non-invasive diagnotic approaches which are generally
highly specific but not sensitive enough.

One key difference between control and disease groups is the decrease in the diversity of the ecosystem.
This suggests that the disease status is not controlled by a single germ but the overall robustness and the
resilience of the ecosystem. When diversity in the ecosystem decreases, the patient might start showing
disease symptoms.

6.4 Study 3: Human Gut Ecology (HuGE) project

This study aims to identify more than three hundred dietary and environmental factors affecting human
microbiome. The factors, which were regularly tracked by an iPhone App, were the food the subject ate,
how much they slept, the mood they were in etc. Moreover, stool samples were taken from the subjects every
day for a year in order to perform sequence analysis of the bacterial group abundances for a specific day

116

http://dx.doi.org/10.1038/nature09649
http://dx.doi.org/10.1038/nature09649

6.047/6.878 Lecture 6: Bacterial Genomics – Molecular Evolution at the Level of Ecosystems

Figure 6.3: Abundance levels of different bacterial groups in control patients, Crohn’s disease patients and
patients with ulcerative colitis.

relevant to a particular environmental factor. The motivation behind carrying out this study is that, it is
usually very hard to get a strong signal between bacterial abundances and disease status. Exploring dietary
effects on human microbiome might potentially elucidate some of these confounding factors in bacterial
abundance analysis. However, this study analyzed dietary and environmental factors on only two subjects’
gut ecosystems; inferring statistically significant correlations with environmental factors would require large
cohorts of subjects.

Figure 6.4 shows abundance levels of different bacterial groups in the gut of the two donors throughout
the experiment. One key point to notice is that within an individual, the bacterial abundance is very similar
through time. However, bacterial group abundances in the gut significantly differ from person to person.

One statistically significant dietary factor that was discovered as a predictive marker for bacterial popu-
lation abundances is fiber consumption. It was inferred that fiber consumption is highly correlated with the
abundance of bacterial groups such as Lachnospiraceae, Bifidobacteria, and Ruminococcaceae. In Donor B,
10g increase in fiber consumption increased the overall abundance of these bacterial groups by 11%.

In Figure 6.6 and Figure 6.7, a horizon plot of the two donors B and A are displayed respectively. A
legend to read these horizon plots is given in Figure 6.5. For each bacterial group the abundance-time graph
is displayed with different colors for different abundance layers, segments of different layers are collapsed
into the height of a single layer displaying only the color with the highest absolute value difference from the
normal abundance, and finally the negative peaks are switched to positive peaks preserving their original
color.

In Figure 6.6, we see that during the donor’s trip to Thailand, there is a significant change in his gut
bacterial ecosystem. A large number of bacterial groups disappear (shown on the lower half of the horizon
plot) as soon as the donor starts living in Thailand. And as soon as the donor returns to U.S., the abundance

117

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 6: Bacterial Genomics – Molecular Evolution at the Level of Ecosystems

Figure 6.4: Gut bacterial abundances plotted through time for the two donors participating in HuGE project.

Figure 6.5: Description of how to read a horizon plot.

levels of these bacterial groups quickly return back to their normal levels. Moreover, some bacterial groups
that are normally considered to be pathogens (first 8 groups shown on top) appears in the donor’s ecosystem
almost as soon as the donor moves to Thailand and mostly disappears when he returns back to United States.
This indicates that environmental factors (such as location) can cause major changes in our gut ecosystem

118

Figures from the David lab removed due to copyright restrictions.

Figures from the David lab removed due to copyright restrictions.

http://el.ladlab.org:8080/
http://el.ladlab.org:8080/

6.047/6.878 Lecture 6: Bacterial Genomics – Molecular Evolution at the Level of Ecosystems

Figure 6.6: Horizon plot of Donor B in HuGE study.

while the environmental factor is present but can disappear after the factor is removed.

In Figure 6.7, we see that after the donor is infected with salmonella, a significant portion of his gut
ecosystem is replaced by other bacterial groups. A large number of bacterial groups permanently disappear
during the infection and other bacterial groups replace their ecological niches. In other words, the introduc-
tion of a new environmental factor takes the bacterial ecosystem in the donor’s gut from one equilibrium
point to a completely different one. Even though the bacterial population mostly consists of salmonella
during the infection, before and after the infection the bacterial count stays more or less the same. The
scenario that happened here is that salmonella drove some bacterial groups to extinction in the gut and
similar bacterial groups took over their empty ecological niches.

In Figure 6.8, p-values are displayed for day-to-day bacterial abundance correlation levels for Donor A
and B. In Donor A’s correlation matrix, there is high correlation within the time interval a corresponding
to pre-infection and within the time interval b corresponding to post-infection. However, between a and
b there is almost no correlation at all. On the other hand, in the correlation matrix of donor B, we see
that pre-Thailand and post-Thailand time intervals, c, have high correlation within and between themselves.
However, the interval d that correspond to the time period of Donor B’s trip to Thailand, we see relatively
little correlation to c. This suggests that the perturbations in the bacterial ecosystem of Donor B wasn’t
enough to cause a permanent shift of the abundance equilibrium as in the case with Donor A due to salmonella
infection.

119

Figures from the David lab removed due to copyright restrictions.

http://el.ladlab.org:8080/

6.047/6.878 Lecture 6: Bacterial Genomics – Molecular Evolution at the Level of Ecosystems

Figure 6.7: Horizon plot of Donor A in HuGE study.

Courtesy of Lawrence David. Used with permission.

Figure 6.8: Day-to-day bacterial abundance correlation matrices of Donor A and Donor B.

6.5 Study 4: Microbiome as the connection between diet and phe-
notype

In a study by Mozaffarian et al. [4] more than a hundred thousand patients were analyzed with the goal of
discovering the effect of diet and lifestyle choices on long-term weight gain and obesity. This study built a
model to predict the patients’ weights based on the types and amounts of food they consumed over a certain
period of time. They found out that fast-food type of food (processed meats, potato chips, sugar-sweetened

120

Figures from the David lab removed due to copyright restrictions.

http://el.ladlab.org:8080/

6.047/6.878 Lecture 6: Bacterial Genomics – Molecular Evolution at the Level of Ecosystems

beverages) were were most highly correlated with obesity. On the other hand, consumption level of yogurt
was inversely correlated with obesity.

Further experiments with mouse and human cohorts showed that, within both control group and fast-food
group, increased consumption of yogurt leads to weight loss. In the experiment with mice, some female mice
were given Lactobacillus reuteri (a group of bacteria found in yogurt) and allowed to eat as much regular
food or fast-food they wanted to. This resulted in significant weight loss in the group of mice that were given
the purified bacterial extract.

An unexpected phenotypical effect of organic yogurt consumption was discovered to be shinier coat of
the mice and dogs that were given yogurt as part of their diet. A histological analysis of the skin biopsy of
the control and yogurt fed mice proves that the mice that were fed the bacteria in yogurt had hair follicles
that are active, leading to active development of healthier and shiny coat and hair.

6.6 Study 5: Horizontal Gene Transfer (HGT) between bacterial
groups and its effect on antibiotic resistance

A study by Hehemann et al. [3] discovered a specific gene that digests a type of sulfonated carbohydrate
that is only found in seaweed sushi wrappers. This gene is found in the gut microbes of Japanese people
but not North Americans. The study concluded that this specific gene has transferred at some point in
history from the algae itself to the bacteria living on it and then to the gut microbiome of a Japanese person
by horizontal gene transfer. This study also suggests that, even though some bacterial group might live in
our gut for our entire lives, they can gain new functionalities throughout our lives by picking up new genes
depending on the type of food that we eat.

In this direction, a study in Alm’s Laboratory investigated around 2000 bacterial genomes published
in [1] with the aim of detecting genes that are 100% similar but belong to bacteria in different taxonomic
groups. Any gene that is exactly the same between different bacterial groups would indicate a horizontal
gene transfer event. In this study, around 100000 such instances were discovered.

When looked at specific environments, it was discovered that the bacteria isolated from humans share
genes mostly with other bacteria isolated from human sites. If we focus on more specific sites; we see that
bacterial genomes isolated from human gut share genes mostly with with other bacteria that are isolated
from gut, and bacterial genomes isolated from human skin shared gene mostly with other isolated from
human skin. This finding suggests that independent from the phylogeny of the bacterial groups, ecology is
the most important factor determining the amount of gene transfer instances between bacterial groups.

In Figure 6.9, we see that between different bacterial groups taken from human that has at least 3%
16S gene distance, there is around 23% chance that they will share an identical gene in their genome.
Furthermore, there is more than 40% chance that they share an identical gene if they are sampled from the
same site as well.

On the other hand, Figure 6.10 shows that geography is a weak influence on horizontal gene transfer.
Bacterial populations sampled from the same continent and different continents had little difference in terms
of the amount of horizontal gene transfer detected.

Figure 6.11 shows a color coded matrix of the HGT levels between various human and non-human
environments; top-right triangle representing the amount of horizontal gene transfers and the bottom-left
triangle showing the percentage of antibiotic resistance (AR) genes among the transferred genes. In the
top-right corner, we see that there is a slight excess of HGT instances between human microbiome and
bacterial samples taken from farm animals. And when we look at the corresponding percentages of antibiotic
resistance genes, we see that more than 60% of the transfers are AR genes. This result shows the direct
effect of feeding subtherapeutic antibiotics to livestock on the emergence of antibiotic resistance genes in the
bacterial populations living in human gut.

6.7 Study 6: Identifying virulence factors in Meningitis

Bacterial meningitis is a disease that is caused by very diverse bacteria that are able to get into the blood
stream and cross the blood-brain barrier. This study aimed to investigate the virulence factors that can turn

121

6.047/6.878 Lecture 6: Bacterial Genomics – Molecular Evolution at the Level of Ecosystems

Figure 6.9: Rate of horizontal gene transfer between different bacterial groups taken from non-human sites,
human sites, same site within human, and different sites within human.

Figures removed due to copyright restrictions. See similar figures in this journal article: Smillie, Chris S. et al. "Ecology
drives a global network of gene exchange connecting the human microbiome." Nature 480, no. 7376 (2011): 241-244.

Figure 6.10: Rate of horizontal gene transfer between bacterial groups sampled from the same continent and
from different continents.

bacteria into a type that can cause meningitis.
The study involved 70 bacterial strains isolated from meningitis patients, comprising 175172 genes in

total. About 24000 of these genes had no known function. There could be some genes among these 24000

122

Figures removed due to copyright restrictions. See similar figures in this journal article: Smillie, Chris S. et al. "Ecology
drives a global network of gene exchange connecting the human microbiome." Nature 480, no. 7376 (2011): 241-244.

http://dx.doi.org/10.1038/nature10571
http://dx.doi.org/10.1038/nature10571
http://dx.doi.org/10.1038/nature10571
http://dx.doi.org/10.1038/nature10571

6.047/6.878 Lecture 6: Bacterial Genomics – Molecular Evolution at the Level of Ecosystems

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Smillie, Chris S., et al. "Ecology Drives a Global Network of Gene Exchange
Connecting the Human Microbiome." Nature 480, no. 7376 (2011): 241-4.

Figure 6.11: Rate of horizontal gene transfer between different human and non-human sites (top right) and
the percentage of antiboitic resistance genes among horizonta gene transfers (bottom left).

that might be leading to meningitis causing bacteria and might be good drug targets. Moreover, 82 genes
were discovered to be involved in horizontal gene transfer. 69 of these had known functions and 13 of them
belonged to the 24000 genes that we do not have any functional information. Among the genes with known
function, some of them were related to AR, detoxification, and also some were related to known virulence
factors such as hemalysin that lets the bacteria live in the blood stream and adhesin that helps the bacteria
latch onto the vein and potentially cross blood brain barrier.

6.8 Q/A

Q: Do you think after some time Donor A in Study 3 will have its bacterial ecosystem return back to its
original pre-infection state?

A: The salmonella infection caused certain niches to be wiped out from the bacterial ecosystem of Donor
A which were then filled in by similar type of bacteria and reached to a different ecosystem at a new
equilibrium. Since these niches are dominated by the new groups of bacteria, it would not be possible for
the previous bacterial groups to replace them without a large-scale change in his gut ecosystem.

Q: Is the death of certain bacterial groups in the gut during salmonella infection caused directly by the
infection or is it an immune response to cure the disease?

A: It can be both, but it is very hard to tell from the data in Study 3 since it is only a data point that
corresponds to the event that we can observe. A future study that tries to figure out what is happening
in our immune system during the infection can be observed by drawing blood from the patients during the
infection.

123

http://dx.doi.org/10.1038/nature10571
http://dx.doi.org/10.1038/nature10571

6.047/6.878 Lecture 6: Bacterial Genomics – Molecular Evolution at the Level of Ecosystems

Q: Is there a particular connection between an individual’s genome and the dominant bacterial groups
in the bacterial ecosystem? Would twins show more similar bacterial ecosystems?

A: Twins in general have similar bacterial ecosystems independent from whether they live together or
are separated. Even though this seems to be a genetic factor at first, monozygotic and dizygotic twins have
the exact same effect, as well as displaying similarity to their mothers’ bacterial ecosystem. The reason for
this is that starting from birth there is a period of time in which the bacterial ecosystem is programmed.
The similarity effect between twins is based on this more than genetic factors.

6.9 Current research directions

A further extension to HuGE study could observe mice gut microbiome during a salmonella infection and
observe the process of some bacterial groups being driven to extinction and other types of bacteria replacing
the ecological niches that are emptied by them. A higher resolution observation of this phenomenon in mice
could illuminate how bacterial ecosystems shift from one equilibrium to another.

6.10 Further Reading

• Overview of Human Microbiome Project: http://commonfund.nih.gov/hmp/overview.aspx

• Lawrence A. David and Eric J. Alm. (2011). Rapid evolutionary innovation during an Archaean
genetic expansion. Nature, 469(7328):93-96.

• A tutorial on 16S rRNA gene and its use in microbiome research: http://greengenes.lbl.gov/

cgi-bin/JD_Tutorial/nph-Tutorial_2Main2.cgi

• Dariush Mozaffarian, Tao Hao, Eric B. Rimm, Walter C. Willett, and Frank B. Hu. (2011). Changes in
diet and lifestyle and long-term weight gain in women and men. The New England journal of medicine,
364(25):2392-2404.

• JH Hehemann, G Correc, T Barbeyron, W Helbert, M Czjzek, and G Michel. (2010). Transfer of
carbohydrate- active enzymes from marine bacteria to japanese gut microbiota. Nature, 464(5):908-12.

• The Human Microbiome Jumpstart Reference Strains Consortium. (2010). A Catalog of Reference
Genomes from the Human Microbiome. Science, 328(5981):994-999

6.11 Tools and techniques

6.12 What have we learned?

In this lecture, we learned about the field of bacterial genomics in general and how bacterial ecosystems can
be used to verify major environmental changes at early stages of evolution (Study 1), can act as a noninvasive
diagnostic tool (Study 2), are temporarily or permanently affected by different environmental and dietary
factors (Study 3), can act as the link between diet and phenotype (Study 4), can cause antibiotic resistance
genes to be carried between different species’ microbiome through horizontal gene transfer (Study 5), and
can be used to identify significant virulence factors in disease states (Study 6).

Bibliography

[1] The Human Microbiome Jumpstart Reference Strains Consortium. A Catalog of Reference Genomes
from the Human Microbiome. Science, 328(5981):994–999, May 2010.

[2] Lawrence A. David and Eric J. Alm. Rapid evolutionary innovation during an Archaean genetic expan-
sion. Nature, 469(7328):93–96, January 2011.

124

http://commonfund.nih.gov/hmp/overview.aspx
http://greengenes.lbl.gov/cgi-bin/JD_Tutorial/nph-Tutorial_2Main2.cgi
http://greengenes.lbl.gov/cgi-bin/JD_Tutorial/nph-Tutorial_2Main2.cgi

6.047/6.878 Lecture 6: Bacterial Genomics – Molecular Evolution at the Level of Ecosystems

[3] JH Hehemann, G Correc, T Barbeyron, W Helbert, M Czjzek, and G Michel. Transfer of carbohydrate-
active enzymes from marine bacteria to japanese gut microbiota. Nature, 464(5):908–12, 2010 Apr 8.

[4] Dariush Mozaffarian, Tao Hao, Eric B. Rimm, Walter C. Willett, and Frank B. Hu. Changes in diet
and lifestyle and long-term weight gain in women and men. The New England journal of medicine,
364(25):2392–2404, June 2011.

125

6.047/6.878 Lecture 6: Bacterial Genomics – Molecular Evolution at the Level of Ecosystems

126

Part II

Coding and Non-Coding Genes

127

CHAPTER

SEVEN

HIDDEN MARKOV MODELS I

Anastasiya Belyaeva, Justin Gullingsrud (Sep 26, 2015)
William Leiserson, Adam Sealfon (Sep 22, 2014)
Haoyang Zeng (Sep 28, 2013)
Sumaiya Nazeen (Sep 25, 2012)
Chrisantha Perera (Sep 27, 2011)
Gleb Kuznetsov, Sheida Nabavi (Sep 28, 2010)
Elham Azizi (Sep 29, 2009)

Figures
7.1 Modeling biological sequences . 129

7.2 Prediction Models Using Markov Chain and HMM . 130

7.3 Parameterization of HMM Prediction Model . 130

7.4 State of a casino die represented by a Hidden Markov model 132

7.5 Potential DNA sources: viral injection vs. normal production 132

7.6 A possible sequence of observed die rolls. 132

7.7 Running the model: probability of a sequence, given path consists of all fair dice 133

7.8 Running the model: probability of a sequence, given path consists of all loaded dice . . . 133

7.9 Partial runs and die switching . 134

7.10 HMMS as a generative model for finding GC-rich regions. 135

7.11 Probability of seq, path if all promoter . 135

7.12 Probability of seq, path if all background . 136

7.13 Probability of seq, path sequence if mixed . 136

7.14 Some biological applications of HMM . 137

7.15 The six algorithmic settings for HMMS . 138

7.16 The Viterbi algorithm . 140

7.17 The Forward algorithm . 141

7.18 CpG Islands - Incorporating Memory . 142

7.1 Introduction

Hidden Markov Models (HMMs) are a fundamental tool from machine learning that is widely used in
computational biology. Using HMMs, we can explore the underlying structure of DNA or polypeptide
sequences, detecting regions of especial interest. For instance, we can identify conserved subsequences or
uncover regions with different distributions of nucleotides or amino acids such as promoter regions and
CpG islands. Using this probabilistic model, we can illuminate the properties and structural components of
sequences and locate genes and other functional elements.

129

6.047/6.878 Lecture 06: Hidden Markov Models I

This is the first of two lectures on HMMs. In this lecture we will define Markov Chains and HMMs,
providing a series of motivating examples. In the second half of this lecture, we wil discuss scoring and
decoding. We will learn how to compute the probability of the combination of a particular combination of
observations and states. We will introduce the Forward Algorithm, a method for computing the probability
of a given sequence of observations, allowing all sequences of states. Finally, we will discuss the problem of
determining the most likely path of states corresponding to the given observations, a goal which is achieved
by the Viterbi algorithm.

In the second lecture on HMMs, we will continue our discussion of decoding by exploring posterior
decoding, which allows us to compute the most likely state at each point in the sequence. We will then explore
how to learn a Hidden Markov Model. We cover both supervised and unsupervised learning, explaining how
to use each to learn the model parameters. In supervised learning, we have training data available that
labels sequences with particular models. In unsupervised learning, we do not have labels so we must seek to
partition the data into discrete categories based on discovered probabilistic similarities. In our discussion of
unsupervised learning we will introduce the general and widely applicable Expectation Maximization (EM)
algorithm.

7.2 Motivation:

7.2.1 We have a new sequence of DNA, now what?

1. Align it:

• with things we know about (database search).

• with unknown things (assemble/clustering)

2. Visualize it: “Genomics rule #1”: Look at your data!

• Look for nonstandard nucleotide compositions.

• Look for k-mer frequencies that are associated with protein coding regions, recurrent data, high
GC content, etc.

• Look for motifs, evolutionary signatures.

• Translate and look for open reading frames, stop codons, etc.

• Look for patterns, then develop machine learning tools to determine reasonable probabilistic
models. For example by looking at a number of quadruples we decide to color code them to see
where they most frequently occur.

3. Model it:

• Make hypothesis.

• Build a generative model to describe the hypothesis.

• Use that model to find sequences of similar type.

We’re not looking for sequences that necessarily have common ancestors. Rather, we’re interested in
sequences with similar properties. We actually don’t know how to model whole genomes, but we can
model small aspects of genomes. The task requires understanding all the properties of genome regions
and computationally building generative models to represent hypotheses. For a given sequence, we
want to annotate regions whether they are introns, exons, intergenic, promoter, or otherwise classifiable
regions.

Building this framework will give us the ability to:

• Emit (generate) sequences of similar type according to the generative model

• Recognize the hidden state that has most likely generated the observation

130

6.047/6.878 Lecture 06: Hidden Markov Models I

Figure 7.1: Modeling biological sequences

• Learn (train) large datasets and apply to both previously labeled data (supervised learning) and
unlabeled data (unsupervised learning).

In this lecture we discuss algorithms for emission and recognition.

7.2.2 Why probabilistic sequence modeling?

• Biological data is noisy.

• Update previous knowledge about biological sequences.

• Probability provides a calculus for manipulating models.

• Not limited to yes/no answers, can provide degrees of belief.

• Many common computational tools are based on probabilistic models.

• Our tools: Markov Chains and HMM.

7.3 Markov Chains and HMMS: From Example To Formalizing

7.3.1 Motivating Example: Weather Prediction

Weather prediction has always been difficult, especially when we would like to forecast the weather many
days, weeks or even months later. However, if we only need to predict the weather of the next day, we can
reach decent prediction precision using some quite simple models such as Markov Chain and Hidden Markov
Model by building graphical models in Figure 7.2.

For the Markov Chain model on the left, four kinds of weather (Sun, Rain, Clouds and Snow) can directly
transition from one to the other. This is a “what you see is what you get” in that the next state only depends
on the current state and there is no memory of the previous state. However for HMM on the right, all the
types of weather are modeled as the emission(or outcome) of the hidden seasons (Summer, Fall, Winter
and Spring). The key insight behind is that the hidden states of the world (e.g. season or storm system)
determines emission probabilities while state transitions are governed by a Markov Chain.

7.3.2 Formalizing of Markov Chain and HMMS

To take a closer look at Hidden Markov Model, let’s first define the key parameters in Figure 7.3. Vector x
represents sequence of observations. Vector π represents the hidden path, which is the sequence of hidden
states. Each entry akl of Transition matrix A denotes the probability of transition from state k to state l.
Each entry ek(xi) of emission vector denotes the probability of observing xi from state k. And finally with
these parameters and Bayes’s rule, we can use p(xi|πi = k) to estimate p(πi = k|xi).

Markov Chains

A Markov Chain is given by a finite set of states and transition probabilities between the states. At every time
step, the Markov Chain is in a particular state and undergoes a transition to another state. The probability
of transitioning to each other state depends only on the current state, and in particular is independent of
how the current state was reached. More formally, a Markov Chain is a triplet (Q, p, A) which consists of:

131

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 06: Hidden Markov Models I

Figure 7.2: Prediction Models Using Markov Chain and HMM

Figure 7.3: Parameterization of HMM Prediction Model

• A set of states Q.

• A transition matrix A whose elements correspond to the probability Aij of transitioning from state i
to state j.

• A vector p of initial state probabilities.

The key property of Markov Chains is that they are memory-less, i.e., each state depends only on the
previous state. So we can immediately define a probability for the next state, given the current state:

P (xi|xi−1, ..., x1) = P (xi|xi−1)

In this way, the probability of the sequence can be decomposed as follows:

P (x) = P (xL, xL 1, ..., x1) = P (xL|xL 1)P (x− − L−1|xL−2)...P (x2|x1)P (x1)

132

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 06: Hidden Markov Models I

P (xL) can also be calculated from the transition probabilities: If we multiply the initial state probabilities
at time t = 0 by the transition matrix A, we get the probabilities of states at time t = 1. Multiplying by the
appropriate power AL of the transition matrix, we obtain the state probabilities at time t = L.

Hidden Markov Models

Hidden Markov Models are used as a representation of a problem space in which observations come about
as a result of states of a system which we are unable to observe directly. These observations, or emissions,
result from a particular state based on a set of probabilities. Thus HMMs are Markov Models where the
states are hidden from the observer and instead we have observations generated with certain probabilities
associated with each state. These probabilities of observations are known as emission probabilities.

Formally, a Hidden Markov Model is a 5-tuple (Q, A, p, V , E) which consists of the following parameters:

• A series of states, Q.

• A transition matrix, A

• A vector of initial state probabilities , p.

• A set of observation symbols, V , for example {A, T, C, G} or the set of amino acids or words in an
English dictionary.

• A matrix of emission probabilities, E: For each s, t, in Q, the emission probability is

esk = P (vk at time t|qt = s)

The key property of memorylessness is inherited from Markov Models. The emissions and transitions
depend only on the current state and not on the past history.

7.4 Apply HMM to Real World: From Casino to Biology

7.4.1 The Dishonest Casino

The Scenario

Imagine the following scenario: You enter a casino that offers a dice-rolling game. You bet $1 and then you
and a dealer both roll a die. If you roll a higher number you win $2. Now there’s a twist to this seemingly
simple game. You are aware that the casino has two types of dice:

1. Fair die: P (1) = P (2) = P (3) = P (4) = P (5) = P (6) = 1/6

2. Loaded die: P (1) = P (2) = P (3) = P (4) = P (5) = 1/10 and P (6) = 1/2

The dealer can switch between these two dice at any time without you knowing it. The only information
that you have are the rolls that you observe. We can represent the state of the casino die with a simple
Markov model:

The model shows the two possible states, their emissions, and probabilities for transition between them.
The transition probabilities are educated guesses at best. We assume that switching between the states
doesn’t happen too frequently, hence the .95 chance of staying in the same state with every roll.

Staying in touch with biology: An analogy

For comparison, Figure 7.5 below gives a similar model for a situation in biology where a sequence of DNA
has two potential sources: injection by a virus versus normal production by the organism itself:

Given this model as a hypothesis, we would observe the frequencies of C and G to give us clues as to the
source of the sequence in question. This model assumes that viral inserts will have higher CpG prevalence,
which leads to the higher probabilities of C and G occurrence.

133

6.047/6.878 Lecture 06: Hidden Markov Models I

Figure 7.4: State of a casino die represented by a Hidden Markov model

Figure 7.5: Potential DNA sources: viral injection vs. normal production

Running the Model

Say we are at the casino and observe the sequence of rolls given in Figure 7.6. We would like to know whether
it is more likely that the casino is using the fair die or the loaded die.

Figure 7.6: A possible sequence of observed die rolls.

Let’s look at a particular sequence of rolls.

Therefore, we will consider two possible sequences of states in the underlying HMM, one in which the
dealer is always using a fair die, and the other in which the dealer is always using a loaded die. We consider
each execution path to understand the implications. For each case, we compute the joint probability of an
observed outcome with that sequence of underlying states.

In the first case, where we assume the dealer is always using a fair die, the transition and emission
probabilities are shown in Figure 7.7. The probability of this sequence of states and observed emissions is
a product of terms which can be grouped into three components: 1/2, the probability of starting with the

10 9
fair die; (1/6) , the probability of the sequence of rolls if we always use the fair die; and lastly (0.95) , the

134

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 06: Hidden Markov Models I

Figure 7.7: Running the model: probability of a sequence, given path consists of all fair dice

probability that we always continue to use the fair die.
In this model, we assume π = {F, F, F, F, F, F, F, F, F, F}, and we observe x = {1, 2, 1, 5, 6, 2, 1, 6, 2, 4}.

Now we can calculate the joint probability of x and π as follows:

P (x, π) = P (x|π)P (π)

1
=

2
× P (1|F)× P (F |F)× P (2|F) · · ·

=
1

2
×
(

1 9

6

)10

× (0.95)

= 5.2× 10−9

With a probability this small, this might appear to be an extremely unlikely case. In actuality, the
probability is low because there are many equally likely possibilities, and no one outcome is a priori likely.
The question is not whether this sequence of hidden states is likely, but whether it is more likely than the
alternatives.

Figure 7.8: Running the model: probability of a sequence, given path consists of all loaded dice

Let us consider the opposite extreme where the dealer always uses a loaded die, as depicted in Figure 7.8.
This has a similar calculation except that we note a difference in the emission component. This time, 8
of the 10 rolls carry a probability of 1/10 because the loaded die disfavors non-sixes. The remaining two
rolls of six have each a probability of 1/2 of occurring. Again we multiply all of these probabilities together
according to principles of independence and conditioning. In this case, the calculations are as follows:

1
P (x, π) =

2
× P (1|L)× P (L|L)× P (2|L) · · ·

=
1

2
×
(

1

10

)8

×
(

1
2

2

)
× (0.95)9

= 7.9× 10−10

Note the difference in exponents. If we make a direct comparison, we can say that the situation in which
a fair die is used throughout the sequence is 52× 10−10 (as compared with 7.9× 10−10 with the loaded die).

135

6.047/6.878 Lecture 06: Hidden Markov Models I

Therefore, it is six times more likely that the fair die was used than that the loaded die was used. This is
not too surprising—two rolls out of ten yielding a 6 is not very far from the expected number 1.7 with the
fair die, and farther from the expected number 5 with the loaded die.

Adding Complexity

Now imagine the more complex, and interesting, case where the dealer switches the die at some point during
the sequence. We make a guess at an underlying model based on this premise in Figure 7.9.

Figure 7.9: Partial runs and die switching

Again, we can calculate the likelihood of the joint probability of this sequence of states and observations.
Here, six of the rolls are calculated with the fair die, and four with the loaded one. Additionally, not all of the
transition probabilities are 95% anymore. The two swaps (between fair and loaded) each have a probability
of 5%.

1
P (x, π) =

2
× P (1|L)× P (L|L)× P (2|L) · · ·

=
1

2
×
(

1

10

)2

×
(

1

2

)2

×
(

1
(0

6

)6

× (0.95)7 × .05)2

= 4.67× 10−11

Clearly, our guessed path is far less likely than either of the previous two cases. But if we are looking for
the most likely scenario, we cannot possibly calculate all alternatives in this way. We need new techniques
for inferring the underlying model. In the above cases we more-or-less just guessed at the model, but what
we want is a way to systematically derive likely models. Let’s formalize the models introduced thus far as
we continue toward understanding HMM-related techniques.

7.4.2 Back to Biology

Now that we have formalized HMMs, we want to use them to solve some real biological problems. In fact,
HMMs are a great tool for gene sequence analysis, because we can look at a sequence of DNA as being
emitted by a mixture of models. These may include introns, exons, transcription factors, etc. While we
may have some sample data that matches models to DNA sequences, in the case that we start fresh with
a new piece of DNA, we can use HMMs to ascribe some potential models to the DNA in question. We
will first introduce a simple example and think about it a bit. Then, we will discuss some applications of
HMM in solving interesting biological questions, before finally describing the HMM techniques that solve
the problems that arise in such a first-attempt/native analysis.

A simple example: Finding GC-rich regions

Imagine the following scenario: we are trying to find GC rich regions by modeling nucleotide sequences drawn
from two different distributions: background and promoter. Background regions have uniform distribution
of 0.25 for each of A, T, G, C. Promoter regions have probabilities: A: 0.15, T: 0.13, G: 0.30, C: 0.42. Given
one nucleotide observed, we cannot say anything about the region from which it was originated, because

136

6.047/6.878 Lecture 06: Hidden Markov Models I

either region will emit each nucleotide at some probability. We can learn these initial state probabilities
based in steady state probabilities. By looking at a sequence, we want to identify which regions originate
from a background distribution (B) and which regions are from a promoter model (P).

Figure 7.10: HMMS as a generative model for finding GC-rich regions.

We are given the transition and emission probabilities based on relevant abundance and average length
of regions where x = vector of observable emissions consisting of symbols from the alphabet {A,T,G,C};
π = vector of states in a path (e.g. BPPBP); π∗ = maximum likelihood of generating that path. In our
interpretation of sequence, the max likelihood path will be found by incorporating all emission and transition
probabilities by dynamic programming.

HMMs are generative models, in that an HMM gives the probability of emission given a state (using
Bayes’ Rule), essentially telling you how likely the state is to generate those sequences. So we can always
run a generative model for transitions between states and start anywhere. In Markov Chains, the next state
will give different outcomes with different probabilities. No matter which state is next, at the next state, the
next symbol will still come out with different probabilities. HMMs are similar: You can pick an initial state
based on the initial probability vector. In the example above, we will start in state B with high probability
since most locations do not correspond to promoter regions. You then draw an emission from the P (X|B).
Each nucleotide occurs with probability 0.25 in the background state. Say the sampled nucleotide is a G.
The distribution of subsequent states depends only on the fact that we are in the background state and
is independent of this emission. So we have that the probability of remaining in state B is 0.85 and the
probability of transitioning to state P is 0.15, and so on.

We can compute the probability of one such generation by multiplying the probabilities that the model
makes exactly the choices we assumed. Consider the examples shown in Figures 7.11, 7.12, and 7.13.

Figure 7.11: Probability of seq, path if all promoter

137

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 06: Hidden Markov Models I

Figure 7.12: Probability of seq, path if all background

Figure 7.13: Probability of seq, path sequence if mixed

We can calculate the joint probability of a particular sequence of states corresponding to the observed
emissions as we did in the Casino examples:

P (x, πP) = aP × eP (G)× aPP × eP (G)× · · ·
= aP × (0.75)7 × (0.15)3 × (0.13)× (0.3)2 × (0.42)2

= 9.3× 10−7

P (x, πB) = (0.85)7 × (0.25)8

= 4.9× 10−6

P (x, πmixed) = (0.85)3 × (0.25)6 × (0.75)2 × (0.42)2 × 0.3× 0.15

= 6.7× 10−7

The pure-background alternative is the most likely option of the possibilities we have examined. But
how do we know whether it is the option most likely out of all possibile paths of states to have generated
the observed sequence?

The brute force approach is to examine at all paths, trying all possibilities and calculating their joint

138

6.047/6.878 Lecture 06: Hidden Markov Models I

probabilities P (x, π) as we did above. The sum of probabilities of all the alternatives is 1. For example, if
all states are promoters, P (x, π) = 9.3× 10−7. If all emissions are Gs, P (x, π) = 4.9× 10−6. If we have use
the mixture of B’s and P ’s as in Figure 7.13, P (x, π) = 6.7× 10−7; which is small because a lot of penalty
is paid for the transitions between B’s and P ’s which are exponential in length of sequence. Usually, if you
observe more G’s, it is more likely to be in the promoter region and if you observe more A and Ts, then it
is more likely to be in the background. But we need something more than just observation to support our
belief. We will see how can we mathematically support our intuition in the following sections.

Application of HMMs in Biology

HMMs are used in answering many interesting biological questions. Some biological application of HMMs
are summarized in Figure 7.14.

Figure 7.14: Some biological applications of HMM

7.5 Algorithmic Settings for HMMs

We use HMMs for three types of operation: scoring, decoding, and learning. We will talk about scoring
and decoding in this lecture. These operations can happen for a single path or all possible paths. For the
single path operations, our focus is on discovering the path with maximum probability. However, we are
interested in a sequence of observations or emissions for all path operations regardless of its corresponding
paths.

7.5.1 Scoring

Scoring over a single path

The Dishonest Casino problem and Prediction of GC-rich Regions problem described in section 7.4 are both
examples of finding the probability score corresponding to a single path. For a single path we define the
scoring problem as follows:

• Input: A sequence of observations x = x1x2 . . . xn generated by an HMM M(Q,A, p, V,E) and a path
of states π = π1π2 . . . πn.

• Output: Joint probability, P (x, π) of observing x if the hidden state sequence is π.

139

6.047/6.878 Lecture 06: Hidden Markov Models I

Figure 7.15: The six algorithmic settings for HMMS

The single path calculation is essentially the likelihood of observing the given sequence over a particular
path using the following formula:

P (x, π) = P (x|π)P (π)

We have already seen the examples of single path scoring in our Dishonest Casino and GC-rich region
examples.

Scoring over all paths

We define the all paths version of scoring problem as follows:

• Input: A sequence of observations x = x1x2 . . . xn generated by an HMM M(Q,A, p, V,E).

• Output: The joint probability, P (x, π) of observing x over all possible sequences of hidden states π.

The probability over all paths π of hidden states of the given sequence of observations is given by the
following formula.

P (x) =
∑

P (x, π)
π

We use this score when we are interested in knowing the likelihood of a particular sequence for a given HMM.
However, naively computing this sum requires considering an exponential number of possible paths. Later
in the lecture we will see how to compute this quantity in polynomial time.

7.5.2 Decoding

Decoding answers the question: Given some observed sequence, what path gives us the maximum likelihood
of observing this sequence? Formally we define the problem as follows:

140

6.047/6.878 Lecture 06: Hidden Markov Models I

• Decoding over a single path:

– Input: A sequence of observations x = x1x2 . . . xN generated by an HMM M(Q,A, p, V,E).

– Output: The most probable path of states, π∗ = π1
∗π2
∗ . . . πN

∗

• Decoding over all paths:

– Input: A sequence of observations x = x1x2 . . . xN generated by an HMM M(Q,A, p, V,E).

– Output: The path of states, π∗ = π1
∗π2
∗ . . . πN

∗ that contains the most likely state at each time
point.

In this lecture, we will look only at the problem of decoding over a single path. The problem of decoding
over all paths will be discussed in the next lecture.

For the single path decoding problem, we can imagine a brute force approach where we calculate the joint
probabilities of a given emission sequence and all possible paths and then pick the path with the maximum
joint probability. The problem is that there are an exponential number of paths and using such a brute force
search for the maximum likelihood path among all possible paths is very time consuming and impractical.
Dynamic Programming can be used to solve this problem. Let us formulate the problem in the dynamic
programming approach.

We would like to find out the most likely sequence of states based on the observation. As inputs,
we are given the model parameters ei(s),the emission probabilities for each state, and aijs, the transition
probabilities. The sequence of emissions x is also given. The goal is to find the sequence of hidden states,
π∗, which maximizes the joint probability with the given sequence of emissions. That is,

π∗ = arg maxπP (x, π)

Given the emitted sequence x we can evaluate any path through hidden states. However, we are looking
for the best path. We start by looking for the optimal substructure of this problem.

For a best path, we can say that, the best path through a given state must contain within it the following:

• The best path to previous state

• The best transition from previous state to this state

• The best path to the end state

Therefore the best path can be obtained based on the best path of the previous states, i.e., we can find a
recurrence for the best path. The Viterbi algorithm is a dynamic programming algorithm that is commonly
used to obtain the best path.

Most probable state path: the Viterbi algorithm

Suppose vk(i) is the known probability of the most likely path ending at position (or time instance) i in state
k for each k. Then we can compute the corresponding probabilities at time i+ 1 by means of the following
recurrence.

vl(i+ 1) = el(xi+1) max(aklvk(i))
k

The most probable path π∗, or the maximum P (x, π), can be found recursively. Assuming we know
vj(i− 1), the score of the maximum path up to time i− 1, we need to increase the computation for the next
time step. The new maximum score path for each state depends on

• The maximum score of the previous states

• The transition probability

• The emission probability.

141

6.047/6.878 Lecture 06: Hidden Markov Models I

In other words, the new maximum score for a particular state at time i is the one that maximizes the
transition of all possible previous states to that particular state (the penalty of transition multiplied by their
maximum previous scores multiplied by emission probability at the current time).

All sequences have to start in state 0 (the begin state). By keeping pointers backwards, the actual state
sequence can be found by backtracking. The solution of this Dynamic Programming problem is very similar
to the alignment algorithms that were presented in previous lectures.

The steps of the Viterbi algorithm [2] are summarized below:

1. Initialization (i = 0): v0(0) = 1, vk(0) = 0 for k > 0.

2. Recursion (i = 1 . . . N): vk(i) = ek(xi) maxj(ajkvj(i− 1)); ptri(l) = arg maxj(ajkvj(i− 1)).

3. Termination: P (x, π∗) = maxk vk(N); πN
∗ = arg maxkvk(N).

4. Traceback (i = N . . . 1): πi
∗
−1 = ptri(πi

∗).

Figure 7.16: The Viterbi algorithm

As we can see in Figure 7.16, we fill the matrix from left to right and trace back. Each position in the
matrix has K states to consider and there are KN cells in the matrix, so, the required computation time is
O(K2N) and the required space is O(KN) to remember the pointers. In practice, we use log scores for the
computation. Note that the running time has been reduced from exponential to polynomial.

7.5.3 Evaluation

Evaluation is about answering the question: How well does our model of the data capture the actual data?
Given a sequence x, many paths can generate this sequence. The question is how likely is the sequence
given the model? In other words, is this a good model? Or, how well does the model capture the exact
characteristics of a particular sequence? We use evaluation of HMMs to answer these questions. Additionally,
with evaluation we can compare different models.

Let us first provide a formal definition of the Evaluation problem.

• Input: A sequence of observations x = x1x2 . . . xN and an HMM M(Q,A, p, V,E).

• Output: The probability that x was generated by M summed over all paths.

We know that if we are given an HMM we can generate a sequence of length n using the following steps:

• Start at state π1 according to probability a0π1
(obtained using vector, p).

• Emit letter x1 according to emission probability eπ1
(x1).

• Go to state π2 according to the transition probability aπ1|π2

• Keep doing this until emit xN .

142

6.047/6.878 Lecture 06: Hidden Markov Models I

Thus we can emit any sequence and calculate its likelihood. However, many state sequence can emit the
same x. Then, how do we calculate the total probability of generating a given x over all paths? That is, our
goal is to obtain the following probability:

P (x|M) = P (x) =
∑

P (x, π) =
π

∑
P (x

π

|π)P (π)

The challenge of obtaining this probability is that there are too many paths (an exponential number)
and each path has an associated probability. One approach may be using just the Viterbi path and ignoring
the others, since we already know how to obtain this path. But its probability is very small as it is only
one of the many possible paths. It is a good approximation only if it has high probability density. In other
cases, the Viterbi path will give us an inaccurate approximation. Alternatively, the correct approach for
calculating the exact sum iteratively is through the use of dynamic programming. The algorithm that does
this is known as Forward Algorithm.

The Forward Algorithm

First we derive the formula for forward probability f(i).

fl(i) = P (∑x1 . . . xi, π = l) (7.1)

= P (x1 . . . xi 1, . . , π−1, π . i 2, π)− i−1, πi = l el(xi) (7.2)
π1...πi−1

=
∑ ∑

P (x1 . . . xi 1, π1, . . . , πi 2, πi 1 = k)a e− − − kl l(xi) (7.3)

∑k π1...πi−2

= fk(i
k

− 1)aklel(xi) (7.4)

= el(xi)
∑

fk(i
k

− 1)akl (7.5)

(7.6)

The full algorithm[2] is summarized below:

• Initialization (i = 0): f0(0) = 1, fk(0) = 0 for k > 0.

• Iteration (i = 1 . . . N): fk(i) = ek(xi)
∑
j fj(i− 1)ajk.

• Termination: P (x, π∗) =
∑
k fk(N)

Figure 7.17: The Forward algorithm

From Figure 7.17, it can be seen that the Forward algorithm is very similar to the Viterbi algorithm. In
the Forward algorithm, summation is used instead of maximization. Here we can reuse computations of the

143

6.047/6.878 Lecture 06: Hidden Markov Models I

previous problem including penalty of emissions, penalty of transitions and sums of previous states. The
required computation time is O(K2N) and the required space is O(KN). The drawback of this algorithm
is that in practice, taking the sum of logs is difficult; therefore, approximations and scaling of probabilities
are used instead.

7.6 An Interesting Question: Can We Incorporate Memory in Our
Model?

The answer to this question is - Yes, we can! But how? Recall that, Markov models are memoryless. In
other words, all memory of the model is enclosed in states. So, in order to store additional information, we
must increase the number of states. Now, look back to the biological example we gave in Section 7.4.2. In
our model, state emissions were dependent only on the current state. And, the current state encoded only
one nucleotide. But, what if we want our model to count di-nucleotide frequencies (for CpG islands1), or,
tri-nucleotide frequencies (for codons), or di-codon frequencies involving six-nucleotide? We need to expand
number of states.

For example, the last-seen nucleotide can be incorporated into the HMM’s “memory” by splitting the
plus and minus states from our High-GC/Low-GC HMM into multiple states: one for each nucleotide/region
combination, as in Figure 7.18.

Figure 7.18: CpG Islands - Incorporating Memory

Moving from two to eight states allows us to retain memory of the last nucleotide observed, while also
distinguishing between two distinct regions. Four new states now correspond to each of the original two states
in the High/Low-GC HMM. Whereas the transition weights in the smaller HMM were based purely on the
frequencies of individual nucleotides, now in the larger one, they are based on di-nucleotide frequencies.

With this added power, certain di-nucleotide sequences, such as CpG islands, can be modeled specifically:
the transition from C+ to G+ can be assigned greater weight than the transition from A+ to G+. Further,
transitions between + and - can be modeled more specifically to reflect the frequency (or infrequency) of
particular di-nucleotide sequences within one or the other.

The process of adding memory to an HMM can be generalized and more memory can be added to allow
the recognition of sequences of greater length. For instance, we can detect codon triplets with 32 states, or
di-codon sextuplets with 2048 states. Memory within the HMM allows for increasingly tailored specificity
in scanning.

1CpG stands for C-phosphate-G. So, CpG island refers to a region where GC di-nucleotide appear on the same strand.

144

6.047/6.878 Lecture 06: Hidden Markov Models I

7.7 Further Reading

7.7.1 Length Distributions of States and Generalized Hidden Markov Models

Given a Markov chain with the transition from any state to the end state having probability τ , the probability
of generating a sequence of length L (and then finishing with a transition to the end state) is given by:

τ(1− τ)L−1

Similarly, in the HMMs that we have been examining, the length of states will be exponentially dis-
tributed, which is not appropriate for many purposes. (For example, in a genomic sequence, an exponential
distribution does not accurately capture the lengths of genes, exons, introns, etc). How can we construct a
model that does not output state sequences with an exponential distribution of lengths? Suppose we want
to make sure that our sequence has length exactly 5. We might construct a sequence of five states with only
a single path permitted by the transition probabilities. If we include a self loop in one of the states, we will
output sequences of minimum length 5, with longer sequences exponentially distributed. Suppose we have
a chain of n states, with all chains starting with state π1 and transitioning to an end state after πn. Also
assume that the transition probability between state πi and πi+1 is 1−p, while the self transition probability
of state πi is p. The probability that a sequence generated by this Markov chain has length L is given by:(

L− 1
pL−n(1 p)n

n− 1

)
−

This is called the negative binomial distribution.
More generally, we can adapt HMMs to produce output sequences of arbitrary length. In a Generalized

Hidden Markov Model [1] (also known as a hidden semi-Markov model), the output of each state is a string
of symbols, rather than an individual symbol. The length as well as content of this output string can be
chosen based on a probability distribution. Many gene finding tools are based on generalized hidden Markov
models.

7.7.2 Conditional random fields

The conditional random field model a discriminative undirected probabilistic graphical model that is used
alternatively to HMMs. It is used to encode known relationships between observations and construct con-
sistent interpretations. It is often used for labeling or parsing of sequential data. It is widely used in gene
finding. The following resources can be helpful in order to learn more about CRFs:

• Lecture on Conditional Random Fields from Probabilistic Graphical Models course: https://class.
coursera.org/pgm/lecture/preview/33. For background, you might also want to watch the two
previous segments, on pairwise Markov networks and general Gibbs distributions.

• Conditional random fields in biology: http://www.cis.upenn.edu/~pereira/papers/crf.pdf

• Conditional Random Fields tutorial: http://people.cs.umass.edu/~mccallum/papers/crf-tutorial.
pdf

7.8 Current Research Directions

7.9 Tools and Techniques

7.10 What Have We Learned?

In this section, the main contents we covered are as following:

• First, we introduced the motivation behind adopting Hidden Markov Models in our analysis of genome
annotation.

145

http://people.cs.umass.edu/~mccallum/papers/crf-tutorial.pdf
http://people.cs.umass.edu/~mccallum/papers/crf-tutorial.pdf

6.047/6.878 Lecture 06: Hidden Markov Models I

• Second, we formalized Markov Chains and HMM under the light of weather prediction example.

• Third, we got a sense of how to apply HMM in real world data by looking at Dishonest Casino and
CG-rich region problems.

• Fourthly, we systematiclly introduced algorithmic settings of HMM and went into detail of three of
them:

– Scoring: scoring over single path

– Scoring: scoring over all paths

– Decoding: Viterbi coding in determing most likely path

• Finally, we discussed the possibility of introducing memory in the analysis of HMM and provided
further readings for interested readers.

Bibliography

[1] Introduction to GHMMs: www.cs.tau.ac.il/~rshamir/algmb/00/scribe00/html/lec07/node28.

html.

[2] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological sequence analysis. eleventh edition, 2006.

146

www.cs.tau.ac.il/~rshamir/algmb/00/scribe00/html/lec07/node28.html
www.cs.tau.ac.il/~rshamir/algmb/00/scribe00/html/lec07/node28.html

CHAPTER

EIGHT

HIDDEN MARKOV MODELS II - POSTERIOR DECODING AND
LEARNING

Charalampos Mavroforakis and Chidube Ezeozue (2012)
Thomas Willems (2011)
Amer Fejzic (2010)
Elham Azizi (2009)

Figures
8.1 Genomic applications of HMMs . 146

8.2 The Forward Algorithm . 148

8.3 The Backward Algorithm . 152

8.4 HMM for CpG Islands . 155

8.5 Supervised Learning of CpG islands . 156

8.6 HMM model for alignment with affine gap penalties . 159

8.7 State Space Diagram used in GENSCAN . 161

8.1 Review of previous lecture

8.1.1 Introduction to Hidden Markov Models

In the last lecture, we familiarized ourselves with the concept of discrete-time Markov chains and Hidden
Markov Models (HMMs). In particular, a Markov chain is a discrete random process that abides by the
Markov property, i.e. that the probability of the next state depends only on the current state; this property
is also frequently called ”memorylessness.” To model how states change from step to step, the Markov chain
uses a matrix of transition probabilities. In addition, it is characterized by a one-to-one correspondence
between the states and observed symbols; that is, the state fully determines all relevant observables. More
formally, a Markov chain is fully defined by the following variables:

• πi ∈ Q, the state at the ith step in a sequence of finite states Q of length N that can hold a value from
a finite alphabet Σ of length K

• ajk, the transition probability of moving from state j to state k, P (πi = k|πi−1 = j), for each j, k in Q

• a0j ∈ P , the probability that the initial state will be j

Examples of Markov chains are abundant in everyday life. In the last lecture, we considered the canonical
example of a weather system in which each state is either rain, snow, sun or clouds and the observables of
the system correspond exactly to the underlying state: there is nothing that we don’t know upon making an

147

6.047/6.878 Lecture 7: Hidden Markov Models II - Posterio Decoding and Learning

observation, as the observation, i.e. whether it is sunny or raining, fully determines the underlying state, i.e.
whether it is sunny or raining. Suppose, however, that we are considering the weather as it is probabilistically
determined by the seasons - for example, it snows more often in the winter than in the spring - and suppose
further that we are in ancient times and did not yet have access to knowledge about what the current
season is. Now consider the problem of trying to infer the season (the hidden state) from the weather (the
observable). There is some relationship between season and weather such that we can use information about
the weather to make inferences about what season it is (if it snows a lot, it’s probably not summer); this
is the task that HMMs seek to undertake. Thus, in this situation, the states, the seasons, are considered
“hidden” and no longer share a one-to-one correspondence with the observables, the weather. These types
of situations require a generalization of Markov chains known as Hidden Markov Models (HMMs).

Did You Know?
Markov Chains may be thought of as WYSIWYG - What You See Is What You Get

HMMs incorporate additional elements to model the disconnect between the observables of a system and
the hidden states. For a sequence of length N , each observable state is instead replaced by a hidden state
(the season) and a character emitted from that state (the weather). It is important to note that characters
from each state are emitted according to a series of emission probabilities (say there is a 50% chance of snow,
30% chance of sun, and 20% chance of rain during winter). More formally, the two additional descriptors of
an HMM are:

• xi ∈ X, the emission at the ith step in a sequence of finite characters X of length N that can hold a
character from a finite set of observation symbols vl ∈ V

• ek(vl) ∈ E, the emission probability of emitting character vl when the state is k, P (xi = vl|πi = k)

In summary, an HMM is defined by the following variables:

• ajk, ek(vl), and a0j that model the discrete random process

• πi, the sequence of hidden states

• xi, the sequence of observed emissions

8.1.2 Genomic Applications of HMMs

The figure below shows some genomic applications of HMMs

Application Detection of
GC-rich
region

Detection of
Conserved

region

Detection of
Protein coding

exons

Detection of
Protein
coding

conservation

Detection of
Protein

coding gene
structures

Detection of
chromatin

states

Topology /
Transitions

2 states,
different

nucleotide
composition

2 states,
difference

conservation
levels

2 states,
different tri-
nucleotide

composition

2 states,
different

evolutionary
signatures

~20 states,
different

composition /
conservation,

specific
structure

40 states,
different

chromatin mark
combinations

Hidden States
/ Annotation

GC-rich /
AT-rich

Conserved/
non-

Conserved

Coding (exon) /
non-Coding
(intron or
intergenic)

Coding (exon)
/ non-Coding

(intron or
intergenic)

First / last /
middle coding
exon, UTRs,
intron 1/2/3,
intergenic,

*(+,-) strand

Enhancer /
Promoter /

Transcribed /
Repressed /
Repetitive

Emissions /
Observations Nucleotides Level of

conservation
Triplets of
nucleotides

64 x 64 matrix
of codon

substitution
frequencies

Codons,
nucleotides,
splice sites,
start/stop
codons

Vector of
chromatin mark

frequencies

Figure 8.1: Genomic applications of HMMs

148

6.047/6.878 Lecture 7: Hidden Markov Models II - Posterio Decoding and Learning

Niceties of some of the applications shown in figure 8.1 include:

• Detection of Protein coding conservation
This is similar to the application of detecting protein coding exons because the emissions are also not
nucleotides but different in the sense that, instead of emitting codons, substitution frequencies of the
codons are emitted.

• Detection of Protein coding gene structures
Here, it is important for different states to model first, last and middle exons independently, because
they have distinct relevant structural features: for example, the first exon in a transcript goes through
a start codon, the last exon goes through a stop codon, etc., and to make the best predictions, our
model should encode these features. This differs from the application of detecting protein coding exons
because in this case, the position of the exon is unimportant.
It is also important to differentiate between introns 1,2 and 3 so that the reading frame between one
exon and the next exon can be remembered e.g. if one exon stops at the second codon position, the
next one has to start at the third codon position. Therefore, the additional intron states encode the
codon position.

• Detection of chromatin states
Chromatin state models are dynamic and vary from cell type to cell type so every cell type will have
its own annotation. They will be discussed in fuller detail in the genomics lecture including strategies
for stacking/concatenating cell types.

8.1.3 Viterbi decoding

Previously, we demonstrated that when given a full HMM (Q,A,X,E, P), the likelihood that the discrete
random process produced the provided series of hidden states and emissions is given by:

P (x1, . . . , xN , π1, . . . , πN) = a0πi

∏
eπi

(xi)aπiπi+1
(8.1)

i

This corresponds to the total joint probability, P (x, π). Usually, however, the hidden states are not
given and must be inferred; we’re not interested in knowing the probability of the observed sequence given
an underlying model of hidden states, but rather want to us the observed sequence to infer the hidden
states, such as when we use an organism’s genomic sequence to infer the locations of its genes. One solution
to this decoding problem is known as the Viterbi decoding algorithm. Running in O(K2N) time and
O(KN) space, where K is the number of states and N is the length of the observed sequence, this algorithm
determines the sequence of hidden states (the path π∗) that maximizes the joint probability of the observables
and states, i.e. P (x, π). Essentially, this algorithm defines Vk(i) to be the probability of the most likely
path ending at state πi = k, and it utilizes the optimal substructure argument that we saw in the sequence
alignment module of the course to recursively compute Vk(i) = ek(xi) × maxj(Vj(i − 1)ajk) in a dynamic
programming algorithm.

8.1.4 Forward Algorithm

Returning for a moment to the problem of ’scoring’ rather than ’decoding,’ another problem that we might
want to tackle is that of, instead of computing the probability of a single path of hidden state emitting the
observed sequence, calculating the total probability of the sequence being produced by all possible paths. For
example, in the casino example, if the sequence of rolls is long enough, the probability of any single observed
sequence and underlying path is very low, even if it is the single most likely sequence-path combination.
We may instead want to take an agnostic attitude toward the path and assess the total probability of the
observed sequence arising in any way.

In order to do that, we proposed the Forward algorithm, which is described in Figure 8.2

149

6.047/6.878 Lecture 7: Hidden Markov Models II - Posterio Decoding and Learning

Input: x = x1 . . . xN

Initialization:

Figure 8.2: The Forward Algorithm

f0(0) = 1, fk(0) = 0, for all k > 0

Iteration:
fk(i) = ek(xi)×

∑
j ajkfj(i− 1)

Termination:
P (x, π∗) =

∑
k fk(N)

The forward algorithm first calculates the joint probability of observing the first t emitted characters and
being in state k at time t. More formally,

fk(t) = P (πt = k, x1, . . . , xt) (8.2)

Given that the number of paths is exponential in t, dynamic programming must be employed to solve this
problem. We can develop a simple recursion for the forward algorithm by employing the Markov property
as follows:

fk(t) =
∑

P (x1, . . . , xt, πt = k, πt 1 = l) =
∑

P (x− 1, . . . , xt , π = l) P (x , π π) (8.3)−1 t−1 t t t−1

l l

∗ |

Recognizing that the first term corresponds to fl(t − 1) and that the second term can be expressed in
terms of transition and emission probabilities, this leads to the final recursion:

fk(t) = ek(xt)
∑

fl(t
l

− 1) ∗ alk (8.4)

Intuitively, one can understand this recursion as follows: Any path that is in state k at time t must have
come from a path that was in state l at time t − 1. The contribution of each of these sets of paths is then
weighted by the cost of transitioning from state l to state k. It is also important to note that the Viterbi
algorithm and forward algorithm largely share the same recursion. The only difference between the two
algorithms lies in the fact that the Viterbi algorithm, seeking to find only the single most likely path, uses a
maximization function, whereas the forward algorithm, seeking to find the total probability of the sequence
over all paths, uses a sum.

We can now compute fk(t) based on a weighted sum of all the forward algorithm results tabulated
during the previous time step. As shown in Figure 8.2, the forward algorithm can be easily implemented in
a KxN dynamic programming table. The first column of the table is initialized according to the initial state
probabilities ai0 and the algorithm then proceeds to process each column from left to right. Because there
are KN entries and each entry examines a total of K other entries, this leads to O(K2N) time complexity
and O(KN) space.

In order now to calculate the total probability of a sequence of observed characters under the current
HMM, we need to express this probability in terms of the forward algorithm gives in the following way:

P (x1, . . . , xn) =
∑

P (x1, . . . , xn, πN = l) =
∑

fl(N) (8.5)
l l

Hence, the sum of the elements in the last column of the dynamic programming table provides the total
probability of an observed sequence of characters. In practice, given a sufficiently long sequence of emitted
characters, the forward probabilities decrease very rapidly. To circumvent issues associated with storing small
floating point numbers, logs-probabilities are used in the calculations instead of the probabilities themselves.
This alteration requires a slight adjustment to the algorithm and the use of a Taylor series expansion for the
exponential function.

150

6.047/6.878 Lecture 7: Hidden Markov Models II - Posterio Decoding and Learning

8.1.5 This lecture

• This lecture will discuss posterior decoding, an algorithm which again will infer the hidden state
sequence π that maximizes a different metric. In particular, it finds the most likely state at every
position over all possible paths and does so using both the forward and backward algorithm.

• Afterwards, we will show how to encode “memory” in a Markov chain by adding more states to search
a genome for dinucleotide CpG islands.

• We will then discuss how to use Maximum Likelihood parameter estimation for supervised learning
with a labelled dataset

• We will also briefly see how to use Viterbi learning for unsupervised estimation of the parameters of
an unlabelled dataset

• Finally, we will learn how to use Expectation Maximization (EM) for unsupervised estimation of
parameters of an unlabelled dataset where the specific algorithm for HMMs is known as the Baum-
Welch algorithm.

151

6.047/6.878 Lecture 7: Hidden Markov Models II - Posterio Decoding and Learning

8.2 Posterior Decoding

8.2.1 Motivation

Although the Viterbi decoding algorithm provides one means of estimating the hidden states underlying
a sequence of observed characters, another valid means of inference is provided by posterior decoding.

Posterior decoding provides the most likely state at any point in time. To gain some intuition for posterior
decoding, let’s see how it applies to the situation in which a dishonest casino alternates between a fair and
loaded die. Suppose we enter the casino knowing that the unfair die is used 60 percent of the time. With
this knowledge and no die rolls, our best guess for the current die is obviously the loaded one. After one
roll, the probability that the loaded die was used is given by

P (die = loaded) ∗ P (roll = k
ol

|die = loaded)
P (die = loaded|r l = k) = . (8.6)

P (roll = k)

If we instead observed a sequence of N die rolls, how do perform a similar sort of inference? By allowing
information to flow between the N rolls and influence the probability of each state, posterior decoding is
a natural extension of the above inference to a sequence of arbitrary length. More formally, instead of
identifying a single path of maximum likelihood, posterior decoding considers the probability of any path
lying in state k at time t given all of the observed characters, i.e. P (πt = k|x1, . . . , xn). The state that
maximizes this probability for a given time is then considered as the most likely state at that point.

It is important to note that in addition to information flowing forward to determine the most likely state
at a point, information may also flow backward from the end of the sequence to that state to augment or
reduce the likelihood of each state at that point. This is partly a natural consequence of the reversibility
of Bayes’ rule: our probabilities change from prior probabilities into posterior probabilities upon observing
more data. To elucidate this, imagine the casino example again. As stated earlier, without observing any
rolls, the state0 is most likely to be unfair: this is our prior probability. If the first roll is a 6, our belief that
state1 is unfair is reinforced (if rolling sixes is more likely in an unfair die). If a 6 is rolled again, information
flow backwards from the second die roll and reinforces our state1 belief of an unfair die even more. The more
rolls we have, the more information that flows backwards and reinforces or contrasts our beliefs about the
state thus illustrating the way information flows backward and forward to affect our belief about the states
in Posterior Decoding.

Using some elementary manipulations, we can rearrange this probability into the following form using
Bayes’ rule:

P (πt = k, x1, . . . , x)
πt
∗ = argmaxkP (πt = k| n

x1, . . . , xn) = argmaxk (8.7)
P (x1, . . . , xn)

Because P (x) is a constant, we can neglect it when maximizing the function. Therefore,

πt
∗ = argmaxkP (πt = k, x1, . . . , xt) ∗ P (xt+1, . . . , xn|πt = k, x1, . . . , xt) (8.8)

Using the Markov property, we can simply write this expression as follows:

πt
∗ = argmaxkP (πt = k, x1, . . . , xt) ∗ P (xt+1, . . . , xn|πt = k) = argmaxkfk(t) ∗ bk(t) (8.9)

Here, we’ve defined fk(t) = P (πt = k, x1, . . . , xt) and bk(t) = P (xt+1, . . . , xn|πt = k). As we will
shortly see, these parameters are calculated using the forward algorithm and the backward algorithm
respectively. To solve the posterior decoding problem, we merely need to solve each of these subproblems.
The forward algorithm has been illustrated in the previous chapter and in the review at the start of this
chapter and the backward algorithm will be explained in the next section.

8.2.2 Backward Algorithm

As previously described, the backward algorithm is used to calculate the following probability:

bk(t) = P (xt+1, . . . , xn|πt = k) (8.10)

152

6.047/6.878 Lecture 7: Hidden Markov Models II - Posterio Decoding and Learning

We can begin to develop a recursion n by expanding into the following form:

bk(t) =
∑

P (xt+1, . . . , xn, πt+1 = l πt = k) (8.11)
l

|

From the Markov property, we then obtain:

bk(t) =
∑

P (xt+2, . . . , xn|πt+1 = l) ∗ P (πt+1 = l πt = k) P (xt+1 πt+1 = k) (8.12)
l

| ∗ |

The first term merely corresponds to bl(t+1). Expressing in terms of emission and transition probabilities
gives the final recursion:

bk(t) =
∑

bl(i+ 1) a
l

∗ kl ∗ el(xt+1) (8.13)

Comparison of the forward and backward recursions leads to some interesting insight. Whereas the
forward algorithm uses the results at t − 1 to calculate the result for t, the backward algorithm uses the
results from t + 1, leading naturally to their respective names. Another significant difference lies in the
emission probabilities; while the emissions for the forward algorithm occur from the current state and can
therefore be excluded from the summation, the emissions for the backward algorithm occur at time t + 1
and therefore must be included within the summation.

Given their similarities, it is not surprising that the backward algorithm is also implemented using a KxN
dynamic programming table. The algorithm, as depicted in Figure 8.3, begins by initializing the rightmost
column of the table to unity. Proceeding from right to left, each column is then calculated by taking a
weighted sum of the values in the column to the right according to the recursion outlined above. After
calculating the leftmost column, all of the backward probabilities have been calculated and the algorithm
terminates. Because there are KN entries and each entry examines a total of K other entries, this leads to
O(K2N) time complexity and O(KN) space, bounds identical to those of the forward algorithm.

Just as P(X) was calculated by summing the rightmost column of the forward algorithm’s DP table,
P(X) can also be calculated from the sum of the leftmost column of the backward algorithm’s DP table.
Therefore, these methods are virtually interchangeable for this particular calculation.

153

6.047/6.878 Lecture 7: Hidden Markov Models II - Posterio Decoding and Learning

Figure 8.3: The Backward Algorithm

Did You Know?
Note that even when executing the backward algorithm, forward transition probabilities are used
i.e if moving in the backward direction involves a transition from state B → A, the probability of
transitioning from state A → B is used. This is because moving backward from state B to state A
implies that state B follows state A in our normal, forward order, thus calling for the same transition
probability.

8.2.3 The Big Picture

Why do we have to make both forward and backward calculations for posterior decoding, while the algorithms
that we have discussed previously call for only one direction? The difference lies in the fact that posterior
decoding seeks to produce probabilities for the underlying states of individual positions rather than whole
sequences of positions. In seeking to find the most likely underlying state of a given position, we need to take
into account the entire sequence in which that position exists, both before and after it, as befits a Bayesian
approach - and to do this in a dynamic programming algorithm, in which we compute recursively and end
with a maximizing function, we must approach our position of interest from both sides.

Given that we can calculate both fk(t) and b 2
k(t) in θ(K N) time and θ(KN) space for all t = 1 . . . n, we

can use posterior decoding to determine the most likely state πt
∗ for t = 1 . . . n. The relevant expression is

154

6.047/6.878 Lecture 7: Hidden Markov Models II - Posterio Decoding and Learning

given by

π∗t = argmaxkP (πi = k|x) =
fk(i) ∗ bk(i)

(8.14)
P (x)

With two methods (Viterbi and posterior) to decode, which is more appropriate? When trying to classify
each hidden state, the Posterior decoding method is more informative because it takes into account all
possible paths when determining the most likely state. In contrast, the Viterbi method only takes into
account one path, which may end up representing a minimal fraction of the total probability. At the same
time, however, posterior decoding may give an invalid sequence of states! By selecting for the maximum
probability state of each position independently, we’re not considering how likely the transitions between
these states are. For example, the states identified at time points t and t + 1 might have zero transition
probability between them. As a result, selecting a decoding method is highly dependent on the application
of interest.

FAQ

Q: What does it imply when the Viterbi algorithm and Posterior decoding disagree on the path?

A: In a sense, it is simply a reminder that our model gives us what it’s selecting for. When we seek
the maximum probability state of each independent position and disregard transitions between
these max probability states, we may get something different than when we seek to find the
most likely total path. Biology is complicated; it is important to think about what metric
is most relevant to the biological situation at hand. In the genomic context, a disagreement
might be a result of some ’funky’ biology; alternative splicing, for instance. In some cases,
the Viterbi algorithm will be close to the Posterior decoding while in some others they may
disagree.

8.3 Encoding Memory in a HMM: Detection of CpG islands

CpG islands are defined as regions within a genome that are enriched with pairs of C and G nucleotides on
the same strand. Typically, when this dinucleotide is present within a genome, it becomes methylated, and
when deamination of the cytosine occurs, as it does at some base frequency, it becomes a thymine, another
natural nucleotide, and thus cannot as easily be recognized by the cell as a mutation, causing a C to T
mutation. This increased mutation frequency at CpG islands depletes CpG islands over evolutionary time
and renders them relatively rare. Because the methylation can occur on either strand, CpGs usually mutate
into a TpG or a CpA. However, when situated within an active promoter, methylation is suppressed, and
CpG dinucleotides are able to persist. Similarly, CpGs in regions important to cell function are conserved
due to evolutionary pressure. As a result, detecting CpG islands can highlight promoter regions, other
transcriptionally active regions, or sites of purifying selection within a genome.

Did You Know?
CpG stands for [C]ytosine - [p]hosphate backbone - [G]uanine. The ’p’ implies that we are referring
to the same strand of the double helix, rather than a G-C base pair occurring across the helix.

Given their biological significance, CpG islands are prime candidates for modelling. Initially, one may
attempt to identify these islands by scanning the genome for fixed intervals rich in GC. This approach’s
efficacy is undermined by the selection of an appropriate window size; while too small of a window may not
capture all of a particular CpG island, too large of a window would result in missing many smaller but bona
fide CpG islands. Examining the genome on a per codon basis also leads to difficulties because CpG pairs
do not necessarily code for amino acids and thus may not lie within a single codon. Instead, HMMs are
much better suited to modelling this scenario because, as we shall shortly see in the section on unsupervised
learning, HMMs can adapt their underlying parameters to maximize their likelihood.

Not all HMMs, however, are well suited to this particular task. An HMM model that only considers the
single nucleotide frequencies of C’s and G’s will fail to capture the nature of CpG islands. Consider one such
HMM with the two following hidden states :

155

6.047/6.878 Lecture 7: Hidden Markov Models II - Posterio Decoding and Learning

• ’+’ state representing CpG islands

• ’-’ state: representing non-islands

Each of these two states then emits A, C, G and T bases with a certain probability. Although the CpG
islands in this model can be enriched with C’s and G’s by increasing their respective emission probabilities,
this model will fail to capture the fact that the C’s and G’s predominantly occur in pairs.

Because of the Markov property that governs HMM’s, the only information available at each time step
must be contained within the current state. Therefore, to encode memory within a Markov chain, we need
to augment the state space. To do so, the individual ’+’ and ’-’ states can be replaced with 4 ’+’ states and
4 ’-’ states: A+, C+, G+, T+, A-, C-, G-, T- (Figure 8.4). Specifically, there are 2 ways to model this, and
this choice will result in different emission probabilities:

• One model suggests that the state A+, for instance, implies that we are currently in a CpG island and
the previous character was an A. The emission probabilities here will carry most of the information
and the transitions will be fairly degenerate.

• Another model suggests that the state A+, for instance, implies that we are currently in a CpG island
and the current character is an A. The emission probability here will be 1 for A and 0 for all other
letters and the transition probabilities will bear most of the information in the model and the emissions
will be fairly degenerate. We will assume this model from now on.

Did You Know?
The number of transitions is the square of the number of states. This gives a rough idea of how
increasing HMM “memory” (and hence states) scale.

The memory of this system derives from the fact that each state can only emit one character and therefore
“remembers” its emitted character. Furthermore, the dinucleotide nature of the CpG islands is incorporated
within the transition matrices. In particular, the transition frequency from C+ to G+ states is significantly
higher than from C to a G states, demonstrating that these pairs occur more often within the islands.− −

FAQ

Q: Since each state emits only one character, can we then say this reduces to a Markov Chain
instead of a HMM?

A: No. Even though the emissions indicate the letter of the hidden state, they do not indicate if
the state is a CpG island or not: both an A- and an A+ state emit only the observable A.

FAQ

Q: How do we incorporate our knowledge about the system while training HMM models eg. some
emission probabilities of 0 in the CpG island detection case?

A: We could either force our knowledge on the model by setting some parameters and leaving others
to vary or we could let the HMM loose on the model and let it discover those relationships.
As a matter of fact, there are even methods that simplify the model by forcing a subset of
parameters to be 0 but allowing the HMM to choose which subset.

Given the above framework, we can use posterior decoding to analyze each base within a genome and
determine whether it is most likely a constituent of a CpG island or not. But having constructed the
expanded HMM model, how can we verify that it is in fact better than the single nucleotide model? We
previously demonstrated that the forward or backward algorithm can be used to calculate P (x) for a given

156

Increasing the state of the system (looking back)

• Markov Models are memory-less
– In other words, all memory is encoded in the states
– To remember additional information, augment state

• Our first HMM had minimal memory
– State, emissions, only depend on current state
– Current state only encoded one previous nucleotide

• How do you count di-nucleotide frequencies?
– CpG islands: di-nucleotides
– Codon triplets: tri-nucleotides
– Di-codon frequencies: six nucleotides

� Expanding the number of states

+ -

A: .1
C: .3
G: .4
T: .2

A: 1/4
C: 1/4
G: 1/4
T: 1/4

a++ a--
a+-

a-+

A- T-

G-C-

aG

T

aA

C
aGC

aAT

Modeling CpG islands: incorporating memory

• Markov Chain
– Q: states
– p: initial state probabilities
– A: transition probabilities

• HMM
– Q: states
– V: observations
– p: initial state probabilities
– A: transition probabilities
– E: emission probabilities

A+ T+

G+C+

aG

T

aA

C
aGC

aAT

+ -

aBBaPP aPB

aBP

+ -

A: .1
C: .3
G: .4
T: .2

A: 1/4
C: 1/4
G: 1/4
T: 1/4

aPP aBB
aPB

aBP

eB(1) = ¼

T: 0
T: 0

T: 0
T: 1

+
A .180

C .171

G .161

T .079

A T

GC
aAC

aGC

aAT

6.047/6.878 Lecture 7: Hidden Markov Models II - Posterio Decoding and Learning

A+ T+G+C+

A- T-G-C-

A: 0
C: 0
G: 1
T: 0

A: 1
C: 0
G: 0
T: 0

A: 0
C: 1
G: 0
T: 0

A: 0
C: 0
G: 0
T: 1

A: 0
C: 0
G: 1
T: 0

A: 1
C: 0
G: 0
T: 0

A: 0
C: 1
G: 0
T: 0

A: 0
C: 0
G: 0
T: 1

Figure 8.4: HMM for CpG Islands

model. If the likelihood of our dataset is higher given the second model than the first model, it most likely
captures the underlying behavior more effectively.

However, there is one risk in complicating the model, which is overfitting. Increasing the number of
parameters for an HMM makes the HMM more likely to overfit the data and be less accurate in capturing
the underlying behavior. A common solution to this in machine learning is to use regularization, which is
essentially using fewer parameters. In this case, it is possible to reduce number of parameters to learn by
constraining all +/- transition probabilities to be the same value and all -/+ transition probabilities to be
the same value, as the transitions back and forth from the + and - states are what we are interested in
modeling, and the actual bases where the transition occurred are not that important to our model. Thus
for this constrained model we have to learn fewer parameters which leads to a simpler model and can help
to avoid overfitting.

FAQ

Q: Are there other ways to encode the memory for CpG island detection?

A: Other ideas that may be experimented with include

- Emit dinucleotides and figure out a way to deal with overlap.
- Add a special state that goes from C to G.

8.4 Learning

We saw how to score and decode an HMM-generated sequence in two different ways. However, these methods
assumed that we already knew the emission and transition probabilities. While we are always free to hazard
a guess at these, we may sometimes want to use a more data-driven, empirical approach to deriving these
parameters. Fortunately, the HMM framework enables the learning of these probabilities when provided a
set of training data and a set architecture for the model.

When the training data is labelled, estimation of the probabilities is a form of supervised learning. One
such instance would occur if we were given a DNA sequence of one million nucleotides in which the CpG
islands had all been experimentally annotated and were asked to use this to estimate our model parameters.

In contrast, when the training data is unlabelled, the estimation problem is a form of unsupervised
learning. Continuing with the CpG island example, this situation would occur if the provided DNA sequence
contained no island annotation whatsoever and we needed to both estimate model parameters and identify

157

6.047/6.878 Lecture 7: Hidden Markov Models II - Posterio Decoding and Learning

P P P P P PP P

start B B B B B BB B

L:

S: G C A A A T G C

Figure 8.5: Supervised Learning of CpG islands

the islands.

8.4.1 Supervised Learning

When provided with labelled data, the idea of estimating model parameters is straightforward. Suppose that
you are given a labelled sequence x1, . . . , xN as well as the true hidden state sequence π1, . . . , πN . Intuitively,
one might expect that the probabilities that maximize the data’s likelihood are the actual probabilities that
one observes within the data. This is indeed the case and can be formalized by defining Akl to be the number
of times hidden state k transitions to l and Ek(b) to be the number of times b is emitted from hidden state
k. The parameters θ that maximize P (x|θ) are simply obtained by counting as follows:

Akl
akl = ∑

iAki
(8.15a)

ek(b) =
Ek(b)

One example training set is shown in Figure 8.5.

∑ (8.15b)
cEk(c)

In this example, it is obvious that the probability of
transitioning from B to P is 1

3+1 = 1 (there are 3 B to B transitions and 1 B to P transitions) and the4

probability of emitting a G from the B state is 2
2+2+1 = 2 (there are 2 G’s emitted from the B state, 2 C’s5

and 1 A)
Notice, however, that in the above example the emission probability of character T from state B is 0

because no such emissions were encountered in the training set. A zero probability, either for transitioning
or emitting, is particularly problematic because it leads to an infinite log penalty. In reality, however, the
zero probability may merely have arisen due to over-fitting or a small sample size. To rectify this issue and
maintain flexibility within our model, we can collect more data on which to train, reducing the possibility
that the zero probability is due to a small sample size. Another possibility is to use ’pseudocounts’ instead
of absolute counts: artificially adding some number of counts to our training data which we think more
accurately represent the actual parameters and help counteract sample size errors.

• A∗kl = Akl + rkl

• Ek(b)∗ = Ek(b) + rk(b)

Larger pseudocount parameters correspond to a strong prior belief about the parameters, reflected in the
fact that these pseudocounts, derived from your priors, are comparatively overwhelming the observations,
your training data. Likewise, small pseudocount parameters (r << 1) are more often used when our priors
are relatively weak and we are aiming not to overwhelm the empirical data but only to avoid excessively
harsh probabilities of 0.

8.4.2 Unsupervised Learning

Unsupervised learning involves estimating parameters based on unlabelled data. This may seem impossible
- how can we take data about which we know nothing and use it to ”learn”? - but an iterative approach

158

6.047/6.878 Lecture 7: Hidden Markov Models II - Posterio Decoding and Learning

can yield surprisingly good results, and is the typical choice in these cases. This can be thought of loosely
as an evolutionary algorithm: from some initial choice of parameters, the algorithm assesses how well the
parameters explain or relate to the data, uses some step in that assessment to make improvements on the
parameters, and then assesses the new parameters, producing incremental improvements in the parameters at
every step just as the fitness or lack thereof of a particular organism in its environment produces incremental
increases over evolutionary time as advantageous alleles are passed on preferentially.

Suppose we have some sort of prior belief about what each emission and transition probability should be.
Given these parameters, we can use a decoding method to infer the hidden states underlying the provided
data sequence. Using this particular decoding parse, we can then re-estimate the transition and emission
counts and probabilities in a process similar to that used for supervised learning. If we repeat this procedure
until the improvement in the data’s likelihood remains relatively stable, the data sequence should ultimately
drive the parameters to their appropriate values.

FAQ

Q: Why does unsupervised learning even work? Or is it magic?

A: Unsupervised learning works because we have the sequence (input data) and this guides every
step of the iteration; to go from a labelled sequence to a set of parameters, the later are guided
by the input and its annotation, while to annotate the input data, the parameters and the
sequence guide the procedure.

For HMMs in particular, two main methods of unsupervised learning are useful.

Expectation Maximization using Viterbi training

The first method, Viterbi training, is relatively simple but not entirely rigorous. After picking some initial
best-guess model parameters, it proceeds as follows:

E step: Perform Viterbi decoding to find π?

Calculate A∗kl, Ek(b)∗ using pseudocounts based on the transitions and emissions observed in π? states
given the latest parameters and observed sequence (Expectation step)

M step: Calculate the new parameters akl, ek(b) using the simple counting formalism in supervised learning
(Maximization step)

Iteration: Repeat the E and M steps until the likelihood P (x|θ) converges

Although Viterbi training converges rapidly, its resulting parameter estimations are usually inferior to
those of the Baum-Welch Algorithm. This result stems from the fact that Viterbi training only considers
the most probable hidden path instead of the collection of all possible hidden paths.

Expectation Maximization: The Baum-Welch Algorithm

The more rigorous approach to unsupervised learning involves an application of Expectation Maximization
to HMM’s. In general, EM proceeds in the following manner:

Init: Initialize the parameters to some best-guess state

E step: Estimate the expected probability of hidden states given the latest parameters and observed sequence
(Expectation step)

M step: Choose new maximum likelihood parameters using the probability distribution of hidden states (Max-
imization step)

Iteration: Repeat the E and M steps until the likelihood of the data given the parameters converges

159

6.047/6.878 Lecture 7: Hidden Markov Models II - Posterio Decoding and Learning

The power of EM lies in the fact that P (x|θ) is guaranteed to increase with each iteration of the algorithm.
Therefore, when this probability converges, a local maximum has been reached. As a result, if we utilize
a variety of initialization states, we will most likely be able to identify the global maximum, i.e. the best
parameters θ. The Baum-Welch algorithm generalizes EM to HMM’s. In particular, it uses the forward and
backward algorithms to calculate P (x|θ) and to estimate Akl and Ek(b). The algorithm proceeds as follows:

Initialization 1. Initialize the parameters to some best-guess state

Iteration 1. Run the forward algorithm

2. Run the backward algorithm

3. Calculate the new log-likelihood P (x|θ)
4. Calculate Akl and Ek(b)

5. Calculate akl and ek(b) using the pseudocount formulas

6. Repeat until P (x|θ) converges

Previously, we discussed how to compute P (x|θ) using either the forward or backward algorithm’s final
results. But how do we estimate Akl and Ek(b)? Let’s consider the expected number of transitions from
state k to state l given a current set of parameters θ. We can express this expectation as

P (πt = k, πt+1 = l, x θ)
Akl =

∑
P (πt = k, πt+1 = l|x, θ) =

t

∑ |

t

(8.16)
P (x|θ)

Exploiting the Markov property and the definitions of the emission and transition probabilities leads to
the following derivation:

∑ P (x1 . . . xt, πt = k, πt+1 = l, xt+1 . . . xN
Akl =

|θ)

t
P (x|θ)

(8.17a)

=
∑
t

P (x1 . . . xt, πt = k) ∗ P (πt+1 = l, xt+1 . . . xN |πt, θ)
(8.17b)

P (x|θ)∑ fk(t) ∗ P (πt+1 = l|πt = k) ∗ P (xt+1
=

|πt+1 = l) ∗ P (xt+2 . . . xN |πt+1 = l, θ)

t

(8.17c)
P (x|θ)

t
Akl =

∑ fk() ∗ a⇒ kl ∗ el(xt+1) ∗ bl(t+ 1)

t

(8.17d)
P (x|θ)

A similar derivation leads to the following expression for Ek(b):

f)
Ek(b) =

i|

∑
k(t ∗ bk(t)

xi=b

(8.18)
P (x|θ)

Therefore, by running the forward and backward algorithms, we have all of the information necessary
to calculate P (x|θ) and to update the emission and transition probabilities during each iteration. Because
these updates are constant time operations once P (x|θ), fk(t) and bk(t) have been computed, the total time
complexity for this version of unsupervised learning is θ(K2NS), where S is the total number of iterations.

FAQ

Q: How do you encode your prior beliefs when learning with Baum-Welch?

A: Those prior beliefs are encoded in the initializations of the forward and backward algorithms

160

6.047/6.878 Lecture 7: Hidden Markov Models II - Posterio Decoding and Learning

Figure 8.6: HMM model for alignment with affine gap penalties

8.5 Using HMMs to align sequences with affine gap penalties

We can use HMM to align sequences with affine gap penalties. Recall that affine gap penalties penalizes
more to open/ start the gap than to extend it, thus the penalty of a gap of length g is r(g) = -d -(g-1)*e,
where d is the penalty to open the gap and e is the penalty to extend an already open gap.

We will look into aligning two sequences with the affine gap penalty. We are given two sequences are
X and Y, the scoring matrix S (S(xi,yj) = score of matching xi with yj), gap opening penalty of d and
gap extension penalty of e. We can map this problem into an HMM problem by using the following states,
transition probabilities and emission probabilities.

States:
There are three states involves: M (matching xi with yj), X (aligning xi with a gap), Y (aligning yj with

a gap). Also, alongside each transition, there’s an update of the i,j indices. Whenever we are in state M,
(i,j) = (i,j) + (1,1). In state X, (i,j) = (i,j) + (1,0). In state Y, (i,j) = (i,j) + (0,1).

Transition probabilities:
There are 7 transition probabilities to consider as shown in figure 6.
P(next State = M | current = M) = S(xi,yj)
P(next State = X | current = M) = d
P(next State = Y | current = M) = d
P(next State = X | current = X) = e
P(next State = M | current = X) = S(xi,yj)
P(next State = Y | current = Y) = e
P(next State = M | current = Y) = S(xi,yj)

We can also save the transition probabilities in a transition matrix A = [aij], where aij = P(next State
= j | current = i) and

∑
jAij = 1

Emission probabilities:
The emission probabilities are:
From state M: pxiyi = p(xi aligned to yj)
From state X: qxi = p(xi aligned to gap)
From state Y: qyi= p(yjaligned to gap)
Example:
X = ’VLSPADK’

161

6.047/6.878 Lecture 7: Hidden Markov Models II - Posterio Decoding and Learning

Y = ’HLAESK’
The alignment generated by the model is:
MMXXMYM
Which corresponds to:
X = ’VLSPAD K’
Y = ’HL AESK’

Did You Know?
For classification purposes, Posterior decoding ’path’ is more informative than Viterbi path as it is a
more refined measure of which hidden states generated x. However, it may give an invalid sequence
of states, for example when not all j $->$ k transitions may be possible, it might have state(i) = j
and state(i+1) =k

8.6 Current Research Directions

• HMM’s have been used extensively in various fields of computational biology. One of the first such
applications was in a gene-finding algorithm known as GENSCAN written by Chris Burge and Samuel
Karlin [1]. Because the geometric length distribution of HMM’s does not model exonic regions well,
Burge et. al used an adaptation of HMM’s known as hidden semi-Markov models (HSMM’s). These
types of models differ in that whenever a hidden state is reached, the length of duration of that state
(di) is chosen from a distribution and the state then emits exactly di characters. The transition from
this hidden state to the next is then analogous to the HMM procedure except that akk = 0 for all k,
thereby preventing self-transitioning. Many of the same algorithms that were previously developed for
HMM’s can be modified for HSMM’s. Although the details won’t be discussed here, the forward and
backward algorithms can be modified to run in O(K2N3) time, where N is the number of observed
characters. This time complexity assumes that there is no upper bound on the length of a state’s
duration, but imposing such a bound reduces the complexity to O(K2ND2), where D is the maximum
possible duration of a state.

The basic state diagram underlying Burge’s model is depicted in Figure 8.7. The included diagram
only lists the states on the forward strand of DNA, but in reality a mirror image of these states is also
included for the reverse strand, resulting in a total of 27 hidden states. As the diagram illustrates, the
model incorporates many of the major functional units of genes, including exons, introns, promoters,
UTR’s and poly-A tails. In addition, three different intronic and exonic states are used to ensure that
the total length of all exons in a gene is a multiple of three. Similar to the CpG island example, this
expanded state-space enabled the encoding of memory within the model.

• A recent effort has been made to make an HMM-based approach to homology searches, called HMMER,
a viable alternative to BLAST in terms of computational efficiency. Unlike most other homology search
algorithms, HMMER, written by Sean Eddy, uses the Forward algorithm’s average over alignment un-
certainty, rather than only reporting the maximum likelihood alignment (a la Viterbi); this approach is
often better for detecting more remote homologies, as as divergence times increase, there may become
more viable ways of aligning sequences, each of them individually not sufficiently strong to be differenti-
ated from noise but together giving evidence for homology. A particularly exciting recent development is
that HMMER is now available as a web server; it can be found at http://www.ebi.ac.uk/Tools/hmmer/.

• An interesting subject that may be explored also concerns the agreement of Viterbi and Posterior
decoding paths; not just for CpG island detection but even for chromatin state detection. One may
look at multiple paths by sampling, asking questions such as:

– What is the maximum a posteriori vs viterbi path? Where do they differ?

– Can complete but maximally disjoint (from Viterbi) paths be found?

162

http://www.ebi.ac.uk/Tools/hmmer/

6.047/6.878 Lecture 7: Hidden Markov Models II - Posterio Decoding and Learning

Figure 8.7: State Space Diagram used in GENSCAN

163

6.047/6.878 Lecture 7: Hidden Markov Models II - Posterio Decoding and Learning

8.7 Further Reading

8.8 Tools and Techniques

8.9 What Have We Learned?

Using the basic computational framework provided by Hidden Markov Models, we’ve learned how to infer the
most likely set of hidden states underlying a sequence of observed characters. In particular, a combination
of the forward and backward algorithms enabled one form of this inference, i.e. posterior decoding, in
O(KN2) time. We also learned how either unsupervised or supervised learning can be used to identify
the best parameters for an HMM when provided with an unlabelled or labelled dataset. The combination
of these decoding and parameter estimation methods enable the application of HMM’s to a wide variety
of problems in computational biology, of which CpG island and gene identification form a small subset.
Given the flexibility and analytical power provided by HMM’s, these methods will play an important role in
computational biology for the foreseeable future.

Bibliography

[1] Christopher B Burge and Samuel Karlin. Finding the genes in genomic dna. Current Opinion in Structural
Biology, 8(3):346 – 354, 1998.

164

CHAPTER

NINE

GENE IDENTIFICATION: GENE STRUCTURE, SEMI-MARKOV, CRFS

Tim Helbig (2011)
Jenny Cheng (2010)

Figures
9.1 Intergenic DNA . 164

9.2 Intron/Exon Splicing . 164

9.3 Delineation of Exons and Open Reading Frames . 165

9.4 Hidden Markov Model Utilizing GT Donor Assumption 165

9.5 Multiple lines of evidence for gene identification . 165

9.6 HMMs with composite emissions . 166

9.7 State diagram that considers direction of RNA translation 166

9.8 Conditional random fields: a discriminative approach conditioned on the input sequence . 167

9.9 Examples of feature functions . 167

9.10 Conditional probability score of an emitted sequence . 167

9.11 A comparison of HMMs and CRFs . 168

9.1 Introduction

After a genome has been sequenced, a common next step is to attempt to infer the functional potential of the
organism or cell encoded through careful analysis of that sequence. This mainly takes the form of identifying
the protein coding genes within the sequence as they are thought to be the primary units of function within
living systems; this is not to say that they are the only functional units within genomes as things such as
regulatory motifs and non-coding RNAs are also imperative elements.

This annotation of the protein coding regions is too laborious to do by hand, so it is automated in a
process known as computational gene identification. The algorithms underlying this process are often based
on Hidden Markov Models (HMMs), a concept discussed in previous chapters to solve simple problems such
as knowing whether a casino is rolling a fair versus a loaded die. Genomes, however, are very complicated
sets of data, replete with long repeats, overlapping genes (where one or more nucleotides are part of two or
more distinct genes) and pseudogenes (non-transcribed regions that look very similar to genes) among many
other obfuscations. Thus, experimental and evolutionary data often needs to be included into HMMs for
greater annotational accuracy, which can result in a loss of scalability or a reliance on incorrect assumptions
of independence. Alternative algorithms have been utilized to address the problems of HMMs including those
based on Conditional Random Fields (CRFs), which rely on creating a distribution of the hidden states of
the genomic sequence in question conditioned on known data. Use of CRFs has not phased out HMMs as
both are used with varying degrees of success in practice.1

1 R. Guigo (1997). “Computational gene identification: an open problem.” Computers Chem. Vol. 21.

165

6.047/6.878 Lecture 09: Gene Identification: Gene Structure, Semi-Markov, CRFs

9.2 Overview of Chapter Contents

This chapter will begin with a discussion of the complexities of the Eukaryotic gene. It will then describe
how HMMs can be used as a model to parse Eukaryotic genomes into protein coding genes and regions that
are not; this will include reference to the strengths and weaknesses of an HMM approach. Finally, the use
of CRFs to annotate protein coding regions will be described as an alternative.

9.3 Eukaryotic Genes: An Introduction

Within eukaryotic genomes, only a small fraction of the nucleotide content actually consists of protein coding
genes (in humans, protein coding regions make up about 1%-1.5% of the entire genome). The rest of the DNA
is classified as intergenic regions (See Figure 9.1) and contains things such as regulatory motifs, transposons,
integrons and non-protein coding genes.2

Figure 9.1: Intergenic DNA

Further, of the small fraction of the DNA that is transcribed into mRNA, not all of it is translated into
protein. Certain regions known as introns, are removed or “spliced” out of the precursor mRNA. This now
processed mRNA, containing only “exons” and some other additional modifications discussed in previous
chapters, is translated into protein. (See Figure 9.2) The goal of computational gene identification is thus
not only to pick out the few regions of the entire Eukaryotic genome that encode for proteins but also to
parse those protein coding regions into identities of exon or intron so that the sequence of the synthesized
protein can be known.

Figure 9.2: Intron/Exon Splicing

9.4 Assumptions for Computational Gene Identification

The general assumptions for computational gene identification are that exons are delineated by a sequence
AG at the start of the exon and a sequence of GT at the end of the exon. For protein-coding genes, the
start codon (ATG) and the end codons (TAA, TGA, TAG) delineate the open reading frame. (Most of these
ideas can be seen in Figure 9.3) These assumptions will be incorporated into more complex HMMs described
below.

2“Intergenic region.” http://en.wikipedia.org/wiki/Intergenic

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

region

166

http://en.wikipedia.org/wiki/Intergenicregion
http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 09: Gene Identification: Gene Structure, Semi-Markov, CRFs

Figure 9.3: Delineation of Exons and Open Reading Frames

9.5 Hidden Markov Models

A toy Hidden Markov Model is a generative approach to model this behavior. Each emission of the HMM
is one DNA base/letter. The hidden states of the model are intergenic, exon, intron. Improving upon this
model would involve including hidden states DonorG and DonorT. The DonorG and DonorT states utilize
the information that exons are delineated by GT at the end of the sequence before the start of an intron.
(See Figure 9.4 for inclusion of DonorG and DonorT into the model)

Figure 9.4: Hidden Markov Model Utilizing GT Donor Assumption

The e in each state represents emission probabilities and the arrows indicate the transition probabilities.

Aside from the initial assumptions, additional evidence such as evolutionary conservation and experi-
mental mRNA data can help create an HMM to better model the behavior. (See Figure 9.5)

Figure 9.5: Multiple lines of evidence for gene identification

167

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 09: Gene Identification: Gene Structure, Semi-Markov, CRFs

Combining all the lines of evidence discussed above, we can create an HMM with composite emissions in
that each emitted value is a “tuple” of collected values. (See Figure 9.6)

Figure 9.6: HMMs with composite emissions

A few assumptions of this composite model are that each new emission “feature” is independent of the
rest. However, this creates the problem that with each new feature, the tuple increases in length, and the
number of states of the HMM increases exponentially, leading to a combinatorial explosion, which thus means
poor scaling. (Examples of more complex HMMs that can result in poor scaling can be found in Figure 9.7)

Figure 9.7: State diagram that considers direction of RNA translation

9.6 Conditional Random Fields

Conditional Random Fields, CRFs, are an alternative to HMMs. Being a discriminative approach, this type
of model doesnt take into account the joint distribution of everything, as does a poorly scaling HMM. The
hidden states in a CRF are conditioned on the input sequence. (See Figure 9.8)3

3Conditional Random Field. Wikipedia. http://en.wikipedia.org/wiki/Conditional random field

168

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://en.wikipedia.org/wiki/Conditionalrandom�eld
http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 09: Gene Identification: Gene Structure, Semi-Markov, CRFs

Figure 9.8: Conditional random fields: a discriminative approach conditioned on the input sequence

A feature function is like a score, returning a real-valued number as a function of its inputs that reflects
the evidence for a label at a particular position. (See Figure 9.9) The conditional probability of the emitted
sequence is its score divided by the total score of the hidden state. (See Figure 9.10)

Figure 9.9: Examples of feature functions

Figure 9.10: Conditional probability score of an emitted sequence

Each feature function is weighted, so that during the training, the weights can be set accordingly.

The feature functions can incorporate vast amounts of evidence without the Naive Bayes assumption of
independence, making them both scalable and accurate. However, training is much more difficult with CRFs
than HMMs.

9.7 Other Methods

Besides HMMs and CRFs, other methods do exist for computational gene identification. Semi-markov models
generate variable sequence length emissions, meaning that the transitions are not entirely memory-less on
the hidden states.

Max-min models are adaptations of support vector machines. These methods have not yet been applied
to mammalian genomes. 4

4For better understanding of SVM: http://dspace.mit.edu/bitstream/handle/1721.1/39663/6-034Fall-
2002/OcwWeb/Electrical-Engineering-and-Computer-Science/6-034Artificial-IntelligenceFall2002/Tools/detail/svmachine.htm

169

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 09: Gene Identification: Gene Structure, Semi-Markov, CRFs

9.8 Conclusion

Computational gene identification, because it entails finding the functional elements encoded within a
genome, has a lot of practical significance as well as theoretical significance for the advancement of bio-
logical fields.

The two approaches described above are summarized below in Figure 9.11:

Figure 9.11: A comparison of HMMs and CRFs

9.8.1 HMM

• generative model

• randomly generates observable data, usually with a hidden state

• specifies a joint probability distribution

• P (x, y) = P (x|y)P (y)

• sometimes hard to model dependencies correctly

• hidden states are the labels for each DNA base/letter

• composite emissions are a combination of the DNA base/letter being emitted with additional evidence

9.8.2 CRF

• discriminative model

• models dependence of unobserved variable y on an observed variable x

• P (y|x)

• hard to train without supervision

• more effective for when the model doesnt require joint distribution

170

6.047/6.878 Lecture 09: Gene Identification: Gene Structure, Semi-Markov, CRFs

In practice, the resulting gene specification using CONTRAST, a CRF implementation, is about 46.2%
at its maximum. This is because in biology, there are a lot of exceptions to the standard model, such as
overlapping genes, nested genes, and alternative splicing. Having models include all of those exceptions
sometimes yields worse predictions; this is a non-trivial tradeoff. However, technology is improving and
within the next five years, there will be more experimental data to fuel the development of computational
gene identification, which in turn will help generate a better understanding of the syntax of DNA.

9.9 Current Research Directions

9.10 Further Reading

9.11 Tools and Techniques

9.12 What Have We Learned?

Bibliography
1.R. Guigo (1997). “Computational gene identification: an open problem.”

2.“Intergenic region.” http://en.wikipedia.org/wiki/Intergenic region
3.Conditional Random Field. Wikipedia. http://en.wikipedia.org/wiki/Conditional random field

4.http://dspace.mit.edu/bitstream/handle/1721.1/39663/6-034Fall-2002/OcwWeb/Electrical-Engineering-
and-Computer-Science/6-034Artificial-IntelligenceFall2002/Tools/detail/svmachine.htm

171

http://en.wikipedia.org/wiki/Intergenicregion
http://en.wikipedia.org/wiki/Conditionalrandom�eld

6.047/6.878 Lecture 09: Gene Identification: Gene Structure, Semi-Markov, CRFs

172

CHAPTER

TEN

RNA FOLDING

Guest Lecture by
Stefan Washietl
Scribed by Sam Sinaei (2010)
Scribed by Archit Bhise (2012)
Scribed by Eric Mazumdar (2014)

Figures
10.1 Graphical representation of the hierarchy of RNA strucure complexity 175

10.2 The typical representation of RNA secondary structure in textbooks. It clearly shows the
secondary substructure in RNA. 175

10.3 Graph drawing where the back-bone is a circle and the base pairings are the arcs within
the circle. Note that the graph is outer-planar, meaning the arcs do not cross. 175

10.4 A machine readable dot-bracket notation, in which for each paired nucleotide you open a
bracket(and close it when you reach its match) and for each unpaired element you have a
dot. 176

10.5 A matrix representation, in which you have a dot for each pair. 176

10.6 Mountain plot, in which for pairs you go one step up in the plot and if not you go one step
to the right. 176

10.7 Example of a scoring scheme for base pair matches. Note that G-U can form a wobble pair
in RNA. 176

10.8 The recursion formula for Nussinov algorithm, along with a graphical depiction of how it
works. 177

10.9 The diagonal is initialized to 0. Then, the table is filled bottom to top, left to right
according to the recurrence relation. In this example, complimentary base pairings are
scored as -1 and non-complementary pairings are scored as 0. The optimal score for the
entire sequence is found in the upper right corner. 178

10.10The traceback matrixKij , filled during the recursion, holds the optimal secondary structure
when k is paired with i for a subsequence [i, j]. If i is unpaired in the optimal structure,
Kij = 0. 178

10.11Stacking between neighboring base pairs in RNA. The flat aromatic structure of the base
causes quantum interactions between stacked bases and changes its physical stability. . . . 178

10.12Various internal substructures in a folded RNA. A hairpin is consisted of a terminal loop
connected to a paired region, an internal loop is an unpaired region within the paired
region. A Bulge is a special case of an interior loop with a single mis-pair. a Multi loop is
a loop which consists of multiple of these components (in this example two hairpins and a
paired region, all connected to a loop). 179

173

6.047/6.878 Lecture 08: RNA Structure

10.13F describes the unpaired case, C is described by one of the three conditions : hair-
pin,interior loop, or a composition of structures i.e. a multi loop. M1 is a multi loop
with only one component, where are M might have multiple of them. The | icon is nota-
tion for “or”. 179

10.14A) Single sequence: Terminal symbols are bases or base-pairs, Emission probabilities are
base frequencies in loops and paired regions B) Phylo-SCFG: Terminal symbols are single
or paired alignment columns, Emission probabilities calculated from phylogenetic model
and tree using Felsenstein’s algorithmWe to try to better understand RNA-RNA interactions.183

10.15We can study kinetics and folding pathways in further depth. 184

10.16We can investigate pseudoknots. 184

10.17We can try to better understand RNA-RNA interactions. 185

10.1 Motivation and Purpose

RNA (Ribonucleic acid) as a molecule has been posited as being the origin of life. Though it was long
considered nothing more than an intermediary between the code in the DNA and the functional proteins,
RNA has been shown to serve many different functions, spanning the entire realm of genomics. Part of the
cause for its versatility is the many possible conformations that RNA can be found in. Being made up of a
more flexible backbone than DNA, RNA exhibits interesting and varied structures that can inform us on its
many purposes. Certain structures of RNA, for example, lend themselves to catalytic activities while others
serve as the tRNA, and mRNA that are so important during the process of converting the DNA’s code
into proteins The aim for this chapter is to learn methods that can explain, or even predict the secondary
structure of RNA in the hope that they will shed light on the many properties of this versatile molecule.

To accomplish this, we first look at RNA from a biological perspective and explain the known biological
roles of RNA. Then, we study the different methods that exist to predict RNA structure. There are two
main approaches to the RNA folding problem: 1) predicting the RNA structure based on thermodynamic
stability of the molecule, and looking for a thermodynamic optimum 2) probabilistic models which try to
find the states of the RNA molecule in a probabilistic optimum.

Finally, we can use evolutionary data in order to increase the confidence of our predictions by these
methods.

10.2 Chemistry of RNA

RNA consists of a 5-carbon sugar, ribose, which is attached to an organic base (either adenine, uracil,
cytosine or guanine). There are two biochemical differences between DNA and RNA:

1. the 5-carbon sugar has no hydroxyl group in the 5 position

2. the uracil presence in the RNA which is the non-methylated form of thymine instead of just thymine.

The presence of ribose in RNA makes its structure more flexible than DNA, letting the RNA molecule fold
and make bonds within itself which makes the single stranded RNA more than single stranded DNA.

174

6.047/6.878 Lecture 08: RNA Structure

10.3 Origin and Functions of RNA

People initially believed that RNA only acted as an intermediate between the DNA code and the protein,
however, in early 80s, the discovery of catalytic RNAs (ribozymes) expanded the perspective on what this
molecule can actually do in living things. Sidney Altman and Thomas Cech discovered the first ribozyme,
RNase P which is able to cleave off the head of tRNA. Self-splicing introns (group I introns) were also one
of the first ribozymes that were discovered. They do not need any protein as catalysts to splice. Single or
double stranded RNA also serves as the information storage and replication agent in some viruses.

The RNA World Hypothesis, proposed by Walter Gilbert in 1986, suggests that RNA was the precur-
sor to modern life. It relies on the fact that RNA can have both information storage, and catalytic activity
at the same time, both of which are fundamental characteristics of a living system. In short, the RNA World
hypothesis says that, because RNA can have a catalytic role in cells and there is evidence that RNA can
self-replicate without depending on other molecules, an RNA World is a plausible precursor of today’s DNA
and protein based world. Although to this day, there are no natural self-replicating RNA found in vivo, self-
replicating RNA molecules have been created in lab via artificial selection. For example, a chimeric construct
of a natural ligase ribozyme with an in vitro selected template binding domain has been shown to be able
to replicate at least one turn of an RNA helix. For this reason, Gilbert proposed RNA as a plausible origin
for life. The theory suggests that through evolution, RNA has passed its information storage role to DNA, a
more stable molecule and one less prone to mutation. RNA then assumed the role of intermediate between
DNA and proteins, which took over some of RNA’s catalytic role in the cell. Thus, scientists sometimes
refer to RNA as molecular fossils. Even though RNA has lost a lot of its information-storage functionality
to DNA and its functional properties to proteins, RNA still plays an integral role in the living organisms.
For instance, the catalytic portion of the ribosome i.e. the main functional part of the ribosomal complex
consists of RNA. RNA also has regulatory roles in the cell, and basically serves as an agent for the cell to
sense and react to the environment.

10.3.1 Riboswitches

Regulatory RNAs have different families, and one of the most important ones are riboswitches. Ri-
boswitches are involved in different levels of gene regulation. In some bacteria, important regulations are
done by simple RNA families. One example is the thermosensor in Listeria, a riboswitch that blocks the
ribosomes at low temperature (since the hydrogen bonds are more stable). The RNA then forms a semi-
double stranded conformation which does not bind to the ribosome and turns the ribosome off. At higher
temperatures (37 C), the double strand opens up and allows ribosome to attach to a certain region in the
riboswitch, making translation possible once again. Another famous Riboswitch is the adenine Riboswitch
(and in general purine riboswitches) , which regulate protein synthesis. For example the ydhl mRNA which
has a terminator stem at the end and blocks it from translation, but when the Adenine concentration in-
creases in the cell, it binds to the mRNA and changes its conformation such that the terminator stem
disappears.

10.3.2 microRNAs

There are other sorts of RNAs such as microRNAs, a more modern variant of RNA (relatively). Their
discovery unveiled a novel non-protein layer of gene regulation (e.g. the EVF-2 and HOTAIR miRNAs).
EVF-2 is interesting because its transcribed from an ultra conserved enhancer, and separates from the
transcription string by forming a hairpin, and thereafter returns to the very same enhancer (along with a
protein Dlx-2) and regulates its activity. HOTAIR RNA induces changes in chromatin state, and regulates

175

6.047/6.878 Lecture 08: RNA Structure

the methylation of Histones, which in turn silences the HOX-D cluster.

10.3.3 Other types of RNA

We can also look at types of noncoding RNAs.

piRNAs are the largest class of small non-coding RNA molecules in animals. They are primarily involved
in the silencing of transposons, but likely have a lot of functions. They are also involved in epigenetic
modications, and post-transcriptional gene silencing.

lncRNAs are long transcripts produced that operate functionally as RNAs and are not translated into
proteins. Many studies implicate lncRNAs in epigenetic modications, maybe acting as a targeting mechanism
or as a molecular scaffold for Polycomb proteins. lncRNAs are likely to possess numerous functions, many
are nuclear, many are cytoplasmic.

10.4 RNA Structure

We have learned about different functions of RNA, and it should be clear by now how fundamental the role of
RNA in living systems is. Because it is impossible to understand how RNA actually does all these activities
in the cell, without knowing what its structure is, in this part we will look into the structure of RNA.

RNA structure can be studied in three different levels 10.1:

1. Primary structure: the sequence in which the bases (U, A, C, G) are aligned.

2. Seconary structure: the 2-D analysis of the [hydrogen] bonds between different parts of RNA. In other
words, where RNA becomes double-stranded, where RNA forms a hairpin or a loop or other similar
forms.

3. Tertiary structure: the complete 3-D structure of RNA, i.e. how the string bends, where it twists and
such.

As mentioned before, the presence of ribose in RNA enables it to fold and create double-helixes with
itself. The primary structure is fairly easy to obtain through sequencing the RNA. We are mainly interested
in understanding the secondary structure for RNA: where the loops and hydrogen bonds form and create
the functional attributes of RNA. Ideally, we would like to study the tertiary structure because this is the
final state of the RNA, and what gives it its true functionality. However, the tertiary structure is very hard
to compute and beyond the scope of this lecture.

Even though studying the secondary structure can be tricky, there are some simple ideas that work quite
well in predicting it. Unlike proteins, in RNA, most of the stabilizing]free energy for the molecule comes from
its secondary structure (rather than tertiary in case of proteins). RNAs initially fold into their secondary
structure and then form their tertiary structure, and therefore there are very interesting facts that we can
learn about a certain RNA molecule by just knowing its secondary structure.

Finally, another great property of the secondary structure is that it is usually well conserved in evolution,
which helps us improve the secondary structure predictions and also to find ncRNA (non-coding RNA)s.
There are widely used representations for the secondary structure of RNA:

176

6.047/6.878 Lecture 08: RNA Structure

Figure 10.1: Graphical representation of the hierarchy of RNA strucure complexity

Figure 10.2: The typical representation of RNA secondary structure in textbooks. It clearly shows the
secondary substructure in RNA.

© Stefan Washietl. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Figure 10.3: Graph drawing where the back-bone is a circle and the base pairings are the arcs within the
circle. Note that the graph is outer-planar, meaning the arcs do not cross.

Formally: A secondary structure is a vertex labeled graph on n vertices with an adjacency matrix A = (aij)
fulfilling:

• ai,i+1 = 1for1 ≤ i ≤ n1 (continuous backbone)

• For each i, 1 ≤ i ≤ N there is at most one aij = 1 where j 	 i + / − 1(a base only forms a pair with
one other at the time)

• If aij = akl = 1andi < k < jtheni < l < j (ignore pseudo knots)

177

© Stefan Washietl. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

© Stefan Washietl. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 08: RNA Structure

Figure 10.4: A machine readable dot-bracket notation, in which for each paired nucleotide you open a
bracket(and close it when you reach its match) and for each unpaired element you have a dot.

Figure 10.5: A matrix representation, in which you have a dot for each pair.

Figure 10.6: Mountain plot, in which for pairs you go one step up in the plot and if not you go one step to
the right.

10.5 RNA Folding Problem and Approaches

Finally, we get to the point where we want to study the RNA structure. The goal here is to predict the
secondary structure of the RNA, given its primary structure (or its sequence). The good news is we can
find the optimal structure using dynamic programming. Now in order to set up our dynamic programming
framework we would need a scoring scheme, which we would create using the contribution of each base pairing
to the physical stability of the molecule. In other words, we want to create a structure with minimum free
energy, in in our simple model we would assign each base pair an energy value. 10.7

Figure 10.7: Example of a scoring scheme for base pair matches. Note that G-U can form a wobble pair in
RNA.

The optimum structure is going to be the one with a minimum free energy and by convention negative
energy is stabilizing, and positive energy is non-stabilizing. Using this framework, we can use dynamic
programming (DP) to calculate the optimal structure because 1) this scoring scheme is additive 2) we
disallowed pseudo knots, which means we can divide the RNA into two smaller ones which are independent,
and solve the problem for these smaller RNAs.

We want to find a DP matrix Eij , in which we calculate the minimum free energy for subsequence i to

178

© Stefan Washietl. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

© Stefan Washietl. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

© Stefan Washietl. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 08: RNA Structure

j. The first approach to this is Nussinov’s algorithm.

10.5.1 Nussinov’s algorithm

The recursion formula for this problem was first described by Nussinov in 1978.

The intuition behind this algorithm is as follows: given a subsequence [i, j], there is either no edge
connecting to the ith base (meaning it is unpaired) or there is some edge connecting the ith base to the
kth base where i < k ≤ j (meaning the ith base is paired to the kth base). In the case were the ith base is
unpaired, the energy of the subsequence, Ei,j , simply reduces to the energy of the subsequence from i + 1
to j, Ei+1,j . This is the first term of the Nussinov recurrence relation. If the ith base is paired to the kth
base, however, then Ei,j reduces to the energy contribution of the i, k pairing, βi,k, plus the energy of the
subsequences formed by dividing [i+ 1, j] around k, Ei+1,k 1 and Ek+1,j . Choosing the k which minimizes−
that value yields the second term of the Nussinov recurrence relation. The optimal subsequence energy,
therefore, is the minimum of the subsequence energy when the ith base is paired with the optimal kth base
and when the ith base is unpaired. This produces the overall relation described in figure 10.8.

Figure 10.8: The recursion formula for Nussinov algorithm, along with a graphical depiction of how it works.

From this recurrence relation, we can see that the DP matrix will contain entries for all i, j where
1 ≤ i ≤ n and i ≤ j ≤ n and n is the length of the RNA sequence. In other words, the matrix will be
n ∗ n and only contain entries in the upper right triangle. The matrix is first initialized such that all values
on the diagonal are equal to zero. We then iterate over i = n − 1...1 and j = i + 1...n (bottom to top, left
to right) and fill each entry according to the recurrence relation. The overall score is the score of the [1, n]
subsequence, which is the upper right corner of the matrix. Figure 10.9 illustrates this procedure.

When we calculate the minimum free energy, we are often interested in the corresponding fold. In order
to recover the optimal fold from the DP algorithm, a traceback matrix is used to store pointers from each
entry to its parent entry. Figure 10.10 describes the backtracking algorithm.

This model is very simplistic and there are some limitations to it. Nussinov’s algorithm, as implemented
naively, does not take into account some of the limiting aspects of RNA folding. Most importantly, it does
not consider stacking interactions between neighboring pairs, a vital factor (even more so than hydrogen
bonds) in RNA folding. Figure 10.11

Therefore, it is desirable to integrate biophysical factors into our prediction. One improvement, for
instance, is to assign energies to graph faces (structural elements in figure 10.12), rather than single base
pairs. The total energy of the structure then becomes the sum of the energies of the substructures. The
stacking energies can be calculated by melting oligonucleotides experimentally.

179

6.047/6.878 Lecture 08: RNA Structure

Figure 10.9: The diagonal is initialized to 0. Then, the table is filled bottom to top, left to right ac-
cording to the recurrence relation. In this example, complimentary base pairings are scored as -1 and
non-complementary pairings are scored as 0. The optimal score for the entire sequence is found in the upper
right corner.

Figure 10.10: The traceback matrix Kij , filled during the recursion, holds the optimal secondary structure
when k is paired with i for a subsequence [i, j]. If i is unpaired in the optimal structure, Kij = 0.

Figure 10.11: Stacking between neighboring base pairs in RNA. The flat aromatic structure of the base
causes quantum interactions between stacked bases and changes its physical stability.

10.5.2 Zuker Algorithm

Therefore, we use a variant which includes stacking energies to calculate the RNA structure. This is called the
Zuker algorithm. Like Nussinovs, it assumes that the optimal structure is the one with the lowest equilibrium
free energy. Nevertheless, it includes the total energy contributions from the various substructures which is
partially determined by the stacking energy. Some modern RNA folding algorithms use this algorithm for
RNA structure predictions.

In the Zuker algorithm, we have four different cases to deal with. Figure 10.13 shows a graphical outline
of the decomposition steps. The procedure requires four matrices. Fij contains the free energy of the overall
optimal structure of the subsequence xij . The newly added base can be unpaired or it can form a pair. For

180

© Stefan Washietl. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

© Stefan Washietl. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 08: RNA Structure

Figure 10.12: Various internal substructures in a folded RNA. A hairpin is consisted of a terminal loop
connected to a paired region, an internal loop is an unpaired region within the paired region. A Bulge is a
special case of an interior loop with a single mis-pair. a Multi loop is a loop which consists of multiple of
these components (in this example two hairpins and a paired region, all connected to a loop).

the latter case, we introduce the helper matrix Cij , that contains the free energy of the optimal substructure
of xij under the constraint that i and j are paired. This structure closed by a base-pair can either be a
hairpin, an interior loop or a multi-loop.

The hairpin case is trivial because no further decomposition is necessary. The interior loop case is also
simple because it reduces again to the same decomposition step. The multi-loop step is more complicated.
The energy of a multi loop depends on the number of components, i.e. substructures that emanate from the
loop. To implicitly keep track of this number, there is a need for two additional helper matrices. Mij holds
the free energy of the optimal structure of xij under the constraint that xij is part of a multi loop with at
least one component. M1

ij holds the free energy of the optimal structure of xij under the constraint that xij
is part of a multi-loop and has exactly one component closed by pair (i, k) with i < k < j. The idea is to
decompose a multi loop in two arbitrary parts of which the first is a multi-loop with at least one component
and the second a multi-loop with exactly one component and starting with a base-pair.

These two parts corresponding to M and M1 can further be decomposed into substructures that we
already know, i.e. unpaired intervals, substructures closed by a base-pair,or (shorter) multi-loops. (The
recursions are also summarized in 10.13.

Figure 10.13: F describes the unpaired case, C is described by one of the three conditions : hairpin,interior
loop, or a composition of structures i.e. a multi loop. M1 is a multi loop with only one component, where
are M might have multiple of them. The | icon is notation for “or”.

In reality, however, at room temperature (or cell temperature), RNA is not actually in one single state,
but rather varies in a Thermodynamic ensemble of structure. Base pairs can break their bonds quite easily,
and although we might find an absolute optimum in terms of free energy, it might be the case that there is
another sub-optimal structure which is very different from what e predicted and has an important role in

181

© Stefan Washietl. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

© Stefan Washietl. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 08: RNA Structure

the cell. To fix the problem we can calculate the base pair probabilities to get the ensemble of structures,
and then we can have a much better idea of what the RNA structure probably looks like. In order to do
this, we utilize the Boltzman factor:

This gives us the probability of a given structure, in a thermodynamic system. We need to normalize
the temperature using the partition function Z,which is the weighted sum of all structures, based on their
Boltzman factor:

We can also represent this ensemble graphically, using a dot plot to visualize the base pair probabilities.
To calculate the specific probability for a base pair (i, j) , we need to calculate the partition function, which
is given by the following formula :

To calculate Z (the partition function over the whole structure), we use the recursion similar to the
Nussinovs Algorithm (known as McCaskill Algorithm).The inner partition function is calculated using the
formula:

With each of the additions corresponding to a different split in our sequence as the next figure illustrates.
Note that the addition are multiplied to the energy functions since it is expressed as a exponential.

Similarly the outer partition function is calculated with a the same idea using the formula:

corresponding to different splits in the area outside the base pairs (i, j).

182

6.047/6.878 Lecture 08: RNA Structure

10.6 Evolution of RNA

It is useful to understand the evolution of RNA structure, because it unveils valuable data, and can also give
us hints to refine our structure predictions. When we look into functionally important RNAs over time, we
realize their nucleotides have changed at some parts, but their structure is well-conserved.

In RNA there are a lot of compensatory mutations and consistent mutations. In a consistent
mutation, the structure doesnt change e.g. an AU pair mutates to form a G pair. In a compensatory
mutation there are actually two mutations, one disrupts the structure, but the second mutation restores
it, for example an AU pair changes to a CU which does not pair well, but in turn the U mutates to a G
to restore a CG pair. In an ideal world, if we have this knowledge, this is the be the key to predict the
RNA structure, because evolution never lies. We can calculate the mutual information content for two
different RNAs and compare it. In other words, you compare the probabilities of two base pair structures
agreeing randomly vs. if they have evolved to be conserve the structure.

The mutual information content is calculated via this formula:

If we normalize these probabilities, and store the MI in bits, we can plot it in a 3D model and track the
evolutionary signatures. In fact, this was the method for determining the structure of ribosomal RNAs long
before they were found by crystallography.

The real problem is that we dont have so much information, so what we usually do is combine the folding
prediction methods with phylogenetic information in order to get a reliable prediction. The most common
way to do this is to combine to Zuker algorithm with some covariance scores. For example, we add stabilizing
energy if we have a compensatory mutation, and destabilizing energy if we have a single nucleotide mutation.

10.7 Probabilistic Approach to the RNA Folding Problem

RNA-coding sequence inside the genome Finding RNA-coding sequences inside the genome is a very
hard problem. However there are ways to do it. One way is to combine the thermodynamic stability
information, with a normalized RNAfold score and then we can do a Support Vector Machine (SVM)
classification, and compare the thermodynamic stability of the sequence to some random sequences
of the same GC content and the same length and see how many standard deviations is the given
structure more stable that the expected value.
We can combine it with the evolutionary measure and see if the RNA is more conserved or not. This
gives us (with relative accuracy) an idea if the genomic sequence is actually coding an RNA.

We have studied only half of the story. Although the thermodynamic approach is a good way (and the
classic way) of folding the RNAs, some part of the community like to study it from a different aspect.

Lets assume for now that we dont know anything about the physics of RNA or the Boltzman factor.
Instead, we look into the RNA as a string of letters for which we want to find the most probable structure.
We have already learned about the Hidden Markov Models in the previous lectures. They are a nice way
to make predictions about the hidden states of a probabilistic system. The question is can we use Hidden
Markov models for the RNA folding problem? The answer is yes.

183

6.047/6.878 Lecture 08: RNA Structure

We can represent RNA structure as a set of hidden states of dots and brackets (recall the dot-bracket
representation of RNA in part 3). There is an important observation to make here: the positions and the
pairings inside the RNA are not independent, so we cannot simply have a state of an opening bracket without
any considerations of the events that are happening downstream.

Therefore we need to extend the HMM framework to allow for nested correlations. Fortunately, the
probabilistic framework to deal with such a problem already exists. It is known as stochastic context-free
grammar (SCFG).

Context Free Grammar in a nutshell
You have:

• Finite set of non-terminal symbols (states) e.g. {A,B,C} and terminal symbols e.g. {a, b, c}

• Finite set of Production rules. e.g. {A→ aB,B → AC,B → aa,→ ab}

• An initial (start) nonterminal

You want to find a way to get from one state to another (or to a terminal). A → aB → aAC →
aaaC → aaaab
In a stochastic CFG, the only difference is that each relation has a certain probability.e.g.P (B →
AC) = 0.25 P (B → aa) = 0.75

Phylogenetic evaluation is easily combined with SCFGs, since there are many probabilistic models for
phylogenetic data. The Probabilistic models are not discussed in detail in this lecture but the following
picture basically gives an analogy between the Stochastic models and the methods that we have see so far
in the class.

• Analogies to thermodynamic folding:

– CYK ↔ Minimum Free energy (Nussinov/Zuker)

– Inside/outside algorithm ↔ Partition functions (McCaskill)

• Analogies to Hidden Markov models:

– CYK Minimum ↔ Viterbi’s algorithm

– Inside/outside algorithm ↔ Forward/backwards algorithm

• Given a parameterized SCFG (Θ,Ω) and a sequence x, the Cocke-Younger-Kasami (CYK) dynamic
programming algorithm finds an optimal (maximum probability) parse tree π̂:

π̂ = argmaxProb(π, x|Θ,Ω)

• The Inside algorithm, is used to obtain the total probability of the sequence given the model summed
ovver all parse trees,

Prob(x|Θ,Ω) = ΣProb(x, π|Θ,Ω)

10.7.1 Application of SCFGs

• Consensus secondary structure prediction: Pfold

– First Phylo-SCFG

184

6.047/6.878 Lecture 08: RNA Structure

Figure 10.14: A) Single sequence: Terminal symbols are bases or base-pairs, Emission probabilities are base
frequencies in loops and paired regions B) Phylo-SCFG: Terminal symbols are single or paired alignment
columns, Emission probabilities calculated from phylogenetic model and tree using Felsenstein’s algorithmWe
to try to better understand RNA-RNA interactions.

• Structural RNA gene nding: EvoFold

– Uses Pfold grammar

– Two competing models:

∗ Non-structural model with all columns treated as evolving independently

∗ Structural model with dependent and independent columns

– Sophisticated parametrization

10.8 Advanced topics

There still remain a host of other problems that need to be solved by studying RNA structure. This section
will profile some of them.

10.8.1 Other problems

Observe some of the problems depicted graphically below:

185

© Stefan Washietl. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 08: RNA Structure

Figure 10.15: We can study kinetics and folding pathways in further depth.

Figure 10.16: We can investigate pseudoknots.

186

© Stefan Washietl. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

© Stefan Washietl. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 08: RNA Structure

Figure 10.17: We can try to better understand RNA-RNA interactions.

10.8.2 Relevance

There are plenty of RNAs inside the cell aside from mRNAs, tRNAs and rRNAs. The question is what is
the relevance of all this non-coding RNA? Some believe it is noise resulted through experiment, some think
its just biological noise that doesnt have a meaning in the living organism. On the other hand some believe
junk RNA might actually have an important role as signals inside the cell and all of it is actually functional,
the truth probably lies somewhere in between.

10.8.3 Current research

There are conserved regions in the genome that do not code any proteins, and now Stefans et al.
are looking into them to see if they have structures that are stable enough to form functional RNAs.
It turns out that around 6% of these regions have hallmarks of good RNA structure, which is still
30000 structural elements. The group has annotated some of these elements, but there is still a long
way to go. a lot of miRNA, snowRNAs have been found and of course lots of false positives. But
there exciting results coming up in this topic! so the final note is, it’s a very good area to work in!

10.9 Summary and key points

1. The functional spectrum of RNAs is practically unlimited

(a) RNAs similar to contemporary Ribozymes and Riboswitches might have existed in an RNA world.
Some of them still exist as living fossils in current cells.

(b) Evolutionarily younger RNAs including miRNAs and many long ncRNAs form a non-protein
based regulatory layer.

187

© Stefan Washietl. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 08: RNA Structure

2. RNA structure is critical for their function and can be predicted computationally

(a) Nussinov/Zuker: Minimum Free Energy structure

(b) McCaskill: Partition function and pair probabilities

(c) CYK/Inside-Outside: probabilistic solution to the problem using SCFGs

3. Phylogenetic information can improve structure prediction

4. Computational biology of RNAs is an active eld of research with many hard algorithmic problems still
open

10.10 Further reading

• Overview

– Washietl S, Will S. et al. Computational analysis of noncoding RNAs. Wiley Interdiscip Rev
RNA. 2012, 10.1002/wrna.1134

• RNA function: review papers by John Mattick

• Single sequence RNA folding

– Nussinov R, Jacobson AB, Fast algorithm for predicting the secondary structure of single-stranded
RNA.Proc Natl Acad Sci U S A. 1980 Nov; 77:(11)6309-13

– Zuker M, Stiegler P Optimal computer folding of large RNA sequences using thermodynamics
and auxiliary information. Nucleic Acids Res. 1981 Jan; 9:(1)133-48

– McCaskill JS The equilibrium partition function and base pair binding probabilities for RNA
secondary structure. Biopolymers. 1990; 29:(6-7)1105-19

– Dowell RD, Eddy SR, Evaluation of several lightweight stochastic context-free grammars for RNA
secondary structure prediction. BMC Bioinformatics. 2004 Jun; 5:71

– Do CB, Woods DA, Batzoglou S, CONTRAfold: RNA secondary structure prediction without
physics-based models. Bioinformatics. 2006 Jul; 22:(14)e90-8

• Consensus RNA folding

– Hofacker IL, Fekete M, Stadler PF, Secondary structure prediction for aligned RNA sequences. J
Mol Biol. 2002 Jun; 319:(5)1059-66

– Knudsen B, Hein J, RNA secondary structure prediction using stochastic context-free grammars
and evolutionary history. Bioinformatics. 1999 Jun; 15:(6)446-54

• RNA gene finding

– Pedersen JS, Bejerano G, Siepel A, Rosenbloom K, Lindblad-Toh K, Lander ES, Kent J, Miller
W, Haussler D Identication and classication of conserved RNA secondary structures in the human
genome. PLoS Comput Biol. 2006 Apr; 2:(4)e33

– Washietl S, Hofacker IL, Stadler PF, Fast and reliable prediction of noncoding RNAs. Proc Natl
Acad Sci U S A. 2005 Feb; 102:(7)2454-9

188

6.047/6.878 Lecture 08: RNA Structure

Bibliography

[1] R Durbin. Biological Sequence Analysis.

[2] W. Gilbert. ”origin of life: The rna world”. Nature., 319(6055):618, 1986.

[3] Rachel Sealfon, 2012. Extra information taken from Recitation 5 slides.

[4] Z. Wang, M. Gestein, and M. Snyder. Rna-seq: a revolutionary tool for transcriptomics. Nat Rev Genet.,
10(1):57–63, 2009.

[5] Stefan Washietl, 2012. All pictures/formulas courtesy of Stefan’s slides.

[6] R. Weaver. Molecular Biology. 3rd edition.

189

6.047/6.878 Lecture 08: RNA Structure

190

CHAPTER

ELEVEN

RNA MODIFICATIONS

Figures
11.1 mRNA is not always an appropriate proxy for protein levels. 190

11.2 Discrepancy between mRNA levels and protein abundance. 190

11.3 The genetic signals which amino acids are mapped to specific three nucleotide sequences. 190

11.4 Depiction of ribosome profiles when Cyclohexamide (elongation freeze) or Harringtonine
are used (initiation freeze). 192

11.5 Ribosome profile when harringtonine is used vs. no drug. The red peaks show the different
places initiation of translation can start, depicting the different possible isoforms. 192

11.6 Ribosome profile when harringtonine is used vs. no drug. The red peaks previously un-
identified ORFs. 193

11.7 Ribosome profile when during rich conditions and starvation conditions. This images shows
the dramatic decrease in translation of proteins during starvation. The mRNA profile is
not indicative of this. 193

11.1 Introduction

Many ideas in biology rely on knowing the protein levels in a cell. Protein abundance is often extrapolated
from corresponding mRNA levels. This extrapolation is made as it is relatively easy to measure mRNA levels.
In addition, for a long time, it was thought that all of the regulation of expression occurred prior to mRNA
formation. Now, it is known that expression continues to be regulated at the translation stage. Figure 1
shows that the data available for post-transcriptional regulation is minimal and illustrates an example of
how mRNA levels are not indicative of protein abundance.

191

6.047/6.878 Lecture 9: RNA Modifications

images/BadProxy.png

Figure 11.1: mRNA is not always an appropriate proxy for protein levels.

There are many factors that may be affecting how mRNA is translated, causing mRNA level to not be
directly related to protein levels. These factors include:

1. Translation elongation rates
- depends on codon usage bias, tRNA adaptation, and RNA editing

2. Translation initiation rates
- depends on AUG frequency, TOP presence, type of initiation (cap-dependent/IRES), and secondary
structures

3. Translation termination rates
- depends on termination codon identity

4. mRNA degradation rates
- depends on polyA tail length, capping, mRNA editing, and secondary structure

5. Protein degradation rates
- depends on PEST sequences, protein stability, unstructured regions, and the presence of polar amino
acids

6. Cis and Trans regulatory elements
- depends on AU-rich elements, miRNAs, ncRNAs, and RNA-binding proteins

images/ProteinAbundance.png

Figure 11.2: Discrepancy between mRNA levels and protein abundance.

11.2 Post-Transcriptional Regulation

11.2.1 Basics of Protein Translation

For the basics of transcription and translation, refer to Lecture 1, sections 4.3 - 4.5.

images/GeneticCode.png

Figure 11.3: The genetic signals which amino acids are mapped to specific three nucleotide sequences.

The genetic code is almost universal.

192

6.047/6.878 Lecture 9: RNA Modifications

FAQ

Q: Why is genetic code so similar across organisms?

A: Genomic material is not only transmitted vertically (from parents) but also horizontally between
organisms. This gene interaction creates an evolutionary pressure for an universal genetic code.

FAQ

Q: What accounts for the slight differences in the genetic code across organisms?

A: Late/early evolutionary arrival of amino acids can account for the differences. Also, certain
species (e.g. bacteria in deep sea vents) have more resources to synthesize specific amino
acids, thus they will favor those in the genetic code.

Did You Know?
Threonine and Alanine are often accidentally interchanged by tRNA sythetase because they origi-
nated from one amino acid.

11.2.2 Measuring Translation

Translation efficiency is defined as,

[mRNA]
Teff =

[protein]

We are interested in seeing just how much of our mRNA is translated to protein, i.e. the efficiency. However,
specifically measuring how much mRNA becomes protein is a difficult task, one that requires a bit of
creativity. There are a variety of ways to tackle this problem, but each has its own downfalls:

1. Measure mRNA and protein levels directly
Pitfall: Does not consider rates of synthesis and degradation. This method measures the protein

levels for the ’old’ mRNA since there is a time lag from mRNA to protein.

2. Use drugs to inhibit transcription and translation
Pitfall: Drugs have side effects altering translation

3. Artificial fusion of proteins with tags
Pitfall: Protein tags can affect protein stability

4. Pulse label with radioactive nucleosides or amino acids (SILAC) **in use today**
Pitfall: Offers no information on dynamic changes: it is simply a snapshat of the resulting

mRNA and protein levels after X hours

193

6.047/6.878 Lecture 9: RNA Modifications

Another common technique is using ’ribosome profiling’ to measure protein translation at subcodon res-
olution. This is done by freezing ribosomes in the process of translation and degrading the non-ribosome
protected sequences. At this point, the sequences can be pieced back together and the frequency with which
a region is translated can be interpolated. The disadvantage to using these ribosome footprints, to see
which regions are being translated, is that regions in between ribosomes are lost. This technique requires an
RNA-seq in parallel.

The question remains, why is Ribosome profiling advantageous? This technique is a better approach to
measuring protein abundance as it:

1. Is a better measure of protein abundance

2. Is independent of protein degradation (compared to the protein abundance/mRNA ratio)

3. Allows us to measure codon-specific translation rates

Using ribosome profiling, it is possible to see which codon is being decoded: this is done by mapping
ribosome footprints and then deciphering the translating codon based on footprint length. We can the verify
our prediction by mapping translated codon profiles based on periodicity (three bases in a codon). The
technique can be improved even further by using anti-translation drugs such as harringtonine and cyclohex-
amide. Cyclohexamide blocks elongation and Harringtonine inhibits initiation. The later can be used to find
the starting points (which genes are about to be translated). Figure 4 shows the effects of the drugs on the
ribosome profiles.

images/TranslationDrugs.png

Figure 11.4: Depiction of ribosome profiles when Cyclohexamide (elongation freeze) or Harringtonine are
used (initiation freeze).

This technique has much more to offer than simply quantifying translation. Ribosome profiling allows
for:

1. Prediction of alternative isoforms (different places where translation can start)

images/AltIsoforms.png

Figure 11.5: Ribosome profile when harringtonine is used vs. no drug. The red peaks show the different
places initiation of translation can start, depicting the different possible isoforms.

2. Prediction of un-indentified ORFs (open reading frames)

194

6.047/6.878 Lecture 9: RNA Modifications

images/uORFs.png

Figure 11.6: Ribosome profile when harringtonine is used vs. no drug. The red peaks previously un-identified
ORFs.

3. Comparing translation across different environmental conditions

images/Conditions.png

Figure 11.7: Ribosome profile when during rich conditions and starvation conditions. This images shows the
dramatic decrease in translation of proteins during starvation. The mRNA profile is not indicative of this.

4. Comparing translation across life stages

Thus, we see that ribosome profiling is a very powerful tool with lots of potential to reveal previously
elusive information about the translation of a genome.

11.2.3 Codon Evolution

Basic concepts

Something to make clear is that codons are not used with equal frequencies. In fact, which codons can
be considered optimal differs across different species based on RNA stability, strand-specific mutation bias,
transcriptional efficacy, GC composition, protein hydropathy, and translational efficiency. Likewise, tRNA
isoacceptors are not used with equal frequencies within and across species. The motivation for the next
section is to determine how we may measure this codon bias.

Measures of Codon Bias

There are a few methods to accomplish this task:

a) Calculate the frequency of optimal codons, which is defined as “optimal” codons/ sum of “optimal”
and “non-optimal” codons. The limitations to this method are that this requires knowing which codon is
recognized by each tRNA and it assumes that tRNA abundance is highly correlated with tRNA gene copy
number.

b) Calculate a codon bias index. This measures the rate of optimal codons with respect to the total codons
encoding for that same amino acid. However, in this case the number of optimal codons are normalized with
respect to the expected random usage. CBI = (oopt − erand)/(otot − erand). The limitation of this method

195

6.047/6.878 Lecture 9: RNA Modifications

is that it requires a reference set of proteins, such as highly expressed ribosomal proteins.

c) Calculate a codon adaptation index. This measures the relative adaptiveness or deviation of the codon us-
age of a gene towards the codon usage of a reference set of proteins, i.e. highly expressed genes. It is defined
as the geometric mean of the relative adaptiveness values, measured as weights associated to each codon
over the length of the gene sequence (measured in codons). Each weight is computed as the ratio between
the observed frequency of a given codon and the frequency of its corresponding amino acid. The limita-
tion to this approach is that it requires the definition of a reference set of proteins, just as the last method did.

d) Calculate the effective number of codons. This measures the total number of different codons used
in a sequence, which measures the bias toward the use of a smaller subset of codons, away from equal use
of synonymous codons. Nc = 20 if only one codon is used per amino acid, and Nc = 61 when all possible
synonymous codons are used equally. The steps to the process are to compute the homozygosity for each
amino acid as estimated from the squared codon frequencies, obtain effective number of codons per amino
acid, and compute the overall number of effective codons. This method is advantageous because it does
not require any knowledge of tRNA-codon pairing, and it does not require any reference set However, it is
limited in that it does not take into account the tRNA pool.

e) Calculate the tRNA adaptation index. Assume that tRNA gene copy number has a high positive correla-
tion with tRNA abundance within the cell. This then measures how well a gene is adapted to the tRNA pool.

It is important to distinguish among when to use each index. The situation in which a certain index is
favorable is very context-based, and thus it is often preferable to use one index above all others when the
situation calls for it. By carefully choosing an index, one can uncover information about the frequency by
which a codon is translated to an amino acid.

RNA Modifications

The story becomes more complicated when we consider modifications that can occur to RNA. For instance,
some modifications can expand or restrict the wobbling capacity of the tRNA. Examples include insosine
modifications and xo5U modifications. These modifications allow tRNAs to decode a codon that they could
not read before. One might ask why RNA modification was positively selected in the context of evolution,
and the rationale is that this allows for the increase in the probability that a matching tRNA exists to decode
a codon in a given environment.

Examples of applications

There are a few natural applications that result form our understanding of codon evolution.

a) Codon optimization for heterologous protein expression
b) Predicting coding and non-coding regions of a genome
c) Predicting codon read-through
d) Understanding how genes are decoded - studying patterns of codon usage bias along genes

196

6.047/6.878 Lecture 9: RNA Modifications

11.2.4 Translational Regulation

There are many known means of regulation at the post-transcriptional level. These include modulation of
tRNA availability, changes in mRNA, and cis -and trans-regulatory elements. First, tRNA modulation has
a large impact. Changes in tRNA isoacceptors, changes in tRNA modifications, and regulation at tRNA
aminoacylation levels. Changes in mRNA that affect translation include changes in mRNA modification,
polyA tail, splicing, capping, and the localization of mRNA (importing to and exporting from nucleus). Cis-
and trans- regulatory elements include RNA interference (i.e. siRNA and miRNA), frameshift events, and
riboswitches. Additionally, many regulatory elements are still yet to be discovered!

11.3 Current Research Directions

11.4 Further Reading

11.5 Tools and Techniques

11.6 What Have We Learned?

Hopefully at the end of this chapter we have come to realize the importance in transcriptional regulation.
We see that mRNA levels are not 1:1 with protein levels. Additionally, we saw that the genetic code is
not universal, and what are considered preferred tRNA-codon pairs are dynamic. Likewise, synonymous
mutations are not equivalent across species. We have seen how powerful the technique of ribosome profiling
is, as it allows us to measure translation with subcodon resolution. Despite all this, it is possible to model
translation and codon evolutions using tools to help increase translation efficiency/folding of proteins in
heterologous systems, predict coding regions, understand cell type-specific translation patterns, and compare
translation between healthy and disease states. Finally, by analyzing translational regulation, we see how
protein levels are tuned, and we see that there are many different ways to achieve post-transcriptional
regulation. Perhaps we may come to realize that there is more interconnection between these different
regulation strategies than we originally thought.

Bibliography

197

6.047/6.878 Lecture 9: RNA Modifications

198

CHAPTER

TWELVE

LARGE INTERGENIC NON-CODING RNAS

Guest lecture by John Rinn
Scribed by Eli Stickgold (2010)

Figures
12.1 Tuxedo Tools . 200

12.2 How spaced seeds indexing works . 200

12.3 How Burrows-Wheeler indexing works . 201

12.4 An example of a gap in alignment . 201

12.5 An example of how to use the graph to find transcripts . 202

12.6 F1 . 202

12.7 F2 . 203

12.8 Technical variability follows a Poisson distribution . 204

12.9 Human fibroblasts specialize via epigenetic regulation to form different skin types based
on their location within the body. Research has found that the type of skin in the hands
shares a remarkably similar epigenetic signature to the skin in the feet, which is also distally
located. 205

12.10Two skin cell types are analyzed for their chromatin domains. There exists a clear boundary
between the lung cell type which is proximal to the body, and the foot cell type which is
distal to the body. 205

12.11Polycomb, a protein that can remodel chromatin so that epigenetic silencing of genes can
take place, may be regulated by non-coding RNA such as HOTAIR. 205

12.12lincRNAs neighbor developmental regulators . 207

12.1 Introduction

Epigenetics is the study of heritable changes in genetic expression and phenotype that do not result from
a sequence of DNA. Each cell, despite having an identical copy of the genome, is able to differentiate into

199

6.047/6.878 Lecture 11: Large Intergenic non-Coding RNAs

a specialized type. There are many biological devices for accomplishing these including DNA methylation,
histone modification, and various types of RNA.

DNA methylation is a binary code that is effectively equivalent to turning a gene ”on” or ”off”. However,
often times a gene might need to be more highly expressed as opposed to just being turned on. For this,
histones have tails that are subject to modification. The unique combination of these two elements on a
stretch of DNA can be thought of as a barcode for cell type. Even more important is the method of their
preservation during replication. In the case of DNA methylation, one appropriately methylated strand is
allocated to each mother or daughter cell. By leaving one trail behind, the cell is able to fill in the gaps and
appropriately methylate the other cell.

As the intermediary between DNA sequences and proteins, RNA is arguably the most versatile means of
regulation. As such, they will be the focus of this chapter.

Did You Know?
Cell types can be determined by histone modification or DNA methylation (a binary code, which
relies on a euchromatic and heterochromatic state). These histone modifications can be thought of
as a type of epigenetic barcode that allows cell DNA to be scanned for types. Non-coding RNAs
called Large Intergenic Non-Coding RNAs (lincRNAs) are heavily involved in this process.

A quick history of RNA:

• 1975: A lab testing relative levels of RNA and DNA in bull sperm discovers twice as much RNA as
DNA.

• 1987: After automated sequencing developed, weird non-coding RNAs are first found.

• 1988: RNA is proved to be important for maintaining chromosome structures, via chromatin archi-
tecture

• 1990s: A large number of experiments start to research

• 2000s: Study shows Histone-methyltransferases depend on RNA, as RNAase causes the proteins to
delocalize.

Transcription is a good proxy of what’s active in the cell and what will turn into protein. Microarrays
led to the discovery of twice as many non-coding genes as coding genes initially; now we know the ratio is
even far higher than this.

12.2 Noncoding RNAs from Plants to Mammals

Basic Cycle: large RNA gets chopped up into small RNAs (siRNAs) RNA use by category:

Protists: RNA is used as a template to splice out DNA (RNA-dependent DNA elimination and splicing)

mRNA and DNA in nucleus: DNA chopped and recombined based on gaps in mRNA (“quirky phenom-
ena”)

Plants: RNA-dependent RNA polymerase, where the polymerase takes template of RNA and make a copy
of it, is available in plants but not humans, and can make small RNAs. Mammals have at most one

200

6.047/6.878 Lecture 11: Large Intergenic non-Coding RNAs

copies. Very different than RNA polymerase and DNA polymerase in structure. From this, we know
that plants do DNA methylation with noncoding RNA.

Flies: use RNAs for an RNA switch; coordinated regulation of hox gene requires noncoding RNA.

Mammals: Non-coding RNAs can form triple helices, guide proteins to them; chromatin-modifying com-
plexes; involved in germ line; guide behaviour of transcription factors.

For the rest of this talk, we focus on specifically lincRNA, which we will define as RNA larger than 200
nucleotides.

12.2.1 Long non-coding RNAs

There are a number of different mechanisms and biological devices by which epigenetic regulation occurs.
One of these is long non-coding RNAs which can be thought of as fulfilling an air traffic control function
within the cell.

Long non-coding RNAs share many similar characteristics with microRNAs. They are spliced, contain
multiple exons, are capped, and poly-adenuated. However, they do not have open reading frames. They
look just like protein coding genes, but cannot.

They are better classified by their anatomical position:

Antisense: These are encoded on the opposite strand of a protein coding gene.

Intronic: Entirely contained with an intron of a protein coding gene.

Bidirectional: These share the same promoter as a protein coding gene, but are on the opposite side.

Intergenic: These do not overlap with any protein coding genes. Think of them as sitting blindly out in
the open. They are much easier targets and will be the focus of this chapter.

12.3 Practical topic: RNAseq

RNA-seq is a method that utilizes next-generation sequencing technology to sequence cDNA allowing us to
gain insight into the contents of RNA. The two main problems that RNA-seq addresses are (1) discover new
genes such as splice isoforms of previously discovered genes and (2) uncover the expression levels of genes and
transcripts from the sequencing data. Additionally, RNA-seq is also beginning to replace many traditional
sequencing techniques allowing labs to perform experiments more efficiently.

12.3.1 How it works

The RNA-Seq machine grabs a transcript and breaks it into different fragments, where the fragments are
normally distributed. With the speed that the RNA-seq can sequence these transcript fragments (or reads),
there are an abundant number of reads allowing us to extract expression levels. The basic idea behind this
method relies on the fact that the more abundant a transcript is, the more fragments we’ll sequence from it.

201

6.047/6.878 Lecture 11: Large Intergenic non-Coding RNAs

The tools used to analyze RNA-Seq data are collectively known as the “Tuxedo Tools”

Figure 12.1: Tuxedo Tools

12.3.2 Aligning RNA-Seq reads to genomes and transcriptomes

Since RNA-Seq produces so many reads, the alignment algorithm must have a fast runtime, approximately
of the order of O(n). There are two main strategies for aligning short reads, which require that we already
have the transcripts.

1. Spaced seeds indexing

Figure 12.2: How spaced seeds indexing works

Spaced seeds indexing involves taking each read and breaking it into fragments, or “seeds”. We take
every combination of two fragments (“seed pairs”) and compare them to an index of seeds (which will

202

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 11: Large Intergenic non-Coding RNAs

take tens of gigabytes of space) for potential hits. Compare the other seeds to the index to make sure
we have a hit.

2. Burrows-Wheeler indexing

Figure 12.3: How Burrows-Wheeler indexing works

Burrows-Wheeler indexing takes the genome and scrambles it up in such a way such that you can look
at the read one character at a time and throw out a huge chunk of the genome as possible alignment
positions very quickly.

One major problem with these two general purpose alignment strategies is that they don’t account for
large gaps in alignment.

Figure 12.4: An example of a gap in alignment

To get around this, TopHat breaks the reads into smaller pieces. These pieces are aligned and reads with
pieces that are mapped far apart are flagged for possible intron sites. The pieces that weren’t able to be
aligned are used to confirm the splice sites. The reads are then stitched back together to make full read
alignments.

There are two strategies for assembling transcripts based on RNA-Seq reads.

203

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 11: Large Intergenic non-Coding RNAs

1. Genome-guided approach (used in software such as Cufflinks)

The idea behind this approach is that we don’t necessarily know if two reads come from the same
transcript, but we will know if they come from different transcripts. The algorithm is as follows: take
the alignments and put them in a graph. Add an edge from x→ y if x is to the left of y in the genome,
x and y overlap consistently, and y is not contained in x. So we have an edge from x→ y if they might
come from the same transcript.

Figure 12.5: An example of how to use the graph to find transcripts

If we walk across this graph from left to right, we get a potential transcript. Applying Dilworth’s
theorem to read partial orders, we can see that the size of the largest antichain in the graph is the
minimum number of transcripts needed to explain the alignment. An antichain is a set of alignments
with the property that no two are compatible (i.e. could arise from the same transcript)

2. Genome-independent approach (used in software such as trinity)

The genome-independent approach attempts to piece together the transcripts directly from the reads
using classical methods for overlap based read assembly, similar to the genome assembly methods.

12.3.3 Calculating expression of genes and transcripts

We want to count the number of reads from each transcript to find the expression level of the transcript.
However, since we divide transcripts into equally-sized fragments, we run into the problem that longer
transcripts will naturally produce more reads than a shorter transcript. To account for this, we compute
expression levels in FPKM, fragments per kilobase per million fragments mapped.

Likelihood function for a gene

Suppose we sequence a particular read, call it F1.

Figure 12.6: F1

204

6.047/6.878 Lecture 11: Large Intergenic non-Coding RNAs

In order to get this particular read, we need to pick the particular transcript it’s in and then we need to
pick this particular read out from the whole transcript. If we define γgreen to be the relative abundance of
the green transcript, then we have

γgreen
P (F1|γgreen) =

lgreen

where lgreen is the length of the green transcript. Now suppose we look at a different read, F2.

Figure 12.7: F2

It could have come from either the green transcript of the blue transcript, so:

γ
P (F2| green

γ) =
lgreen

+
γblue

lblue

We can see that the probability of getting both F1 and F2 is just the product of the individual probabilities:

γ
P (F | green

γ) =
lgreen

· (γgreen

lgreen
+
γblue

)
lblue

We define this as our likelihood function, L(F |γ). Given an input of abundances, we get a probability
of how likely our sequence of reads is. So from a set of reads and transcripts, we can build a likelihood
function and calculate the values for gamma that will maximize this function. Cufflinks achieves this using
hill climbing or EM on the log-likelihood function.

12.3.4 Differential analysis with RNA-Seq

Suppose we perform an RNA-Seq analysis for a gene under two different conditions. How can we tell if
there is a significant difference in the fragment counts? We calculate expression by estimating the expected
number of fragments that come from each transcript. To test for significance, we need to know the variance
of that estimate. We model the variance as:

Var(expression) = Technical variability + Biological variability

Technical variability, which is variability from uncertainty in mapping reads, can be modeled well with a
Poisson distribution (see figure below). However, using Poisson to model biological variability, or variability
across replicates, results in overdispersion.

205

6.047/6.878 Lecture 11: Large Intergenic non-Coding RNAs

Figure 12.8: Technical variability follows a Poisson distribution

In the simple case where we have variability across replicates, but no uncertainty, we can mix the Poisson
distributions from each replicate into a new distribution to model biological variability. We can treat the
lambda parameter of the Poisson distribution as a random variable that follows a gamma distribution:

X ∼ Poisson(Γ(r, p))

The counts from this model follow a negative binomial distribution. To figure out the parameters for the
negative binomial for each gene, we can fit a gamma function through a scatter plot of the mean count vs.
count variance across replicates.

In the simple case where there is read mapping uncertainty, but not biological variability, we need to in-
clude the mapping uncertainty in our variance estimate. Since we assign reads to transcripts probabilistically,
we need to calculate the variance in that assignment.

The two threads of RNA-Seq expression analysis research focus on the problems in these two simple cases.
One of the threads focuses on inferring the abundances of individual isoforms to learn about differential
splicing and promoter use, while the other thread focuses on modeling variability across replicates to create
more robust differential gene expression analysis. Cuffdiff unites these two separate threads to study the
case where we have biological variability and read mapping ambiguity. Since overdispersion can be modeled
with a negative binomial distribution and mapping uncertainty can be modeled with a Beta distribution, we
combine these two to model this case with a beta negative binomial distribution.

12.4 Long non-coding RNAs in Epigenetic Regulation

Let’s examine human skin as an example of long non-coding RNAs being used in epigenetic regulation.
Human skin is huge, in fact it is the largest organ by weight in the body. It is intricate, with specialized
features, and it is constantly regenerating to replace old dead cells with new ones. The skin must be controlled
so hair only grows on the back of your hand rather than on your palm. Moreover, these boundaries cannot

206

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 11: Large Intergenic non-Coding RNAs

change and are maintained ever since birth.

The skin in all parts of the body is composed of an epithelial layer and a layer of connective tissue
made up of cells called fibroblasts. These fibroblasts secrete cytokine signals that control the outer layer,
determining properties such as the presence or absence of hair. Fibroblasts all around the body are identical
except for the specific epigenetic folding that dictates what type of skin will be formed in a given location.
Based on whether the skin is distal or proximal, interior or exterior, posterior or anterior, a different set of
epigenetic folds will determine the type of skin that forms.

Figure 12.9: Human fibroblasts specialize via epigenetic regulation to form different skin types based on
their location within the body. Research has found that the type of skin in the hands shares a remarkably
similar epigenetic signature to the skin in the feet, which is also distally located.

It has been found that specific HOX genes delineate these anatomical boundaries during development.
Just by looking at the human HOX genetic code, one can predict where a cell will be located. Using ChIP-
on-chip (chromatin immunoprecipitation microarrays) diamteric chromatin domains have been found among
these HOX genes. In the figure below, we can see a clear boundary between the chromatin domains of a cell
type located proximally and another located distally. Not only is this boundary precise, but it is maintained
across trillions of skin cells.

Figure 12.10: Two skin cell types are analyzed for their chromatin domains. There exists a clear boundary
between the lung cell type which is proximal to the body, and the foot cell type which is distal to the body.

HOTAIR or HOX transcript antisense intergenic RNA has been investigated as possible RNA regulator
that keeps these boundary between the diametric domains in chromatin. When HOTAIR was knocked out
in the HOXC locus, it was hypothesized that the chromatin domains might slip through into one another.
While it was found that this HOTAIR did not directly affect the epigenetic boundary, researchers did find
evidence of RNA based genomic cross talk. The HOTAIR gene affected a different locus called HOXD.

Figure 12.11: Polycomb, a protein that can remodel chromatin so that epigenetic silencing of genes can take
place, may be regulated by non-coding RNA such as HOTAIR.

Through a process of ncRNA dependent Polycomb repression, the HOTAIR sequence can control epige-
netic regulation. Plycomb is a portein that puts stop marks on the tails of histones so that they can cause
specific folds in the genetic material. On their own histones, are undirected, so it is necessary for some

207

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 11: Large Intergenic non-Coding RNAs

mechanism to dictate how they attach to the genome. This process of discovery has led to great interest in
the power of long intergenic non-coding RNAs to affect epigenetic regulation.

12.5 Integergenic Non-coding RNAs: missing lincs in Stem/Cancer
cells?

12.5.1 An example: XIST

XIST was one of the first lincRNAs to be characterized. It is directly involved in deactivation of one of
the female X chromosomes during embryonic development. It has been described as having the ability to
”crumple an entire chromosome”. This is important because deactivation prevents lethal overexpression of
genes found on the X chromosome.

RNA is important for getting polychrome complex to chromosome ncRNAs can activate downstream
genes in Cis, opposite in trans; Xist does the same thing.

12.6 Technologies: in the wet lab, how can we find these?

How would we find ncRNAs? We have about 20-30 examples of ncRNAs with evidence of importance, but
more are out there. Chromatin state maps (from ENCODE, chip-seq) can be used to find transcriptional
units that do not overlap proteins. We can walk along map and look for genes (look by eye at chromatin
map to find ncRNAs). Nearly 90% of time such a signature is found, RNA will be transcribed from it. We
can validate this through northern blot

When looking at a chromatin map to find ncRNAs, we are essentially looking through the map with a
window of a given size and seeing how much signal vs. noise we are getting, compared to what we might
expect from a random-chance hypothesis. As both large and small windows have benefits, both should be
used on each map section. Larger windows encapulate more information; smaller windows are more sensitive.

After finding integenic regions, we find conserved regions.

We check if new regions are under selective pressure; fewer mutations in conserved regions. If a nucleotide
never has a mutation between species, it’s highly conserved.

linc-RNAs are more conserved than introns, but less conserved than protein-coding introns, possibly due
to non-conserved sequences in loop regions of lincRNAs.

Finding what lincRNAs’ functions are: “Guilt by association”: We can find proteins that correlate with
particular lincRNA in terms of expression; lincRNAs are probably correlated to a particular pathway. In
this way, we acquire a multidimensional barcode for each lincRNA (what it is and is not related to). We
Can cluster lincRNA signatures and identify common patterns. Lots have to do with cell cycle genes. (This
approach works 60-70% of the time)

As most lincRNAs are over 3000 bases, many contain sequences for 100 amino acid open reading frames,
simply by chance. This results in many false negatives during detection.

208

6.047/6.878 Lecture 11: Large Intergenic non-Coding RNAs

It has been found that many lincRNAs tend to neighbor developmental regions of the genome. They also
tend to be lowly expressed compared to protein coding genes.

Figure 12.12: lincRNAs neighbor developmental regulators

12.6.1 Example: p53

Independent validation: we use animal models, where one is a wild-type p53, andone is a knockout. We
induce p53, then ask if lincRNAs turn on. 32 of 39 lincRNAs found associated with p53 were temporally
induced upon turning on p53.

One RNA in particular sat next to a protein-coding gene in the p53 pathway. We tried to figure out if
p53 bound to promoter and turned it on. To do this, we cloned the promoter of lincRNA, and asked does
p53 turn it on? We IPed the p53 protein, to see if it associated with the lincRNA of the promoter. It turned
out that lincRNA is directly related to p53 - p53 turns it on. P53 also turns genes off - certain lincRNAs
act as a repressor.

From this example (and others), we start to see that RNAs usually have a protein partner

RNA can bring myriad of different proteins together, allowing the cell lots of diversity. In this way its
similar to phosphorylation. RNAs bind to important chromatin complexes, and is required for reprogramming
skin cells into stem cells.

209

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 11: Large Intergenic non-Coding RNAs

12.7 Current Research Directions

12.8 Further Reading

12.9 Tools and Techniques

12.10 What Have We Learned?

Bibliography

[1] R.P. Dilworth. A decomposition theorem for partially ordered sets. Annal of Mathematics, 1950.

[2] Mitchell Guttman, Manuel Garber, Joshua Z Levin, Julie Donaghey, James Robinson, Xian Adiconis,
Lin Fan, Magdalena J Koziol, Andreas Gnirke, Chad Nusbaum, and et al. Ab initio reconstruction of cell
type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincrnas. Nature
Biotechnology, 28(5):503–510, 2010.

[3] C. Trapnell.

210

CHAPTER

THIRTEEN

SMALL RNA

Guest Lecture by David Bartel (MIT/Whitehead/HHMI)
Scribed by Boyang Zhao (2011)

Figures
13.1 siRNA and miRNA biogenesis pathways . 213

13.2 Protein and mRNA changes following miR-223 loss . 214

13.1 Introduction

Large-scale analyses in the 1990s using expressed sequence tags have estimated a total of 35,000 - 100,000
genes encoded by the human genome. However, the complete sequencing of human genome has surprisingly
revealed that the numbers of protein-coding genes are likely to be ∼20,000 – 25,000 [12]. While this represents
<2% of the total genome sequence, whole genome and transcriptome sequencing and tiling resolution genomic
microarrays suggests that over >90% of the genome is still actively transcribed [8], largely as non-protein-
coding RNAs (ncRNAs). Although initial speculation has been that these are non-functional transcriptional
noise inherent in the transcription machinery, there has been rising evidence suggesting the important role
these ncRNAs play in cellular processes and manifestation/progression of diseases. Hence these findings
challenged the canonical view of RNA serving only as the intermediate between DNA and protein.

13.1.1 ncRNA classifications

The increasing focus on ncRNA in recent years along with the advancements in sequencing technologies (i.e.
Roche 454, Illumina/Solexa, and SOLiD; refer to [16] for a more details on these methods) has led to an
explosion in the identification of diverse groups of ncRNAs. Although there has not yet been a consistent
nomenclature, ncRNAs can be grouped into two major classes based on transcript size: small ncRNAs (<200

211

6.047/6.878 Lecture 12: Small RNA

nucleotides) and long ncRNAs (lncRNAs) (≥200 nucleotides) (Table 13.1) [6, 8, 13, 20, 24]. Among these,
the role of small ncRNAs microRNA (miRNA) and small interfering RNA (siRNA) in RNA silencing have
been the most well-documented in recent history. As such, much of the discussion in the remainder of this
chapter will be focused on the roles of these small ncRNAs. But first, we will briefly describe the other
diverse set of ncRNAs.

Table 13.1: ncRNA classifications (based on [6, 8, 13, 20, 24])

Name Abbreviation Function

Housekeeping RNAs
Ribosomal RNA rRNA translation
Transfer RNA tRNA translation
Small nucleolar RNA snoRNA (∼60-220 nt) rRNA modification
Small Cajal body-specific RNA scaRNA splicesome modification
Small nuclear RNA snRNA (∼60-300 nt) RNA splicing
Guide RNA gRNA RNA editing

Small ncRNAs (<200 nt)

MicroRNA miRNA (∼19-24 nt) RNA silencing
Small interfering RNA siRNA (∼21-22 nt) RNA silencing
Piwi interacting RNA piRNA (∼26-31 nt) Transposon silencing, epigenetic

regulation
Tiny transcription initiation RNA tiRNA (∼17-18 nt) Transcriptional regulation?
Promoter-associated short RNA PASR (∼22-200 nt) unknown
Transcription start site antisense RNA TSSa-RNA (∼20-90 nt) Transcriptional maintainence?
Termini-associated short RNA TASR not clear
Antisense termini associated short RNA aTASR not clear
Retrotransposon-derived RNA RE-RNA not clear
3’UTR-derived RNA uaRNA not clear
x-ncRNA x-ncRNA not clear
Small NF90-associated RNA snaR not clear
Unusually small RNA usRNA not clear
Vault RNA vtRNA not clear
Human Y RNA hY RNA not clear

Long ncRNAs (≥200 nt)

Large intergenic ncRNA lincRNA Epigenetics regulation
Transcribed ultraconserved regions T-UCR miRNA regulation?
Pseudogenes none miRNA regulation?
Promoter upstream transcripts PROMPT Transcriptional activation?
Telomeric repeat-containing RNA TERRA telomeric heterochromatin main-

tenance
GAA-repeat containing RNA GRC-RNA not clear
Enhancer RNA eRNA not clear
Long intronic ncRNA none not clear
Antisense RNA aRNA not clear
Promoter-associated long RNA PALR not clear
Stable excised intron RNA none not clear
Long stress-induced non-coding transcripts LSINCT not clear

212

6.047/6.878 Lecture 12: Small RNA

13.1.2 Small ncRNA

For the past decades, there have been a number of well-studied small non-coding RNA species. All of these
species are either involved in RNA translation (transfer RNA (tRNA)) or RNA modification and processing
(small nucleolar RNA (snoRNA) and small nuclear RNA (snRNA)). In particular, snoRNA (grouped into
two broad classes: C/D Box and H/ACA Box, involved in methylation and pseudouridylation, respectively)
are localized in the nucleous and participates in rRNA processing and modification. Another group of small
ncRNAs are snRNAs that interact with other proteins and with each other to form splicesomes for RNA
splicing. Remarkably, these snRNAs are modified (methylation and pseudouridylation) by another set of
small ncRNAs - small Cajal body-specific RNAs (scaRNAs), which are similar to snoRNA (in sequence,
structure, and function) and are localized in the Cajal body in the nucleus. Yet in another class of small
ncRNAs, guide RNAs (gRNAs) have been shown predominately in trypanosomatids to be involved in RNA
editing. Many other classes have also been recently proposed (see Table 13.1) although their functional
roles remain to be determined. Perhaps the most widely studied ncRNA in the recent years are microRNAs
(miRNAs), involved in gene silencing and responsible to the regulation of more than 60% protein-coding genes
[6]. Given the extensive work that has been focused on RNAi and wide range of RNAi-based applications
that have emerged in the past years, the next section (RNA Interference) will be entirely devoted to this
topic.

13.1.3 Long ncRNA

Long ncRNAs (lncRNAs) make up the largest portion of ncRNAs [6]. However the emphasis placed on the
study of long ncRNA has only been realized in the recent years. As a result, the terminology for this family of
ncRNAs are still in its infancy and oftentimes inconsistent in the literature. This is also in part complicated
by cases where some lncRNAs can also serve as transcripts for the generation of short RNAs. In light of
these confusions, as discussed in the previous chapter, lncRNA have been arbitrarily defined as ncRNAs
with size greater than 200 nts (based on the cut-off in RNA purification protocols) and can be broadly
categorized into: sense, antisense, bidirectional, intronic, or intergenic [19]. For example, one particular
class of lncRNA called long intergenic ncRNA (lincRNA) are found exclusively in the intergenic region and
possesses chromatin modifications indicative of active transcription (e.g. H3K4me3 at the transcriptional
start site and H3K36me3 throughout the gene region) [8].

Despite the recent rise of interest in lncRNAs, the discovery of the first lncRNAs (XIST and H19),
based on searching cDNA libraries, dated back to the 1980s and 1990s before the discovery of miRNAs
[3, 4]. Later studies demonstrated the association of lncRNAs with polycomb group proteins, suggesting
potential roles of lncRNAs in epigenetic gene silencing/activation [19]. Another lncRNA, HOX Antisense
Intergenic RNA (HOTAIR), was recently found to be highly upregulated in metastatic breast tumors [11].
The association of HOTAIR with the polycomb complex again supports a potential unified role of lncRNAs in
chromatin remodeling/epigenetic regulation (in either a cis-regulatory (XIST and H19), or trans-regulatory
(e.g. HOTAIR) fashion) and disease etiology.

Recent studies have also identified HULC and pseudogene (transcript resembling real genes but contains
mutations that prevent their translation into functional proteins) PTENP1 that may function as a decoy in
binding to miRNAs to reduce the overall effectiveness of miRNAs [18, 25]. Other potential roles of lncRNAs
remains to be explored. Nevertheless, it is becoming clear that lncRNAs are less likely to be the result of
transcriptional noise, but may rather serve critical role in the control of cellular processes.

213

6.047/6.878 Lecture 12: Small RNA

13.2 RNA Interference

RNA interference has been one of the most significant and exciting discoveries in recent history. The impact
of this discovery is enormous with applications ranging from knockdown and loss-of-function studies to the
generation of better animal models with conditional knockdown of desired gene(s) to large-scale RNAi-based
screens to aid drug discovery.

13.2.1 History of discovery

The discovery of the gene silencing phenomenon dated back as early as the 1990s with Napoli and Jorgensen
demonstrating the down-regulation of chalcone synthase following introduction of exogenous transgene in
plants [17]. Similar suppression was subsequently observed in other systems [10, 22]. In another set unrelated
work at the time, Lee et al. identified in a genetic screen that endogenous lin-4 expressed a non-protein-
coding product that is complementary to the lin-14 gene and controlled the timing of larval development
(from first to second larval state) in C. elegans [15]. We now know this as the first miRNA to be discovered.
In 2000, another miRNA, let-7, was discovered in the same organism and was found to be involved in
promoting the late-larval to adult transition [21]. The seminal work by Mello and Fire in 1998 (for which
was awarded the Nobel Prize in 2006) demonstrated that the introduction of exogenous dsRNA in C. elegans
specifically silenced genes via RNA interference, explaining the prior suppression phenomenon observed in
plants [7]. Subsequent studies found the conversion of dsRNA into siRNA in the RNAi pathway. In 2001, the
term miRNA and the link between miRNA and RNAi was described in three papers in Science [23]. With
this, we have come to realize the gene regulatory machinery was composed of predominately of two classes
small RNAs, with miRNA involved in the regulation of endogenous genes and siRNA involved in defense in
response to viral nucleic acids, transposons, and transgenes [5]. Later works revealed downstream effectors:
Dicers (for excision of precursor species) and Argonaute proteins (part of the RNA-induced silencing complex
to perform the actual silencing effects), completing our current understanding of the RNA silencing pathways.
The details of the mechanism and the differences among the species are further discussed below.

13.2.2 Biogenesis pathways

There is a common theme involved for both siRNA-mediated and miRNA-mediated silencing. In the biogen-
esis of both siRNA and miRNA, the double-stranded precursors are cleaved by a RNase into short ∼22 nt
fragments. One of the strands (the guide strand) is loaded into an Argonaute protein, a central component
of the larger ribonucleoprotien complex RISC that facilitates target RNA recognition and silencing. The
mechanism of silencing are either cleaveage of the target mRNA or translation repression.

Aside from this common theme, the proteins involved in these processes differ among species and there
exists additional steps in miRNA processing prior to its maturation and incorporation into RISC (Figure
13.1). For the biogenesis of siRNA, the precursors are dsRNAs, oftentimes from exogenous sources such as
viruses or transposons. However, recent studies have also found endogenous siRNAs [9]. Regardless of the
source, these dsRNAs are processed by the RNase III endonuclease, Dicer, into ∼22 nt siRNAs. This RNase
III-catalyzed cleavage leaves the characteristic 5’phosphates and 2 nt 3’ overhangs [2]. It is worth noting
that different species have evolved with different number of paralogs. This becomes important as, to be
discussed later, the miRNA biogenesis pathway also utilizes Dicer for the processing of miRNA precursors
(more specifically pre-miRNAs). For species such as D. melanogaster, there are two distinct Dicer proteins
and as a result there is typically a preferential processing of the precursors (e.g. Dicer-1 for miRNA cleavage
and Dicer-2 for siRNA cleavage) [5]. In contrast, mammals and nematodes only have a single Dicer protein
and as such both biogenesis pathways converge to the same processing step [5]. In subsequent steps of the

214

6.047/6.878 Lecture 12: Small RNA

siRNA biogenesis pathway, one of the strands in the siRNA duplex is loaded into RISC to silence target
RNAs (Figure 13.1C).

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
Source: Bartel, David P. "MicroRNAs: Genomics, Biogenesis, Mechanism, and
Function." Cell 116, no. 2 (2004): 281-97.

Figure 13.1: siRNA and miRNA biogenesis pathways. (A) Biogenesis of plant miRNA (B) Biogenesis of
animal miRNA (C) Biogenesis of animal siRNA. Adopted from Bartel, 2004 (ref [2]). Copyright © 2004
Cell Press.

In the miRNA biogenesis pathway, majority of the precursors are pol II transcripts of the intron regions,
some of which encode multiple miRNAs in clusters. These precursors, in the form of a stem-loop structure,
are named pri-miRNAs. The pri-miRNAs are first cleaved in the nucleus by a RNase III endonuclease
(Drosha in animals and Dcl1 in plants) into ∼60-70 nt stem loop intermediates, termed pre-miRNAs [2]. In
animals, the pre-miRNA is then exported into the cytoplasm by Exportin-5. This is followed by the cleavage
of pre-miRNA intermediate by Dicer to remove the stem loop. One of the strands in the resulting mature
miRNA duplex is loaded to RISC, similar to that described for siRNA biogenesis Figure 13.1B. Interestingly,
in plants, the pri-miRNA is processed into mature miRNA through two cleavages by the same enzyme, Dcl1,
in the nucleus before export into the cytoplasm for loading (Figure 13.1A).

13.2.3 Functions and silencing mechanism

The classical view of miRNA function based on the early discoveries of miRNA has been analogous to a
binary switch whereby miRNA represses translation of a few key mRNA targets to initiate a developmental

215

http://www.sciencedirect.com
http://dx.doi.org/10.1016/S0092-8674(04)00045-5
http://dx.doi.org/10.1016/S0092-8674(04)00045-5

6.047/6.878 Lecture 12: Small RNA

transition. However, subsequent studies have greatly broaden this definition. In plants, most miRNAs bind
to the coding region of the mRNA with near-perfect complementarity. On the other hand, animal miRNAs
bind with partial complementarity (except for a seed region, residues 2-8) to the 3’ UTR regions of mRNA.
As such, there are potentially hundreds targets by a single miRNA in animals rather than just a few [1].
In addition, in mammals, only a few portion of the predicted targets are involved in development, with
the rest predicted to cover a wide range of molecular and biological processes [2]. Lastly, miRNA silencing
acts through both translation repression and mRNA cleavage (and also destabilization as discussed below)(as
shown for example showed by Bartel and coworkers on the miR-196-directed cleavage of HOXB6 [26]). Taken
together, the modern view of miRNA function has been that miRNA dampens expression of many mRNA
targets to optimize expression, reinforce cell identity, and sharpen transitions.

The mechanism for which miRNA mediates the silencing of target mRNA is still an area of active research.
As previously discussed, RNA silencing can take the form of either cleavage, destabilization (leading to
subsequent degradation of the mRNA), or translation repression. In plants, it has been found that the
predominate mode of RNA silencing is through Argonaute-catalyzed cleavage. However, the contribution
of these different modes of silencing has been less clear in animals. Recent global analyses from the Bartel
group in collaboration with Gygi and Ingolia and Weissman shed light on this question. In a 2008 study,
Bartel and Gygi groups examined the global changes in protein level using mass spectrometry following
miRNA introduction or deletion [1]. Their results revealed the repression of hundreds of genes by individual
miRNAs, and more importantly mRNA destabilization accounts for majority of the highly repressed targets
(Figure 13.2).

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Baek, Daehyun, et al. "The Impact of MicroRNAs on Protein
Output." Nature 455, no. 7209 (2008): 64-71.

Figure 13.2: Protein and mRNA changes following miR-223 loss, from messages with at least one 8-mer
3’UTR site (blue) or at least one 7-mer (orange). Adopted from Baek et al., 2008 (ref [1]). Copyright © 2008
Macmillan Publishers Limited.

This is further supported by a subsequent study using both RNA-seq and a novel ribosome-profiling first
demonstrated by Inoglia and Weissman 2009 that enables the interrogation of global translation activities

216

http://dx.doi.org/10.1038/nature07242
http://dx.doi.org/10.1038/nature07242

6.047/6.878 Lecture 12: Small RNA

with sub-codon resolution [14]. The results showed destabilization of target mRNA is the predominate
mechanism through which miRNA reduces the protein output.

Bibliography

[1] Daehyun Baek, Judit Villén, Chanseok Shin, Fernando D Camargo, Steven P Gygi, and David P Bartel.
The impact of microRNAs on protein output. Nature, 455(7209):64–71, September 2008.

[2] David P Bartel. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116(2):281–97,
January 2004.

[3] M S Bartolomei, S Zemel, and S M Tilghman. Parental imprinting of the mouse H19 gene. Nature,
351(6322):153–5, May 1991.

[4] C J Brown, A Ballabio, J L Rupert, R G Lafreniere, M Grompe, R Tonlorenzi, and H F Willard. A
gene from the region of the human X inactivation centre is expressed exclusively from the inactive X
chromosome. Nature, 349(6304):38–44, January 1991.

[5] Richard W Carthew and Erik J Sontheimer. Origins and Mechanisms of miRNAs and siRNAs. Cell,
136(4):642–55, February 2009.

[6] Manel Esteller. Non-coding RNAs in human disease. Nature Reviews Genetics, 12(12):861–874, Novem-
ber 2011.

[7] A Fire, S Xu, M K Montgomery, S A Kostas, S E Driver, and C C Mello. Potent and specific genetic
interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391(6669):806–11, February
1998.

[8] Ewan a Gibb, Carolyn J Brown, and Wan L Lam. The functional role of long non-coding RNA in
human carcinomas. Molecular cancer, 10(1):38, January 2011.

[9] Daniel E Golden, Vincent R Gerbasi, and Erik J Sontheimer. An inside job for siRNAs. Molecular cell,
31(3):309–12, August 2008.

[10] S Guo and K J Kemphues. par-1, a gene required for establishing polarity in C. elegans embryos,
encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell, 81(4):611–20, May 1995.

[11] Rajnish A Gupta, Nilay Shah, Kevin C Wang, Jeewon Kim, Hugo M Horlings, David J Wong, Miao-
Chih Tsai, Tiffany Hung, Pedram Argani, John L Rinn, Yulei Wang, Pius Brzoska, Benjamin Kong, Rui
Li, Robert B West, Marc J van de Vijver, Saraswati Sukumar, and Howard Y Chang. Long non-coding
RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature, 464(7291):1071–6,
April 2010.

[12] Masahira Hattori. Finishing the euchromatic sequence of the human genome. Nature, 431(7011):931–45,
October 2004.

[13] Christopher L Holley and Veli K Topkara. An introduction to small non-coding RNAs: miRNA and
snoRNA. Cardiovascular Drugs and Therapy, 25(2):151–159, 2011.

[14] Nicholas T Ingolia, Sina Ghaemmaghami, John R S Newman, and Jonathan S Weissman. Genome-wide
analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science (New York,
N.Y.), 324(5924):218–23, April 2009.

[15] R C Lee, R L Feinbaum, and V Ambros. The C. elegans heterochronic gene lin-4 encodes small RNAs
with antisense complementarity to lin-14. Cell, 75(5):843–54, December 1993.

[16] Michael L Metzker. Sequencing technologies - the next generation. Nature Reviews Genetics, 11(1):31–
46, January 2010.

217

6.047/6.878 Lecture 12: Small RNA

[17] C. Napoli, C. Lemieux, and R. Jorgensen. Introduction of a Chimeric Chalcone Synthase Gene into
Petunia Results in Reversible Co-Suppression of Homologous Genes in trans. The Plant cell, 2(4):279–
289, April 1990.

[18] Laura Poliseno, Leonardo Salmena, Jiangwen Zhang, Brett Carver, William J Haveman, and Pier Paolo
Pandolfi. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology.
Nature, 465(7301):1033–8, June 2010.

[19] Chris P Ponting, Peter L Oliver, and Wolf Reik. Evolution and functions of long noncoding RNAs.
Cell, 136(4):629–41, February 2009.

[20] J. R. Prensner and A. M. Chinnaiyan. The Emergence of lncRNAs in Cancer Biology. Cancer Discovery,
1(5):391–407, October 2011.

[21] B J Reinhart, F J Slack, M Basson, A E Pasquinelli, J C Bettinger, A E Rougvie, H R Horvitz, and
G Ruvkun. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans.
Nature, 403(6772):901–6, February 2000.

[22] N Romano and G Macino. Quelling: transient inactivation of gene expression in Neurospora crassa by
transformation with homologous sequences. Molecular microbiology, 6(22):3343–53, November 1992.

[23] G Ruvkun. Molecular biology. Glimpses of a tiny RNA world. Science, 294(5543):797–9, October 2001.

[24] Ryan J Taft, Ken C Pang, Timothy R Mercer, Marcel Dinger, and John S Mattick. Non-coding RNAs:
regulators of disease. The Journal of pathology, 220(2):126–39, January 2010.

[25] Jiayi Wang, Xiangfan Liu, Huacheng Wu, Peihua Ni, Zhidong Gu, Yongxia Qiao, Ning Chen, Fenyong
Sun, and Qishi Fan. CREB up-regulates long non-coding RNA, HULC expression through interaction
with microRNA-372 in liver cancer. Nucleic acids research, 38(16):5366–83, September 2010.

[26] Soraya Yekta, I-Hung Shih, and David P Bartel. MicroRNA-directed cleavage of HOXB8 mRNA.
Science, 304(5670):594–6, April 2004.

218

Part III

Gene and Genome Regulation

219

CHAPTER

FOURTEEN

MRNA SEQUENCING FOR EXPRESSION ANALYSIS AND
TRANSCRIPT DISCOVERY

Guest lecture by Manuel Garber

Figures
14.1 Figure 1: Expression microarray process . 220

14.2 Spaced k-mer method of mapping reads to reference genome 221

14.3 Box 1: How Do We Calculate qMS? . 222

14.4 Figure 3: Reconstruction works by determining, for a particular window, the probability of
observing that number of reads (top left) given the uniform distribution of the total reads
(bottom left). This probability follows the Poisson distribution. 222

14.5 Figure 4: Process for reconstructing genome based on reads, using the scan distribution . 223

14.6 Figure 5: Alternative isoforms present a challenge for reconstruction, which must depend
on exon junction spanning reads . 223

14.7 Box 2: The Scripture Method . 224

14.1 Introduction

The purpose of mRNA sequencing (RNA-seq) is to measure the levels of mRNA transcripts for every gene
in a given cell. mRNA sequencing was a daunting task, and requires approximately 40 million aligned
reads in order to accurately measure mRNA transcripts.This did not become possible until 2009, when
next-generation sequencing technologies became more advanced and efficient.

In this chapter, we will explore the different techniques for using mRNA sequencing data to aid in gene
and transcript discovery as well as in expression analysis.

221

6.047/6.878 Lecture 11: mRNA sequencing for Expression Analysis and Transcript discovery

14.2 Expression Microarrays

Prior to the development of mRNA sequencing technology, mRNA levels were measured using expression
microarrays. These microarrays function by inserting a DNA probe on a slide and measuring the levels
transcripts that undergo complimentary hybridization with the DNA, a process that could analyze expression
on a gene by gene basis (Figure 1).

Figure 14.1: Figure 1: Expression microarray process

However, this technology has several limitations: it cannot distinguish mRNA isoforms, it cannot analyze
on the sequence, or digital level, it can only measure known transcripts, and the expression measurements
become less reliable for highly saturated transcript levels.

14.3 The Biology of mRNA Sequencing

The first step in mRNA sequencing is to lyse the cells of interest. This creates a mass of proteins, nucleotides,
and other molecules which are then filtered through so that only RNA (or specifically mRNA) molecules
remain. The resulting transcripts are then fragmented into reads 200-1000 base pairs long and undergo
a reverse transcription reaction to build a strand-specific DNA library. Finally, both ends of these DNA
fragments are sequenced. After establishing these sequenced reads, the computational part of RNA-Seq can
be divided into three parts: read mapping, reconstruction, and quantification.

14.4 Read Mapping - Spaced Seed Alignment

The idea behind read mapping is to align the sequenced reads to a reference genome. Sequence alignment
algorithms discussed in earlier chapters will not work for this case due to the scale of the problem. The
goal is to align millions of reads to the genome and would take too long if each was aligned individually.
Instead, we will introduce the Spaced Seed Alignment approach. This process begins by using the reference
genome to creating a hash table of 8-mers, which do not have to be contiguous. The positions of these stored
spaced seeds are mapped to the hash table. Using these spaced 8-mers, each read is then compared with
each possible position in the reference genome and scored based on the number of base pair matches (Figure
2).

More accurately, for each position, it is possible to calculate the score using the equation qMS =
−10 log10(1 − P (i|G, q)), where P (i|G, q) represents the probability that the read, q, is mapped to posi-
tion i of reference genome G. More details on deriving this score can be found in Figure 13.2.

It is possible to adjust the parameters of this method in order to alter the sensitivity, speed, and memory

222

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 11: mRNA sequencing for Expression Analysis and Transcript discovery

Figure 14.2: Spaced k-mer method of mapping reads to reference genome

of the algorithm. Using smaller k-mer seeds allows for less precise base pair matching (greater sensitivity),
but requires more matches to be attempted. Smaller seeds take up less memory, while larger seeds run faster.

There exist methods other than the one described above to perform this alignment. The most popular of
which is the Burrows-Wheeler approach. The Burrows-Wheeler transform is an even more efficient algorithm
for mapping reads and will be discussed in a later chapter. It is able to speed up the process of finding matches
in the large genome by reordering the genome in a very specific permutation. This allows reads to be matched
solely as a function of the length of the read and not the genome. As better sequencing technology allows
for larger read lengths, more algorithms will need to be developed to handle the extra processing.

Unlike ChIP-Seq, a similar technology, RNA-seq is more complex. This is because the read mapper needs
to worry about small exons interspersed between large introns and be able to find both sides of an exon. This
complexity can be overcome by using the above mentioned spaced seed matching technique, and detecting
when two k-mers from the same read are separated by a long distance. This would signal a possible intron
and can be fixe by then extending the k-mers to fill in gaps (SNO methods). Another method is to base
the alignment on contiguous reads, which are further fragmented into 20-30 bp regions. These regions are
remapped, and the positions with two or more different alignments are marked as splice junctions. Exon-first
aligners are faster than the previous methods, but come at a cost: they fail to differentiate psuedogenes,
prespliced genes, and transposed genes.

14.5 Reconstruction

Reconstruction of reads is a largely statistical problem. The goal is to determine a score for each fixed-sized
window in the genome. This score represents the probability of seeing the observed number of reads given
the window size. In other words, is the number of reads in a particular window unlikely given the genome?
The expected number of reads per window is derived from a uniform distribution based on the total number
of reads (Figure 3). This score is modeled by a Poisson distribution.

However, this score must account for the problem of multiple testing hypotheses, due to the approximately
150 million expected bases. One option for dealing with this is the Bonferroni correction, where the nominal

223

6.047/6.878 Lecture 11: mRNA sequencing for Expression Analysis and Transcript discovery

Figure 14.3: Box 1: How Do We Calculate qMS?

Figure 14.4: Figure 3: Reconstruction works by determining, for a particular window, the probability of
observing that number of reads (top left) given the uniform distribution of the total reads (bottom left).
This probability follows the Poisson distribution.

p-value = n * p-value. This method leads to low sensitivity, due to its very conservative nature. Another
option is to permute the reads observed in the genome, and find the maximum number of reads seen on
a single base. This allows for a max count distribution model, but the process is very slow. The scan
distribution speeds up this process by computing a closed form for max count distribution to account for
dependency of overlapping windows (Figure 4). The probability of observing k reads on a window of size w
in a genome of size L given a total of N reads can be approximated by [slide is not clear].

224

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 11: mRNA sequencing for Expression Analysis and Transcript discovery

Figure 14.5: Figure 4: Process for reconstructing genome based on reads, using the scan distribution

Choosing a window size is also an important decision, as genes exist at different expression levels and
span different orders of magnitude. Small windows are better at detecting punctuate regions, while larger
windows can detect longer spans of moderate enhancement. In most cases, windows of different sizes are
used to pick up signals of varying size.

Transcript reconstruction can be seen as a segmentation problem, with several challenges. As mentioned
above, genes are expressed at different levels, over several orders of magnitude. In addition, the reads used
for reconstruction are obtained from both mature and immature mRNA, the latter still containing introns.
Finally, many genes have multiple isoforms, and the short nature of reads makes it difficult to differentiate
between these different transcripts. A computational tool called Scripture uses a priori knowledge of fragment
connectivity to detect transcripts.

Alternative isoforms can only be detected via exon junction spanning reads, which contain the ends of
an exon. Longer reads have a greater chance of spanning these junctions (Figure 5). Scripture works by
modeling the reads using graph structure, where bases are connected to neighbor bases, as well as splice
neighbors. This process differs from the string graph technique, because it focuses on whole genome, and
does not map overlapping sequences directly. When sliding the window, Scripture can jump across splice
junctions yet still examine alternative isoforms. From this oriented connectivity graph, the program identifies
segments across the graph, and looks for significant segments (Box 2).

Figure 14.6: Figure 5: Alternative isoforms present a challenge for reconstruction, which must depend on
exon junction spanning reads

Direct transcript assembly is another method of reconstruction (as opposed to genome-guided methods
like Scripture). Transcript assembly methods are able to reconstruct transcripts from organisms without
a reference sequence, while genome-guided approaches are ideal for annotating high quality genomes and
expanding the catalog of expressed transcripts. Hybrid approaches are used for lesser quality transcripts or
transcriptomes that have underwent major rearrangements, such as those of cancer cells. Popular transcript

225

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 11: mRNA sequencing for Expression Analysis and Transcript discovery

assembly tools include Oasis, Trans-ABySS, and Trinity. Another popular genome-guided software is Cuf-
flinks. Regardless of methodology or software type, any sequencing experiment that produces more genome
coverage will experience better transcript reconstruction.

Figure 14.7: Box 2: The Scripture Method

14.6 Quantification

The goal of the quantification step is to score regions in the genome based on the number of reads. Recall
that each transcript is fragmented into many smaller reads. Therefore, it is insufficient to simply count
the number of reads per region, as this value would be influenced by (1) expression rates and (2) length of
transcript. The higher the expression rate of a transcript the more reads we will have for it. Similarly, the
longer a transcript is, the more reads we will have. This issue can be solved by normalizing the number of
reads by the length of the transcript and the total number of reads in the experiment. This provides the
RPKM value, or reads per kilobase of exonic sequence per million mapped reads.

This method is robust for genes with only one isoform. However, there is the possibility of overlap
between conflicting variants of a transcript. When multiple transcript variants are involved, this problem is
known as differential expression analysis. There are a few different methods for handling this complexity.
The exon intersection model scores only the constituent exons. The exon union model simply scores based on
a merged transcript, but can easily be biased based on the relative ratios of each isoform. A more thorough
model is the transcript expression model, which assigns unique reads to different isoforms.

226

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

CHAPTER

FIFTEEN

GENE REGULATION 1 –GENE EXPRESSION CLUSTERING

Ge Liu(2015)
Shau-Chieh Hsu (2015)
Franck Dernoncourt (2012)
Arvind Thiagarajan (2011)
Tahin Syed (2010)
Barrett Steinberg and Brianna Petrone (2009)
Mia Y. Qia (2008)

Figures
15.1 Clustering compared to classification. In clustering we group observations into clusters

based on how near they are to one another. In classification we want a rule that will
accurately assign labels to new points. 226

15.2 Gene expression values from microarray experiments can be represented as heat maps to
visualize the result of data analysis. 228

15.3 RNA-Seq reads mapping to a gene (c-fos) and its splice junctions. Densities along exon
represent read densities mapping to exons (in log10), arcs correspond to junction reads,
where arc width is drawn in proportion to number of reads in that junction. The gene is
downregulated in Sample 2 compared to Sample 1. 228

15.4 Transforming Figure 4 to a heatmap . 229

15.5 Gene expression level in log value comparison with reference sample 229

15.6 A sample matrix of gene expression values, represented as a heatmap and with hierarchal
clusters. [1] . 230

15.7 Using gene expression matrix to infer more about a disease and gene segment 230

15.8 The k-means clustering algorithm . 231

15.9 Examples of final cluster assignments of fuzzy k -means using k= 4 with centroids, correct
clusters, and most probable assigned clusters marked as crosses, shapes of points, and
colors respectively. Note that the original data set is non-Gaussian. 232

15.10K -Means as a Generative Model. Samples were drawn from normal distributions. 233

15.11K -Means as an expectation maximization (EM) algorithm. 234

15.12Comparison of clustering, HMM and motif discovery with respect to expectation minimiza-
tion (EM) algorithm. 234

227

6.047/6.878 Lecture 13: Gene Expression Clustering

15.13Hierarchical Clustering . 236

15.14Distance Metrics for Hierarchical Clustering. Clockwise from top left: minimum, maxi-
mum, average distance and centroid distance. 236

15.15Calculation of probability that you have more than r +’s in a randomly selected cluster. . 237

15.1 Introduction

In this chapter, we consider the problem of discerning similarities or patterns within large datasets. Finding
structure in such data sets allows us to draw conclusions about the process as well as the structure underlying
the observations. We approach this problem through the application of clustering techniques. The following
chapter will focus on classification techniques.

15.1.1 Clustering vs Classification

One important distinction to be made early on is the difference between classification and clustering. Clas-
sification is the problem of identifying to which of a set of categories (sub-populations) a new observation
belongs, on the basis of a training set of data containing observations or instances whose category member-
ship is known. The training set is used to learn rules that will accurately assign labels to new observations.
The difficulty is to find the most important features (feature selection).

In the terminology of machine learning, classification is considered an instance of supervised learning, i.e.
learning where a training set of correctly-identified observations is available. The corresponding unsupervised
procedure is known as clustering or cluster analysis, and involves grouping data into categories based on
some measure of inherent similarity, such as the distance between instances, considered as vectors in a multi-
dimensional vector space. The difficulty is to identify the structure of the data. Figure 15.1 illustrates the
difference between clustering and classification.

Figure 15.1: Clustering compared to classification. In clustering we group observations into clusters based
on how near they are to one another. In classification we want a rule that will accurately assign labels to
new points.

228

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 13: Gene Expression Clustering

15.1.2 Applications

Clustering was originally developed within the field of artificial intelligence. Being able to group similar
objects, with full implications of generality implied, is indeed a fairly desirable attribute for an artificial
intelligence, and one that humans perform routinely throughout life. As the development of clustering
algorithms proceeded apace, it quickly becomes clear that there was no intrinsic barrier involved in applying
these algorithms to larger and larger datasets. This realization led to the rapid introduction of clustering to
computational biology and other fields dealing with large datasets.

Clustering has many applications to computational biology. For example, let’s consider expression profiles
of many genes taken at various developmental stages. Clustering may show that certain sets of genes line
up (i.e. show the same expression levels) at various stages. This may indicate that this set of genes has
common expression or regulation and we can use this to infer similar function. Furthermore, if we find a
uncharacterized gene in such a set of genes, we can reason that the uncharacterized gene also has a similar
function through guilt by association.

Chromatin marks and regulatory motifs can be used to predict logical relationships between regulators
and target genes in a similar manner. This sort of analysis enables the construction of models that allow us
to predict gene expression. These models can be used to modify the regulatory properties of a particular
gene, predict how a disease state arose, or aid in targeting genes to particular organs based on regulatory
circuits in the cells of the relevant organ.

Computational biology deals with increasingly large and open-access datasets. One such example is the
ENCODE project [2]. Launched is 2003, the goal of ENCODE is to build a comprehensive list of functional
elements in the human genome, including elements that act at the protein and RNA levels, and regulatory
elements that control cells and circumstances in which a gene is active. ENCODE data are now freely and
immediately available for the entire human genome: http://genome.ucsc.edu/ENCODE/. Using all of this
data, it is possible to make functional predictions about genes through the use of clustering.

15.2 Methods for Measuring Gene Expression

The most intuitive way to investigate a certain phenotype is to measure the expression levels of functional
proteins present at a given time in the cell. However, measuring the concentration of proteins can be difficult,
due to their varying locations, modifications, and contexts in which they are found, as well as due to the
incompleteness of the proteome. mRNA expression levels, however, are easier to measure, and are often a
good approximation. By measuring the mRNA, we analyze regulation at the transcription level, without
the added complications of translational regulation and active protein degradation, which simplifies the
analysis at the cost of losing information. In this chapter, we will consider two techniques for generating
gene expression data: microarrays and RNA-seq.

15.2.1 Microarrays

Microarrays allow the analysis of the expression levels of thousands of preselected genes in one experiment.
The basic principle behind microarrays is the hybridization of complementary DNA fragments. To begin,
short segments of DNA, known as probes, are attached to a solid surface, commonly known as a gene chip.
Then, the RNA population of interest, which has been taken from a cell, is reverse transcribed to cDNA
(complementary DNA) via reverse transcriptase, which synthesizes DNA from RNA using the poly-A tail as
a primer. For intergenic sequences which have no poly-A tail, a standard primer can be ligated to the ends

229

http://genome.ucsc.edu/ENCODE/

6.047/6.878 Lecture 13: Gene Expression Clustering

of the mRNA. The resulting DNA has more complementarity to the DNA on the slide than the RNA. The
cDNA is than washed over the chip and the resulting hybridization triggers the probes to fluoresce. This can
be detected to determine the relative abundance of the mRNA in the target, as illustrated in figure 15.2.

Genes

Experiments

Figure 15.2: Gene expression values from microarray experiments can be represented as heat maps to visualize
the result of data analysis.

Two basic types of microarrays are currently used. Affymetrix gene chips have one spot for every gene
and have longer probes on the order of 100s of nucleotides. On the other hand, spotted oligonucleotide arrays
tile genes and have shorter probes around the tens of bases.

There are numerous sources of error in the current methods and future methods seek to remove steps
in the process. For instance, reverse transcriptase may introduce mismatches, which weaken interaction
with the correct probe or cause cross hybridization, or binding to multiple probes. One solution to this has
been to use multiple probes per gene, as cross hybridization will be different for each gene. Still, reverse
transcription is necessary due to the secondary structure of RNA. The structural stability of DNA makes it
less probable to bend and not hybridize to the probe. The next generation of technologies, such as RNA-Seq,
sequences the RNA as it comes out of the cell, essentially probing every base of the genome.

15.2.2 RNA-seq

0.0

2.0

4.0

0.0

2.0

4.0

S
am

pl
e

1
S

am
pl

e
2

c-fos

R
N

A
-S

eq
 re

ad
 d

en
si

ty
 (l

og
10

)

chr12

RNA-Seq reads mapped to gene body and splice junctions

Figure 15.3: RNA-Seq reads mapping to a gene (c-fos) and its splice junctions. Densities along exon represent
read densities mapping to exons (in log10), arcs correspond to junction reads, where arc width is drawn in
proportion to number of reads in that junction. The gene is downregulated in Sample 2 compared to Sample
1.

RNA-Seq, also known as whole transcriptome shotgun sequencing, attempts to perform the same function
that DNA microarrays have been used to perform in the past, but with greater resolution. In particular, DNA
microarrays utilize specific probes, and creation of these probes necessarily depends on prior knowledge of the
genome and the size of the array being produced. RNA-seq removes these limitations by simply sequencing
all of the cDNA produced in microarray experiments. This is made possible by next-generation sequencing

230

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 13: Gene Expression Clustering

technology. The technique has been rapidly adopted in studies of diseases like cancer [4]. The data from
RNA-seq is then analyzed by clustering in the same manner as data from microarrays would normally be
analyzed.

15.2.3 Gene Expression Matrices

Microarrays and RNA-seq are frequently used to compare the gene expression profiles of cells under various
conditions. The amount of data generated from these experiments is enormous. Microarrays can analyze
thousands of genes, and RNA-seq can, in principle, analyze every gene that is actively expressed. The
expression level of each of those genes is measured across a variety of conditions, including time courses,
stages of development, phenotypes, healthy vs. sick, and other factors.

To understand what the heatmap of a gene expression matrix (Figure 15.4) convey, we have to first
understand what the expression data matrix tells us. By using microarrays and RNA-seq, we can obtain
gene expression level in quantitative form in an experiment. If we have multiple experiments, we can construct
a value matrix (Figure 15.5) representing a log value of (T/R), where T is the gene expression level in test
sample and R is the gene expression level in reference sample.

Figure 15.4: Transforming Figure 4 to a heatmap

If we visualize the matrix as a heatmap, then we obtain the following new colored-matrix:

The Expression Matrix removed due to copyright restrictions.

Figure 15.5: Gene expression level in log value comparison with reference sample

These matrices can be clustered hierarchically showing the relation between pairs of genes, pairs of pairs,
and so on, creating a dendrogram in which the rows and columns can be ordered using optimal leaf ordering
algorithms.

231

http://compbio.uthsc.edu/microarray/lecture1.htm

6.047/6.878 Lecture 13: Gene Expression Clustering

Figure 15.6: A sample matrix of gene expression values, represented as a heatmap and with hierarchal
clusters. [1]

By revealing the hidden structure of a long segment of genome, we obtain great insight of what a fragment
of gene does, and subsequently understand more about the root cause of an unknown disease.

Image in the public domain. This graph was generated using the program Cluster from Michael Eisen, which is available from
http://rana.lbl.gov/EisenSoftware.htm, with data extracted from the StemBase database of gene expression data.

Figure 15.7: Using gene expression matrix to infer more about a disease and gene segment

This predictive and analytical power is increased due to the ability of biclustering the data; that is,
clustering along both dimensions of the matrix. The matrix allows for the comparison of expression profiles
of genes, as well as comparing the similarity of different conditions such as diseases. A challenge, though,
is the curse of dimensionality. As the space of the data increases, the clustering of the points diminishes.
Sometimes, the data can be reduced to lower dimensional spaces to find structure in the data using clustering
to infer which points belong together based on proximity.

Interpreting the data can also be a challenge, since there may be other biological phenomena in play. For

232

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Alizadeh, Ash A., Michael B. Eisen, et al. "Distinct Types of Diffuse Large B-cell
Lymphoma Identified by Gene Expression Profiling." Nature 403, no. 6769 (2000): 503-11.

https://en.wikipedia.org/wiki/File:Heatmap.png
http://dx.doi.org/10.1038/35000501
http://dx.doi.org/10.1038/35000501
http://rana.lbl.gov/EisenSoftware.htm

6.047/6.878 Lecture 13: Gene Expression Clustering

example, protein-coding exons have higher intensity, due to the fact that introns are rapidly degraded. At
the same time, not all introns are junk and there may be ambiguities in alternative splicing. There are also
cellular mechanisms that degrade aberrant transcripts through non-sense mediated decay.

15.3 Clustering Algorithms

To analyze the gene expression data, it is common to perform clustering analysis. There are two types
of clustering algorithms: partitioning and agglomerative. Partitional clustering divides objects into non-
overlapping clusters so that each data object is in one subset. Alternatively, agglomerative clustering methods
yield a set of nested clusters organized as a hierarchy representing structures from broader to finer levels of
detail.

15.3.1 K -Means Clustering

The k -means algorithm clusters n objects based on their attributes into k partitions. This is an example of
partitioning, where each point is assigned to exactly one cluster such that the sum of distances from each
point to its correspondingly labeled center is minimized. The motivation underlying this process is to make
the most compact clusters possible, usually in terms of a Euclidean distance metric.

Figure 15.8: The k-means clustering algorithm

The k-means algorithm, as illustrated in figure 15.8, is implemented as follows:

1. Assume a fixed number of clusters, k

2. Initialization: Randomly initialize the k means µk associated with the clusters and assign each data
point xi to the nearest cluster, where the distance between xi and µk is given by di,k = (xi − µk)2.

3. Iteration: Recalculate the centroid of the cluster given the points assigned to it: µk(n+ 1) =
x

∑ xi

i∈k
|xk|

where xk is the number of points with label k. Reassign data points to the k new centroids by the given
distance metric. The new centers are effectively calculated to be the average of the points assigned to
each cluster.

4. Termination: Iterate until convergence or until a user-specified number of iterations has been reached.
Note that the iteration may be trapped at some local optima.

233

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 13: Gene Expression Clustering

There are several methods for choosing k: simply looking at the data to identify potential clusters or
iteratively trying values for n, while penalizing model complexity. We can always make better clusters by
increasing k, but at some point we begin overfitting the data.

We can also think of k -means as trying to minimize a cost criterion associated with the size of each
cluster, where the cost increases as the clusters get less compact. However, some points can be almost
halfway between two centers, which doesn’t fit well with the binary belonging k -means clustering.

15.3.2 Fuzzy K -Means Clustering

In fuzzy clustering, each point has a probability of belonging to each cluster, rather than completely belonging
to just one cluster. Fuzzy k-means specifically tries to deal with the problem where points are somewhat in
between centers or otherwise ambiguous by replacing distance with probability, which of course could be some
function of distance, such as having probability relative to the inverse of the distance. Fuzzy k-means uses
a weighted centroid based on those probabilities. Processes of initialization, iteration, and termination are
the same as the ones used in k-means. The resulting clusters are best analyzed as probabilistic distributions
rather than a hard assignment of labels. One should realize that k-means is a special case of fuzzy k-means
when the probability function used is simply 1 if the data point is closest to a centroid and 0 otherwise.

Figure 15.9: Examples of final cluster assignments of fuzzy k -means using k= 4 with centroids, correct
clusters, and most probable assigned clusters marked as crosses, shapes of points, and colors respectively.
Note that the original data set is non-Gaussian.

The fuzzy k-means algorithm is the following:

1. Assume a fixed number of clusters k

2. Initialization: Randomly initialize the k means µk associated with the clusters and compute the
probability that each data point xi is a member of a given cluster k, P (point xi has label k|xi, k).

3. Iteration: Recalculate the centroid of the cluster as the weighted centroid given the probabilities of
membership of all data points xi:

∑ b
xi × P (µk x

x
µk(n+ 1) = i

| i)
∈k

b
P (µk

xi∈k
|xi)

And recalculate updated memberships P (µ

∑
k|xi)(there are different ways to define membership, here

234

6.047/6.878 Lecture 13: Gene Expression Clustering

is just one example):
k

P (µk|xi) = (
∑ dik

(
j=1

djk
)

2
b−1)−1

4. Termination: Iterate until membership matrix converges or until a user-specified number of iterations
has been reached (the iteration may be trapped at some local maxima or minima)

The b here is the weighting exponent which controls the relative weights places on each partition, or the
degree of fuzziness. When b− > 1, the partitions that minimize the squared error function is increasingly
hard (non-fuzzy), while as b− >∞ the memberships all approach 1 , which is the fuzziest state. There is nok
theoretical evidence of how to choose an optimal b, while the empirical useful values are among [1, 30], and
in most of the studies, 1.5 6 b 6 3.0 worked well.

15.3.3 K -Means as a Generative Model

A generative model is a model for randomly generating observable-data values, given some hidden parameters.
While a generative model is a probability model of all variables, a discriminative model provides a conditional
model only of the target variable(s) using the observed variables.

In order to make k -means a generative model, we now look at it in a probabilistic manner, where we
assume that data points in cluster k are generated using a Gaussian distribution with the mean on the

center of cluster and a variance of 1, which gives P (x |µ 1
i k) = √

2π
exp{− (xi−µk)2 hastic2 }. This gives a stoc

representation of the data, as shown in figure 15.10. Now this turns to a maximum likelihood problem,
which, we will show in below, is exactly equivalent to the original k -means algorithm mentioned above.

Figure 15.10: K -Means as a Generative Model. Samples were drawn from normal distributions.

In the generating step, we want to find a most likely partition, or assignment of label, for each xi given the
mean µk. With the assumption that each point is drawn independently, we could look for the maximum
likelihood label for each point separately:

1
arg maxP (xi|µk) = arg max

k k
√

2π
exp

{
− (xi − µk)2

)
2

}
= arg min(xi − µ 2

k
k

This is totally equivalent to finding the nearest cluster center in the original k -means algorithm.

In the Estimation step, we look for the maximum likelihood estimate of the cluster mean µk, given the
partitions (labels):

1
arg max log P (xi µ) = arg max

µ

{ ∏
i

|

}
µ

∑
i

{
−

2
(xi − µ)2 + log(

1√ 2
)) min

π

}
= arg i

µ

∑
(x

2
i

− µ)

Note that the solution of this problem is exactly the centroid of the xi, which is the same procedure as the
original k -means algorithm.

235

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 13: Gene Expression Clustering

Unfortunately, since k-means assumes independence between the axes, covariance and variance are not
accounted for using k-means, so models such as oblong distributions are not possible. However, this issue
can be resolved when generalize this problem into expectation maximization problem.

15.3.4 Expectation Maximization

K-means can be seen as an example of EM (expectation maximization algorithms), as shown in figure
15.11 where expectation consists of estimation of hidden labels, Q, and maximizing of expected likelihood
occurs given data and Q. Assigning each point the label of the nearest center corresponds to the E step of
estimating the most likely label given the previous parameter. Then, using the data produced in the E step
as observation, moving the centroid to the average of the labels assigned to that center corresponds to the M
step of maximizing the likelihood of the center given the labels. This case is analogous to Viterbi learning. A
similar comparison can be drawn for fuzzy k-means, which is analogous to Baum-Welch from HMMs. Figure
15.12 compares clustering, HMM and motif discovery with respect to expectation minimization algorithm.

It should be noted that using the EM framework, the k means approach can be generalized to clusters
of oblong shape and varying sizes. With k means, data points are always assigned to the nearest cluster
center. By introducing a covariance matrix to the Gaussian probability function, we can allow for clusters
of different sizes. By setting the variance to be different along different axes, we can even create oblong
distributions.

Figure 15.11: K -Means as an expectation maximization (EM) algorithm.

Figure 15.12: Comparison of clustering, HMM and motif discovery with respect to expectation minimization
(EM) algorithm.

EM is guaranteed to converge and guaranteed to find the best possible answer, at least from an algorithmic

236

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 13: Gene Expression Clustering

point of view. The notable problem with this solution is that the existence of local maxima of probability
density can prevent the algorithm from convergin to the global maximum. One approach that may avoid
this complication is to attempt multiple initializations to better determine the landscape of probabilities.

15.3.5 The limitations of the K -Means algorithm

The k -means algorithm has a few limitations which are important to keep in mind when using it and before
choosing it. First of all, it requires a metric. For example, we cannot use the k -means algorithm on a set of
words since we would not have any metric.

The second main limitation of the k -means algorithm is its sensitivity to noise. One way to try to reduce
the noise is to run a principle component analysis beforehand. Another way is to weight each variable in order
to give less weight to the variables affected by significant noise: the weights will be calculated dynamically
at each iteration of the algorithm K-means [3].

The third limitation is that the choice of initial centers can influence the results. There exist heuristics
to select the initial cluster centers, but none of them are perfect.

Lastly, we need to know a priori the number of classes. As we have seen, there are ways to circumvent
this problem,√ essentially by running several times the algorithm while varying k or using the rule of thumb
k ≈ n/2 if we are short on the computational side. http://en.wikipedia.org/wiki/Determining_

the_number_of_clusters_in_a_data_set summarizes well the different techniques to select the number of
clusters. Hierarchical clustering provides a handy approach to choosing the number of cluster.

15.3.6 Hierarchical Clustering

While the clustering discussed thus far often provide valuable insight into the nature of various data, they
generally overlook an essential component of biological data, namely the idea that similarity might exist on
multiple levels. To be more precise, similarity is an intrinsically hierarchical property, and this aspect is not
addressed in the clustering algorithms discussed thus far. Hierarchical clustering specifically addresses this
in a very simple manner, and is perhaps the most widely used algorithm for expression data. As illustrated
in figure 15.13, it is implemented as follows:

1. Initialization: Initialize a list containing each point as an independent cluster.

2. Iteration: Create a new cluster containing the two closest clusters in the list. Add this new cluster to
the list and remove the two constituent clusters from the list.

One key benefit of using hierarchical clustering and keeping track of the times at which we merge certain
clusters is that we can create a tree structure that details the times at which we joined every cluster, as can
be seen in figure 15.13. Thus, to get a number of clusters that fits your problem, you simply cut at a cut-level
of your choice as in figure 15.13 and that gives you the number of clusters corresponding to that cut-level.
However, be aware that one potential pitfall with this approach is that at certain cut-levels, elements that
are fairly close in space (such as e and b in figure 15.13), might not be in the same cluster.

Of course, a method for determining distances between clusters is required. The particular metric used
varies with context, but (as can be seen in figure 15.14 some common implementations include the maximum,

237

http://en.wikipedia.org/wiki/Determining_the_number_of_clusters_in_a_data_set
http://en.wikipedia.org/wiki/Determining_the_number_of_clusters_in_a_data_set

6.047/6.878 Lecture 13: Gene Expression Clustering

Figure 15.13: Hierarchical Clustering

minimum, and average distances between constituent clusters, and the distance between the centroids of the
clusters.

Figure 15.14: Distance Metrics for Hierarchical Clustering. Clockwise from top left: minimum, maximum,
average distance and centroid distance.

Noted that when choosing the closest clusters, calculating all pair-wise distances is very time and space
consuming, therefore a better scheme is needed. One possible way of doing this is : 1) define some bounding
boxes that divide the feature space into several subspaces 2) calculate pair-wise distances within each box
3)shift the boundary of the boxes in different directions and recalculate pair-wise distances 4) choose the
closest pair based on the results in all iterations.

15.3.7 Evaluating Cluster Performance

The validity of a particular clustering can be evaluated in a number of different ways. The overrepre-
sentation of a known group of genes in a cluster, or, more generally, correlation between the clustering
and confirmed biological associations, is a good indicator of validity and significance. If biological data
is not yet available, however, there are ways to assess validity using statistics. For instance, robust clus-
ters will appear from clustering even when only subsets of the total available data are used to generate
clusters. In addition, the statistical significance of a clustering can be determined by calculating the proba-
bility of a particular distribution having been obtained randomly for each cluster. This calculation utilizes
variations on the hypergeometric distribution. As can be seen from figure 15.15, we can do this by calcu-
lating the probability that we have more than r +’s when we pick k elements from a total of N elements.
http://en.wikipedia.org/wiki/Cluster_analysis#Evaluation_of_clustering_results gives several
formula to assess the quality of the clustering.

238

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://en.wikipedia.org/wiki/Cluster_analysis#Evaluation_of_clustering_results
http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 13: Gene Expression Clustering

Figure 15.15: Calculation of probability that you have more than r +’s in a randomly selected cluster.

15.4 Current Research Directions

The most significant problems associated with clustering now are associated with scaling existing algorithms
cleanly with two attributes: size and dimensionality. To deal with larger and larger datasets, algorithms
such as canopy clustering have been developed, in which datasets are coarsely clustered in a manner intended
to pre-process the data, following which standard clustering algorithms (e.g. k-means) are applied to sub-
divide the various clusters. Increase in dimensionality is a much more frustrating problem, and attempt to
remedy this usually involve a two stage process in which appropriate relevant subspaces are first identified
by appropriate transformations on the original space and then subjected to standard clustering algorithms.

15.5 Further Reading

• Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Second Edition, February 2009. Found online at http://www-stat.
stanford.edu/~tibs/ElemStatLearn/download.html

• Numerical Recipes: The Art of Scientific Computing (3rd ed.). New York: Cambridge University
Press.

• McLachlan, G.J. and Basford, K.E. (1988) ”Mixture Models: Inference and Applications to Clustering”,
Marcel Dekker.

• Bezdek, J. C., Ehrlich, R., Full, W. (1984). FCM: The fuzzy c-means clustering algorithm. Computers
and Geosciences, 10(2), 191-203.

• http://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-clustering-1.html

• http://compbio.uthsc.edu/microarray/lecture1.html

15.6 Resources

• Cluster 3.0: open source clustering software that implements the most commonly used clustering
methods for gene expression data analysis.

239

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://www-stat.stanford.edu/~tibs/ElemStatLearn/download.html
http://www-stat.stanford.edu/~tibs/ElemStatLearn/download.html
http://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-clustering-1.html
http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 13: Gene Expression Clustering

• MATLAB: K-means clustering: http://www.mathworks.com/help/stats/kmeans.html ; Fuzzy C-
means clustering: http://www.mathworks.com/help/fuzzy/fcm.html; Hierarchical Clustering: http:
//www.mathworks.com/help/stats/linkage.html

• Orange is a free data mining software suite (see module orngClustering for scripting in Python):
http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm

• R (see Cluster Analysis and Finite Mixture Models)

• SAS CLUSTER

15.7 What Have We Learned?

To summarize, in this chapter we have seen that:

• In clustering, we identify structure in unlabeled data. For example, we might use clustering to identify
groups of genes that display similar expression profiles.

– Partitioning clustering algorithms, construct non-overlapping clusters such that each item is as-
signed to exactly one cluster. Example: k-means

– Agglomerative clustering algorithms construct a hierarchical set of nested clusters, indicating the
relatedness between clusters. Example: hierarchical clustering

– By using clustering algorithms, we can reveal hidden structure of a gene expression matrix, which
gives us valuable clues for understanding the mechanism of complicated diseases and categorizing
different diseases

• In classification, we partition data into known labels. For example, we might construct a classifier to
partition a set of tumor samples into those likely to respond to a given drug and those unlikely to
respond to a given drug based on their gene expression profiles. We will focus on classification in the
next chapter.

Bibliography

[1] http://en.wikipedia.org/wiki/File:Heatmap.png.

[2] http://genome.ucsc.edu/ENCODE/.

[3] J.Z. Huang, M.K. Ng, Hongqiang Rong, and Zichen Li. Automated variable weighting in k-means type
clustering. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 27(5):657 –668, may 2005.

[4] Christopher A. Maher, Chandan Kumar-Sinha, Xuhong Cao, Shanker Kalyana-Sundaram, Bo Han, Xiao-
jun Jing, Lee Sam, Terrence Barrette, Nallasivam Palanisamy, and Arul M. Chinnaiyan. Transcriptome
sequencing to detect gene fusions in cancer. Nature, 458(7234):97–101, Mar 05 2009.

240

http://www.mathworks.com/help/stats/kmeans.html
http://www.mathworks.com/help/fuzzy/fcm.html
http://www.mathworks.com/help/stats/linkage.html
http://www.mathworks.com/help/stats/linkage.html
http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm
http://en.wikipedia.org/wiki/File:Heatmap.png
http://genome.ucsc.edu/ENCODE/

CHAPTER

SIXTEEN

GENE REGULATION 2 –CLASSIFICATION

Arvind Thiagarajan
Fulton Wang
Salil Desai
David Charlton
Kevin Modzelewski
Robert Toscano

16.1 Introduction

In the previous chapter we looked at clustering, which provides a tool for analyzing data without any prior
knowledge of the underlying structure. As we mentioned before, this is an example of “unsupervised”
learning. This chapter deals with supervised learning, in which we are able to use pre-classified data to
construct a model by which to classify more datapoints. In this way, we will use existing, known structure
to develop rules for identifying and grouping further information.

There are two ways to do classification. The two ways are analogous to the two ways in which we perform
motif discovery: HMM, which is a generative model that allows us to actually describe the probability of a
particular designation being valid, and CRF, which is a discriminative method that allows us to distinguish
between objects in a specific context. There is a dichotomy between generative and discriminative approaches.
We will use a Bayesian approach to classify mitochondrial proteins, and SVM to classify tumor samples.

In this lecture we will look at two new algorithms: a generative classifier, Nave Bayes, and a discriminative
classifier, Support Vector Machines (SVMs). We will discuss biological applications of each of these models,
specifically in the use of Nave Bayes classifiers to predict mitochondrial proteins across the genome and the
use of SVMs for the classification of cancer based on gene expression monitoring by DNA microarrays. The
salient features of both techniques and caveats of using each technique will also be discussed.

Like with clustering, classification (and more generally supervised learning) arose from efforts in Artificial

241

6.047/6.878 Lecture 14:
Gene Regulation 2: Classification

Intelligence and Machine Learning. Furthermore, much of the motivating infrastructure for classification had
already been developed by probability theorists prior to the advent of either AI or ML.

16.2 Classification - Bayesian Techniques

Consider the problem of identifying mitochondrial proteins. If we look at the human genome, how do
we determine which proteins are involved in mitochondrial processes, or more generally which proteins are
targeted to the mitochondria1?1 This is particularly useful because if we know the mitochondrial proteins, we
can study how these proteins mediate disease processes and metabolic functions. The classification method
we will look considers 7 features for all human proteins:

1. targeting signal

2. protein domains

3. co-expression

4. mass spectrometry

5. sequence homology

6. induction

7. motifs

Our overall approach will be to determine how these features are distributed for both mitochondrial and
non-mitochondrial proteins. Then, given a new protein, we can apply probabilistic analysis to these seven
features to decide which class it most likely falls into.

16.2.1 Single Features and Bayes Rule

Let’s just focus on one feature at first. We must first assume that there is a class dependent distribution
for the features. We must first derive this distribution from real data. The second thing we need is the a
priori chance of drawing a sample of particular class before looking at the data. The chance of getting a
particular class is simply the relative size of the class. Once we have these probabilities, we can use Bayes
rule to get the probability a sample is in a particular class given the data(this is called the posterior). We
have forward generative probabilities, and use Bayes rules to perform the backwards inference. Note that it
is not enough to just consider the probability the feature was drawn from each class dependent distribution,
because if we knew a priori that one class(say class A) is much more common than the other, then it should
take overwhelming evidence that the feature was drawn from class B’s distribution for us to believe the
feature was indeed from class B. The correct way to find what we need based on both evidence and prior
knowledge is to use Bayes Rule:

(Class)
P (Class| =

(
P (feature|Class)P

feature)
P (feature)

)
1Mitochondria is the energy producing machinery of cell. Very early in life, the mitochondria was engulfed by the predecessor

to modern day eukaryotes, and now, we have different compartments in our cells. So the mitochonria has its own genome,
but it is very depleted from its own ancestral genome - only about 11 genes remain. But there are hundreds are genes that
make the mitochondria work, and these proteins are encoded by genes transcribed in the nucleus, and then transported to the
mitochondria. So the goal is to figure out which proteins encoded in the genome are targeted to the mitochondria. This is
important because there are many diseases associated with the mitochonria, such as aging.

242

6.047/6.878 Lecture 14:
Gene Regulation 2: Classification

• Posterior : P (Class|feature)

• Prior : P (Class)

• Likelihood : P (feature|Class)

This formula gives us exactly the connection we need to flip known feature probabilities into class proba-
bilities for our classifying algorithm. It lets us integrate both the likelihood we derive from our observations
and our prior knowledge about how common something is. In the case of mtDNA, for example, we can
estimate that mitochondrial DNA makes up something like 1500/21000 (i.e. less than 10%) of the human
genome. Therefore, applying Bayes rule, our classifier should only classify a gene as mitochondrial if there
is a very strong likelihood based on the observed features, since the prior probability that any gene
is mitochondrial is so low.

With this rule, we can now form a maximum likelihood rule for predicting an objects class based on an
observed feature. We want to choose the class that has the highest probability given the observed feature,
so we will choose Class1 instead of Class2 if:(

P (feature|Class1)P (Class1)
P (feature)

)
>
(
P (feature|Class2)P (Class2)

P (feature)

)
Notice that P (feature) appears on both sides, so we can cancel that out entirely, and simply choose the

class with the highest value of P (feature|Class)P (Class).

Another way of looking at this is as a discriminant function: By rearranging the formulas above and
taking the logarithm, we should select Class1 instead of Class2 precisely when

log
(
P (X|Class1)P (Class1) >P (X|Class2)P (Class2)

)
0

In this case the use of logarithms provide distinct advantages:

1. Numerical stability

2. Easier math (its easier to add the expanded terms than multiply them)

3. Monotonically increasing discriminators.

This discriminant function does not capture the penalties associated with misclassification (in other
words, is one classification more detrimental than other). In this case, we are essentially minimizing the
number of misclassifications we make overall, but not assigning penalties to individual misclassifications.
From examples discussed in class and in the problem set - if we are trying to classify a patient as having
cancer or not, it could be argued that it is far more harmful to misclassify a patient as being healthy if they
have cancer than to misclassify a patient as having cancer if they are healthy. In the first case, the patient
will not be treated and would be more likely to die, whereas the second mistake involves emotional grief but
no greater chance of loss of life. To formalize the penalty of misclassification we define something called a
loss function,Lkf , which assigns a loss to the misclassification of an object as class j when the true class is
class k (a specific example of a loss function was seen in Problem Set 2).

243

6.047/6.878 Lecture 14:
Gene Regulation 2: Classification

16.2.2 Collecting Data

The preceding tells us how to handle predictions if we already know the exact probabilities corresponding to
each class. If we want to classify mitochondrial proteins based on feature X, we still need ways of determining
the probabilities P (mito), P (not mito), P (X|mito) and P (X|not mito). To do this, we need a training set:
a set of data that is already classified that our algorithm can use to learn the distributions corresponding to
each class. A high-quality training set (one that is both large and unbiased) is the most important part
of any classifier. An important question at this point is, how much data do we need about known genes in
order to build a good classifier for unknown genes? This is a hard question whose answer is not fully known.
However, there are some simple methods that can give us a good estimate: when we have a fixed set of
training data, we can keep a holdout set that we dont use for our algorithm, and instead use those (known)
data points to test the accuracy of our algorithm when we try to classify them. By trying different sizes of
training versus holdout set, we can check the accuracy curve of our algorithm. Generally speaking, we have
enough training data when we see the accuracy curve flatten out as we increase the amount of training data
(this indicates that additional data is likely to give only a slight marginal improvement). The holdout set is
also called the test set, because it allows us to test the generalization power of our classifier.

Supposing we have already collected our training data, however, how should we model P (X|Class)?
There are many possibilities. One is to use the same approach we did with clustering in the last lecture
and model the feature as a Gaussian then we can follow the maximum likelihood principle to find the best
center and variance. The one used in the mitochondrial study is a simple density estimate: for each feature,
divide the range of possibilities into a set of bins (say, five bins per feature). Then we use the given data
to estimate the probability of a feature falling into each bin for a given class. The principle behind this is
again maximum likelihood, but for a multinomial distribution rather than a Gaussian. We may choose to
discretize a otherwise continuous distribution because estimating a continuous distribution can be complex.

There is one issue with this strategy: what if one of the bins has zero samples in it? A probability of
zero will override everything else in our formulas, so that instead of thinking this bin is merely unlikely,
our classifier will believe it is impossible. There are many possible solutions, but the one taken here is to
apply the Laplace Correction: add some small amount (say, one element) into each bin, to draw probability
estimates slightly towards uniform and account for the fact that (in most cases) none of the bins are truly
impossible. Another way to avoid having to apply the correction is to choose bins that are not too small so
that bins will not have zero samples in them in practice. If you have many many points, you can have more
bins, but run the risk of overfitting your training data.

16.2.3 Estimating Priors

We now have a method for approximating the feature distribution for a given class, but we still need to know
the relative probability of the classes themselves. There are three general approaches:

1. Estimate the priors by counting the relative frequency of each class in the training data. This is prone
to bias, however, since data available is often skewed disproportionately towards less common classes
(since those are often targeted for special study). If we have a high-quality (representative) sample for
our training data, however, this works very well.

2. Estimate from expert knowledge—there may be previous estimates obtained by other methods inde-
pendent of our training data, which we can then use as a first approximation in our own predictions.
In other words, you might ask experts what the percentage of mitochondrial proteins are.

3. Assume all classes are equally likely we would typically do this if we have no information at all about
the true frequencies. This is effectively what we do when we use the maximum likelihood principle:

244

6.047/6.878 Lecture 14:
Gene Regulation 2: Classification

our clustering algorithm was essentially using Bayesian analysis under the assumption that all priors
are equal. This is actually a strong assumption, but when you have no other data, this is the best you
can do.

For classifying mitochondrial DNA, we use method (2), since some estimates on the proportions of mtDNA
were already known. But there is an complication there are more than 1 features.

16.2.4 Multiple features and Naive Bayes

In classifying mitochondrial DNA, we were looking at 7 features and not just one. In order to use the
preceding methods with multiple features, we would need not just one bin for each individual feature range,
but one for each combination of features if we look at two features with five ranges each, thats already 25
bins. All seven features gives us almost 80,000 bins and we can expect that most of those bins will be empty
simply because we dont have enough training data to fill them all. This would cause problems because zeroes
cause infinite changes in the probabilities of being in one class. Clearly this approach wont scale well as we
add more features, so we need to estimate combined probabilities in a better way.

The solution we will use is to assume the features are independent, that is, that once we know the
class, the probability distribution of any feature is unaffected by the values of the other features. This is the
Nave Bayes Assumption, and it is almost always false, but it is often used anyway for the combined reasons
that it is very easy to manipulate mathematically and it is often close enough to the truth that it gives a
reasonable approximation. (Note that this assumption does not say that all features are independent: if we
look at the overall model, there can be strong connections between different features, but the assumption
says that those connections are divided by the different classes, and that within each individual class there
are no further dependencies.) Also, if you know that some features are coupled, you could learn the joint
distribution in only some pairs of the features.

Once we assume independence, the probability of combined features is simply the product of the individual
probabilities associated with each feature. So we now have:

P (f1, f2,K, fN |Class) = P (f1|Class)P (f2|Class)KP (fN |Class)

Where f1 represents feature 1. Similarly, the discriminant function can be changed to the multiplication
of the prior probabilities:

ΠP (f Class1)P (Class1)G(f1, f) 1
2,K, fN = log

(
|

ΠP (f1|Class2)P (Class2)

)

16.2.5 Testing a classifier

A classifier should always be tested on data not contained in its training set. We can imagine in the worst case
an algorithm that just memorized its training data and behaved randomly on anything else a classifier that
did this would perform perfectly on its training data, but that indicates nothing about its real performance
on new inputs. This is why its important to use a test, or holdout, set as mentioned earlier. However, a
simple error rate doesnt encapsulate all of the possible consequences of an error. For a simple binary classifier
(an object is either in or not in a single target class), there are the following for types of errors:

1. True positive (TP)

245

6.047/6.878 Lecture 14:
Gene Regulation 2: Classification

2. True negative (TN)

3. False positive (FP)

4. False negative (FN)

The frequency of these errors can be encapsulated in performance metrics of a classifier which are defined
as,

1. Sensitivity what fraction of objects that are in a class are correctly labeled as that class? That is,
what fraction have true positive results? High sensitivity means that elements of a class are very likely
to be labeled as that class. Low sensitivity means there are too many false negatives.

2. Specificity what fraction of objects not in a class are correctly labeled as not being in that class? That
is, what fraction have true negative results? High specificity means that elements labeled as belonging
to a class are very likely to actually belong to it. Low specificity means there are too many false
positives.

In most algorithms there is a tradeoff between sensitivity and specificity. For example, we can reach
a sensitivity of 100% by labeling everything as belonging to the target class, but we will have a specificity
of 0%, so this is not useful. Generally, most algorithms have some probability cutoff they use to decide
whether to label an object as belonging to a class (for example, our discriminant function above). Raising
that threshold increases the specificity but decreases the sensitivity, and decreasing the threshold does the
reverse. The MAESTRO algorithm for classifying mitochondrial proteins (described in this lecture) achieves
99% specificity and 71% sensitivity.

16.2.6 MAESTRO Mitochondrial Protein Classification

They find a class dependent distribution for each feature by creating several bins and evaluating the pro-
portion of mitochondrial and non mitochondrial proteins in each bin. This lets you evaluate the usefulness
of each feature in classification. You end up with a bunch of medium strength classifiers, but when you
combine them together, you hopefully end up with a stronger classifier. Calvo et al. [1] sought to construct
high-quality predictions of human proteins localized to the mitochondrion by generating and integrating
data sets that provide complementary clues about mitochondrial localization. Specifically, for each human
gene product p, they assign a score si(p), using each of the following seven genome-scale data sets targeting
signal score, protein domain score, cis-motif score, yeast homology score, ancestry score, coexpression score,
and induction score (details of each of the meaning and content of each of these data sets can be found in
the manuscript). Each of these scores s1 − S7 can be used individually as a weak genome-wide predictor of
mitochondrial localization. Each methods performance was assessed using large gold standard curated train-
ing sets - 654 mitochondrial proteins Tmito maintained by the MitoP2 database1 and 2,847 nonmitochondrial
proteins T mito annotated to localize to other cellular compartments. To improve prediction accuracy, the
authors integrated these eight approaches using a nave Bayes classifier that was implemented as a program
called MAESTRO. So we can take several weak classifiers, and combine them to get a stronger classifier.

When MAESTRO was applied across the human proteome, 1451 proteins were predicted as mitochondrial
proteins and 450 novel proteins predictions were made. As mentioned in the previous section The MAESTRO
algorithm achieves a 99% specificity and a 71% sensitivity for the classification of mitochondrial proteins,
suggesting that even with the assumption of feature independence, Nave Bayes classification techniques can
prove extremely powerful for large-scale (i.e. genome-wide) scale classification.

246

6.047/6.878 Lecture 14:
Gene Regulation 2: Classification

16.3 Classification Support Vector Machines

The previous section looked at using probabilistic (or generative) models for classification, this section looks
at using discriminative techniques in essence, can we run our data through a function to determine its
structure? Such discriminative techniques avoid the inherent cost involved in generative models which might
require more information than is actually necessary.

Support vector machine techniques essentially involve drawing a vector thats perpendicular to the
line(hyperplane) separating the training data. The approach is that we look at the training data to ob-
tain a separating hyperplane so that two classes of data lie on different sides of the hyperplane. There are,
in general, many hyperplanes that can separate the data, so we want to draw the hyperplane that separates
the data the most - we wish to choose the line that maximizes the distance from the hyperplane to any data
point. In other words, the SVM is a maximum margin classifier. You can think of the hyperplane being
surrounded with margins of equal size on each side of the line, with no data points inside the margin on either
side. We want to draw the line that allows us to draw the largest margin. Note that once the separating
line and margin are determined, some data points will be right on the boundary of the margin. These are
the data points that keep us from expanding the margin any further, and thus determine the line/margin.
Such points are called the support vectors. If we add new data points outside the margin or remove points
that are not support vectors, we will not change the maximum margin we can achieve with any hyperplane.

Suppose(that the vector perpendicular to the hyperplane is w, and that the hyperplane passes through

the point b . Then a point x is classified as being in the positive class if w|w| ∗ x is greater than b, and

negative otherwise.

)
It can be shown that the optimal w, that is, the hyperplane that achieves the maximum

margin, can actually be written as a linear combination of the data vectors Σai ∗ xi. Then, to classify a
new data point x, we need to take the dot product of w with x to arrive at a scalar. Notice that this scalar,
Σai ∗ (xi ∗ x) only depends on the dot product between x and the training vectors xis. Furthermore, it can
be shown that finding the maximum margin hyperplane for a set of (training) points amounts to maximizing
a linear program where the objective function only depends on the dot product of the training points with
each other. This is good because it tells us that the complexity of solving that linear program is independent
of the of dimension of the data points. If we precompute the pairwise dot products of the training vectors,
then it makes no difference what the dimensionality of the data is in regards to the running time of solving
the linear program.

16.3.1 Kernels

We see that SVMs are dependent only on the dot product of the vectors. So, if we call our transformation
φ(v), for two vectors we only care about the value of φ(v1) ·φ(v2) The trick to using kernels is to realize that
for certain transformations φ, there exists a function K(v1, v2), such that:

K(v1, v2) = φ(v1) · φ(v2)

In the above relation, the right-hand side is the dot product of vectors with very high dimension, but
the left-hand side is the function of two vectors with lower dimension. In our previous example of mapping
x→ (x, y = x2), we get

K(x1, x2) = (x1x
2
1) · (x2, x

2
2) = x1x

2
2 + (x1x2)

Now we did not actually apply the transformation φ, we can do all our calculations in the lower dimen-
sional space, but get all the power of using a higher dimension.

247

6.047/6.878 Lecture 14:
Gene Regulation 2: Classification

Example kernels are the following:

1. Linear kernel: K(v1, v2) = v1 · v2 which represents the trivial mapping of φ(x) = x

2. Polynomial kernel: K(v1, v2) = (1 + v1 · v2)n which was used in the previous example with n = 2.

3. Radial basis kernel: K(v1, v2) = exp(−β|v1−v2|2) This transformation is actually from a point v1 to a
function (which can be thought of as being a point in Hilbert space) in an infinite-dimensional space.
So what were actually doing is transforming our training set into functions, and combining the to get
a decision boundary. The functions are Gaussians centered at the input points.

4. Sigmoid kernel: K(v1, v2) = tanh[β(vT1 v2 + r)] Sigmoid kernels have been popular for use in SVMs due
to their origin in neural networks (e.g. sigmoid kernel functions are equivalent to two-level, perceptron
neural networks). It has been pointed out in previous work (Vapnik 1995) that the kernel matrix may
not be positive semi-definite for certain values of the parameters µ and r. The sigmoid kernel has
nevertheless been used in practical applications [2].

Here is a specific example of a kernel function. Consider the two classes of one-dimensional data:

{−5,−4,−3, 3, 4, 5}and{−2,−1, 0, 1, 2}

This data is clearly not linearly separable, and the best separation boundary we can find might be
x > −2.5. Now consider applying the transformation . The data can now be written as new pairs,

{−5,−4,−3, 3, 4, 5} → {(−5, 25), (−4, 16), (−3, 9), (3, 9), (4, 16), (5, 25)}

and

{−2,−1, 0, 1, 2} → {(−2,−4), (−1, 1), (0, 0), (1, 1), (2, 4)}

This data is separable by the rule y > 6.5, and in general the more dimensions we transform data to the
more separable it becomes.

An alternate way of thinking of this problem is to transform the classifier back in to the original low-
dimensional space. In this particular example, we would get the rule x2 < 6.5 , which would bisect the
number line at two points. In general, the higher dimensionality of the space that we transform to, the more
complicated a classifier we get when we transform back to the original space.

One of the caveats of transforming the input data using a kernel is the risk of overfitting (or over-
classifying) the data. More generally, the SVM may generate so many feature vector dimensions that it
does not generalize well to other data. To avoid overfitting, cross-validation is typically used to evaluate the
fitting provided by each parameter set tried during the grid or pattern search process. In the radial-basis
kernel, you can essentially increase the value of β until each point is within its own classification region
(thereby defeating the classification process altogether). SVMs generally avoid this problem of over-fitting
due to the fact that they maximize margins between data points.

When using difficult-to-separate training sets, SVMs can incorporate a cost parameter C, to allow some
flexibility in separating the categories. This parameter controls the trade-off between allowing training
errors and forcing rigid margins. It can thereby create a soft margin that permits some misclassifications.
Increasing the value of C increases the cost of misclassifying points and forces the creation of a more accurate
model that may not generalize well.

248

6.047/6.878 Lecture 14:
Gene Regulation 2: Classification

Can we use just any function as our kernel? The answer to this is provided by Mercers Condition which
provides us an analytical criterion for choosing an acceptable kernel. Mercers Condition states that a kernel
K(x, y) is a valid kernel if and only if the following holds For any g(x) such that g(x)2dx is finite, we have:∫ ∫

K(x, y)g(x)g(y)dxdy ≥ 0[3]

∫

In all, we have defined SVM discriminators and shown how to perform classification with appropriate
kernel mapping functions that allow performing computations on lower dimension while being to capture all
the information available at higher dimensions. The next section describes the application of SVMs to the
classification of tumors for cancer diagnostics.

16.4 Tumor Classification with SVMs

A generic approach for classifying two types of acute leukemias acute myeloid leukemia (AML) and acute
lymphoid leukemia (ALL) was presented by Golub et al. [4]. This approach centered on effectively addressing
three main issues:

1. Whether there were genes whose expression pattern to be predicted was strongly correlated with the
class distinction (i.e. can ALL and AML be distinguished)

2. How to use a collection of known samples to create a “class predictor” capable of assigning a new
sample to one of two classes

3. How to test the validity of their class predictors

They addressed (1) by using a “neighbourhood analysis” technique to establish whether the observed
correlations were stronger than would be expected by chance. This analysis showed that roughly 1100 genes
were more highly correlated with the AML-ALL class distinction than would be expected by chance. To
address (2) they developed a procedure that uses a fixed subset of “informative genes” (chosen based on their
correlation with the class distinction of AML and ALL) and makes a prediction based on the expression level
of these genes in a new sample. Each informative gene casts a “weighted vote” for one of the classes, with
the weight of each vote dependent on the expression level in the new sample and the degree of that genes
correlation with the class distinction. The votes are summed to determine the winning class. To address
(3) and effectively test their predictor by first testing by cross-validation on the initial data set and then
assessing its accuracy on an independent set of samples. Based on their tests, they were able to identify
36 of the 38 samples (which were part of their training set!) and all 36 predictions were clinically correct.
On the independent test set 29 of 34 samples were strongly predicted with 100% accuracy and 5 were not
predicted.

A SVM approach to this same classification problem was implemented by Mukherjee et al.[5]. The output
of classical SVM is a binary class designation. In this particular application it is particularly important to
be able to reject points for which the classifier is not confident enough. Therefore, the authors introduced a
confidence interval on the output of the SVM that allows for rejection of points with low confidence values.
As in the case of Golub et al.[4] it was important for the authors to infer which genes are important for the
classification. The SVM was trained on the 38 samples in the training set and tested on the 34 samples in
the independent test set (exactly in the case of Golub et al.). The authors results are summarized in the
following table (where |d| corresponds to the cutoff for rejection).

These results a significant improvement over previously reported techniques, suggesting that SVMs play
an important role in classification of large data sets (as those generated by DNA microarray experiments).

249

6.047/6.878 Lecture 14:
Gene Regulation 2: Classification

16.5 Semi-Supervised Learning

In some scenarios we have a data set with only a few labeled data points, a large number of unlabeled data
points and inherent structure in the data. This type of scenario both clustering and classification do not
perform well and a hybrid approach is required. This semi-supervised approach could involve the clustering
of data first followed by the classification of the generated clusters.

16.5.1 Open Problems

16.6 Current Research Directions

16.7 Further Reading

• Richard O. Duda, Peter E. Hart, David G. Stork (2001) Pattern classification (2nd edition), Wiley,
New York

• See previous chapter for more books and articles.

16.8 Resources

• Statistical Pattern Recognition Toolbox for Matlab.

• See previous chapter for more tools

Bibliography

[1] Calvo, S., Jain, M., Xie, X., Sheth, S.A., Chang, B., Goldberger, O.A., Spinaz- zola, A., Zeviani, M.,
Carr, S.A., and Mootha, V.K. (2006). Systematic identifi- cation of human mitochondrial disease genes
through integrative genomics. Nat. Genet. 38, 576582.

[2] Scholokopf, B., et al., 1997. Comparing support vector machines with Gaussian kernels to radial basis
function classifiers. IEEE Transactions on Signal Processing.

[3] Christopher J.C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining
and Knowledge Discovery, 2:121–167, 1998.

[4] T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov, H. Coller, M. L. Loh,
J. R. Downing, M. A. Caligiuri, and C. D. Bloomfield. Molecular classification of cancer: class discovery
and class prediction by gene expression monitoring. Science, 286:531–537, 1999.

[5] S. Mukherjee, P. Tamayo, D. Slonim, A. Verri, T. Golub, J. P. Mesirov, and T. Poggio. Support vector
machine classification of microarray data. Technical report, AI Memo 1677, Massachusetts Institute of
Technology, 1998.

250

6.047/6.878 Lecture 14:
Gene Regulation 2: Classification

Genes Rejects Errors Confidence level |d|
7129 3 0 93% 0.1
40 0 0 93% 0.1
5 3 0 92% 0.1

251

6.047/6.878 Lecture 14:
Gene Regulation 2: Classification

252

CHAPTER

SEVENTEEN

REGULATORY MOTIFS, GIBBS SAMPLING, AND EM

Jenny Lin (2014)
Maria Alexis (2013)
James Yeung (2012)
Yinqing Li and Arvind Thiagarajan (2011)
Bianca Dumitrascu and Neal Wadhwa (2010)
Joseph Lane (2009)
Brad Cater and Ethan Heilman (2008)

Figures
17.1 Transcription factors binding to DNA at a motif site . 253

17.2 Example Profile Matrix . 254

17.3 Examples of the Z matrix computed . 255

17.4 Selecting motif location: the greedy algorithm will always pick the most probable location
for the motif. The EM algorithm will take an average while Gibbs Sampling will actually
use the probability distribution given by Z to sample a motif in each step 255

17.5 Sample position weight matrix . 256

17.6 Gibbs Sampling . 258

17.7 Using motif seeds to find degenerate motifs . 259

17.8 Examples of the Z matrix computed via EM, Gibbs Sampling, and the Greedy Algorithm 260

17.9 Selecting motif location: the greedy algorithm will always pick the most probable location
for the motif. The EM algorithm will take an average while Gibbs Sampling will actually
use the probability distribution given by Z to sample a motif in each step 260

17.10Sequences with zero, one or two motifs. 262

17.11Entropy is maximized when both heads and tails have an equal chance of occurring 263

17.12The height of each stack represents the number of bits of information that Gibbs sampling
or EM told us about the postion in the motif . 263

17.13lexA binding site assuming low G-C content and using K-L distance 264

253

6.047/6.878 Lecture 15:
Regulatory Motifs, Gibbs Sampling, and EM

17.1 Introduction to regulatory motifs and gene regulation

We have already explored the areas of dynamic programming, sequence alignment, sequence classification
and modeling, hidden Markov models, and expectation maximization. In the following chapter, we will look
at how these techniques are also useful in identifying novel motifs and elucidating their functions.

17.1.1 The regulatory code: Transcription Factors and Motifs

Motifs are short (6-8 bases long), recurring patterns that have well- defined biological functions. Motifs
include DNA patterns in enhancer regions or promoter motifs, as well as motifs in RNA sequences such as
splicing signals. As we have discussed, genetic activity is regulated in response to environmental variations.
Motifs are responsible for recruiting Transcription Factors, or regulatory proteins, to the appropriate target
gene. Motifs can also be recognized by microRNAs, which bind to motifs given through complementarity;
nucleosomes, which recognize motifs based on their GC content; and other RNAs, which use a combination
of DNA sequence and structure. Once bound, they can activate or repress the expression of the associated
gene.

Transcription factors (TFs) can use several mechanisms in order to control gene expression, including
acetylation and deacetylation of histone proteins, recruitment of cofactor molecules to the TF-DNA complex,
and stabilization or disruption of RNA-DNA interfaces during transcription. They often regulate a group
of genes that are involved in similar cellular processes. Thus, genes that contain the same motif in their
upstream regions are likely to be related in their functions. In fact, many regulatory motifs are identified by
analyzing the regions upstream of genes known to have similar functions.

Motifs have become exceedingly useful for defining genetic regulatory networks and deciphering the
functions of individual genes. With our current computational abilities, regulatory motif discovery and
analysis has progressed considerably and remains at the forefront of genomic studies.

17.1.2 Challenges of motif discovery

Before we can get into algorithms for motif discovery, we must first understand the characteristics of motifs,
especially those that make motifs somewhat difficult to find. As mentioned above, motifs are generally very
short, usually only 6-8 base pairs long. Additionally, motifs can be degenerate, where only the nucleotides
at certain locations within the motif affect the motif’s function. This degeneracy arises because transcrip-
tion factors are free to interact with their corresponding motifs in manners more complex than a simple
complementarity relation. As seen in 17.1, many proteins interact with the motif not by opening up the
DNA to check for base complementarity, but instead by scanning the spaces, or grooves, between the two
sugar phosphate backbones. Depending on the physical structure of the transcription factor, the protein may
only be sensitive to the difference between purines and pyrimidines or weak and strong bases, as opposed to
identifying specific base pairs. The topology of the transcription factor may even make it such that certain
nucleotides aren’t interacted with at all, allowing those bases to act as wildcards.

This issue of degeneracy within a motif poses a challenging problem. If we were only looking for a fixed
k-mer, we could simply search for the k-mer in all the sequences we are looking at using local alignment

254

6.047/6.878 Lecture 15:
Regulatory Motifs, Gibbs Sampling, and EM

Figure 17.1: Transcription factors binding to DNA at a motif site

© Garland Publishing. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

tools. However, the motif may vary from sequence to sequence. Because of this, a string of nucleotides that
is known to be a regulatory motif is said to be an instance of a motif because it represents one of potentially
many different combinations of nucleotides that fulfill the function of the motif.

In our approaches, we make two assumptions about the data. First, we assume that there are no pairwise
correlations between bases, i.e. that each base is independent of every other base. While such correlations do
exist in real life, considering them in our analysis would lead to an exponential growth of the parameter space
being considered, and consequently we would run the risk of overfitting our data. The second assumption we
make is that all motifs have fixed lengths; indeed, this approximation simplifies the problem greatly. Even
with these two assumptions, however, motif finding is still a very challenging problem. The relatively small
size of motifs, along with their great variety, makes it fairly difficult to locate them. In addition, a motif’s
location relative to the corresponding gene is far from fixed; the motif can be upstream or downstream, and
the distance between the gene and the motif also varies. Indeed, sometimes the motif is as far as 10k to
10M base pairs from the gene.

17.1.3 Motifs summarize TF sequence specificity

Because motif instances exhibit great variety, we generally use a Position Weight Matrix (PWM) to char-
acterize the motif. This matrix gives the frequency of each base at each location in the motif. The figure
below shows an example PWM, where pck corresponds to the frequency of base c in position k within the
motif, with pc0 denoting the distribution of bases in non-motif regions.

We now define the problem of motif finding more rigorously. We assume that we are given a set of
co-regulated and functionally related genes. Many motifs were previously discovered by doing footprint

255

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 15:
Regulatory Motifs, Gibbs Sampling, and EM

Figure 17.2: Example Profile Matrix

experiments, which isolate sequences bound by specific transcription factors, and therefore more likely to
correspond to motifs. There are several computational methods that can be used to locate motifs:

1. Perform a local alignment across the set of sequences and explore the alignments that resulted in a
very high alignment score.

2. Model the promoter regions using a Hidden Markov Model and then use a generative model to find
non-random sequences.

3. Reduce the search space by applying prior knowledge for what motifs should look like.

4. Search for conserved blocks between different sequences.

5. Examine the frequency of kmers across regions highly likely to contain a motif.

6. Use probabilistic methods, such as EM, Gibbs Sampling, or a greedy algorithm

Method 5, using relative kmer frequencies to discover motifs, presents a few challenges to consider. For
example, there could be many common words that occur in these regions that are in fact not regulatory
motifs but instead different sets of instructions. Furthermore, given a list of words that could be a motif, it
is not certain that the most likely motif is the most common word; for instance, while motifs are generally
overrepresented in promoter regions, transcription factors may be unable to bind if an excess of motifs are
present. One possible solution to this problem might be to find kmers with maximum relative frequency
in promoter regions as compared to background regions. This strategy is commonly performed as a post
processing step to narrow down the number of possible motifs.

In the next section, we will talk more about these probabilistic algorithms as well as methods to use
kmer frequency for motif discovery. We will also come back to the idea of using kmers to find motifs in the
context of using evolutionary conservation for motif discovery.

17.2 Expectation maximization

17.2.1 The key idea behind EM

We are given a set of sequences with the assumption that motifs are enriched in them. The task is to find
the common motif in those sequences. The key idea behind the following probabilistic algorithms is that if

256

6.047/6.878 Lecture 15:
Regulatory Motifs, Gibbs Sampling, and EM

we were given motif starting positions in each sequence, finding the motif PWM would be trivial; similarly,
if we were given the PWM for a particular motif, it would be easy to find the starting positions in the
input sequences. Let Z be the matrix in which Zij corresponds to the probability that a motif instance
starts at position j in sequence i (a graphical of the probability distributions summarized in Z is shown in
Figure 17.8). These algorithms therefore rely on a basic iterative approach: given a motif length L and an
initial matrix Z, we can use the starting positions to estimate the motif, and in turn use the resulting motif
to re-estimate the starting positions, iterating over these two steps until convergence on a motif.

Figure 17.3: Examples of the Z matrix computed

.

17.2.2 The E step: Estimating Zij from the PWM

Figure 17.4: Selecting motif location: the greedy algorithm will always pick the most probable location for
the motif. The EM algorithm will take an average while Gibbs Sampling will actually use the probability
distribution given by Z to sample a motif in each step

Step 1: Initialization The first step in EM is to generate an initial probability weight matrix (PWM).
The PWM describes the frequency of each nucleotide at each location in the motif. In 17.5, there is
an example of a PWM. In this example, we assume that the motif is eight bases long.

If you are given a set of aligned sequences and the location of suspected motifs within them, then
finding the PWM is accomplished by computing the frequency of each base in each position of the
suspected motif. We can initialize the PWM by choosing starting locations randomly.

We refer to the PWM as pck, where pck is the probability of base c occurring in position k of the
motif. Note: if there is 0 probability, it is generally a good idea to insert pseudo- counts into your
probabilities. The PWM is also called the profile matrix. In addition to the PWM, we also keep a
background distribution pck,k=0, a distribution of the bases not in the motif.

Step 2: Expectation In the expectation step, we generate a vector Zij which contains the probability of
the motif starting in position j in sequence i. In EM, the Z vector gives us a way of classifying all of
the nucleotides in the sequences and tell us whether they are part of the motif or not. We can calculate
Zij using Bayes’ Rule. This simplifies to:

Zt
Prt(X

ij = i|Zij)Prt(Zij=1)

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

ΣL−W+1Prt(Xik=1 |Zij=1)Prt(Zik=1)

257

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 15:
Regulatory Motifs, Gibbs Sampling, and EM

Figure 17.5: Sample position weight matrix

where Prt(Xi|Zij = 1) = Pr(Xi|Zij = 1, p) is defined as

This is the probability of sequence i given that the motif starts at position j. The first and last
products correspond to the probability that the sequences preceeding and following the candidate
motif come from some background probability distribution whereas the middle product corresponds to
the probability that the candidate motif instance came from a motif probability distribution. In this
equation, we assume that the sequence has length L and the motif has length W .

17.2.3 M step: Finding the maximum likelihood motif from starting posi-
tions Zij

Step 3: Maximization Once we have calculated Zt, we can use the results to update both the PWM and
the background probability distribution. We can update the PWM using the following equation

Step 4: Repeat Repeat steps 2 and 3 until convergence.

258

6.047/6.878 Lecture 15:
Regulatory Motifs, Gibbs Sampling, and EM

One possible way to test whether the profile matrix has converged is to measure how much each
element in the PWM changes after step maximization. If the change is below a chosen threshold, then
we can terminate the algorithm. EM is a deterministic algorithm and is entirely dependent on the
initial starting points because it uses an average over the full probability distribution. It is therefore
advisable to rerun the algorithm with different intial starting positions to try reduce the chance of
converging on a local maximum that is not the global maximum and to get a good sense of the solution
space.

17.3 Gibbs Sampling: Sample from joint (M,Zij) distribution

17.3.1 Sampling motif positions based on the Z vector

Gibbs sampling is similar to EM except that it is a stochastic process, while EM is deterministic. In
the expectation step, we only consider nucleotides within the motif window in Gibbs sampling. In the
maximization step, we sample from Zij and use the result to update the PWM instead of averaging over all
values as in EM.

Step 1: Initialization As with EM, you generate your initial PWM with a random sampling of initial
starting positions. The main difference lies in the Maximization step. During EM, the algorithm
creates the sequence motif by considering all possible starting points of the motif. During Gibbs, the
algorithm picks a single starting point of the motif with the probability of the starting points Z.

Step 2: Remove Remove one sequence, Xi, from your set of sequences. You will change the starting
location of for this particular sequence.

Step 3: Update Using the remaining set of sequences, update the PWM by counting how often each base
occurs in each position, adding pseudocounts as necessary.

Step 4: Sample Using the newly updated PWM, compute the score of each starting point in the sequence
Xi. To generate each score, Zij , the following formula is used:

This is simply the probability that the sequence was generated using the motif PWM divided by the
probability that the sequence was generated using the background PWM.

Select a new starting position for Xi by randomly choosing a position based on its Zij .

Step 5: Iterate Loop back to Step 2 and iterate the algorithm until convergence.

17.3.2 More likely to find global maximum, easy to implement

Because Gibbs updates its sequence motif during Maximization based of a single sample of the Motif rather
than every sample weighted by their scores, Gibbs is less dependent on the starting PWM. EM is much more
likely to get stuck on a local maximum than Gibbs because of this fact. However, this does not mean that
Gibbs will always return the global maximum. Gibbs must be run multiple times to ensure that you have
found the global maximum and not the local maximum.Two popular implementations of Gibbs Sampling
applied to this problem are AlignACE and BioProspector. A more general Gibbs Sampler can be found in

259

6.047/6.878 Lecture 15:
Regulatory Motifs, Gibbs Sampling, and EM

the program WinBUGS. Both AlignACE and BioProspector use the aforementioned algorithm for several
choices of initial values and then report common motifs. Gibbs sampling is easier to implement than E-M,
and in theory, it converges quickly and is less likely to get stuck at a local optimum. However, the search is
less systematic.

Figure 17.6: Gibbs Sampling

17.4 De novo motif discovery

As discussed in beginning of this chapter, the core problem for motif finding is to define the criteria for what
is a valid motif and where they are located. Since most motifs are linked to important biological functions,
one could subject the organism to a variety of conditions in hope of triggering these biological functions.
One could then search for differentially expressed genes, and then use those genes as a basis for which genes
are functionally related and thus likely to be controlled by the same motif instance. However, this technique
not only relies on prior knowledge of interesting biological functions to probe for, but is also subject to biases
in the experimental procedure. Alternatively, one could use ChIP-seq to search for motifs, but this method
relies on not only having a known Transcription Factor of interest, but also requires developing antibodies
to recognize said Transcription Factor, which can be costly and time consuming.

Ideally one would be able to discover motifs de novo, or without relying on an already known gene set
or Transcription Factor. While this seems like a difficult problem, it can in fact be accomplished by taking
advantage of genome-wide conservation. Because biological functions are usually conserved across species
and have distinct evolutionary signatures, one can align sequences from close species and search specifically
in conserved regions (also known as Island of Conservation) in order to increase the rate of finding functional
motifs.

17.4.1 Motif discovery using genome-wide conservation

Conservation islands often overlap known motifs, so doing genome-wide scans through evolutionary conserved
regions can help us discover motifs, de novo. However, not all conserved regions will be motifs; for instance,
nucleotides surrounding motifs may also be conserved even though they are not themselves part of a motif.
Distinguishing motifs from background conserved regions can be done by looking for enrichments which will
select more specifically for kmers involved in regulatory motifs. For instance, one can find regulatory motifs
by searching for conserved sequences enriched in intergenic regions upstream of genes as compared to control

260

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 15:
Regulatory Motifs, Gibbs Sampling, and EM

regions such as coding sequences, since one would expect motifs to be enriched in or around promoters of
genes. One can also expand this model to find degenerate motifs: we can look for conservation of smaller,
non-degenerate motifs separated by a gap of variable length, as shown in the figure below. We can also
extend this motif through a greedy search in order to get closer to find the local maximum likelihood motif.
Finally, evolution of motifs can also reveal which motifs are degenerate; since a particular motif is more likely
to be degenerate if it is often replaced by another motif throughout evolution, motif clustering can reveal
which kmers are likely to correspond to the same motif.

In fact, the strategy has its biological relevance. In 2003, Professor Kellis argued that there must be some
selective pressure to cause a particular sequence to be occur on specific places. His PhD. thesis on the topic
can be found at the following location:

images/Fig18_ConservationForTFMotifDiscovery.png

Figure 17.7: Using motif seeds to find degenerate motifs

17.4.2 Validation of discovered motifs with functional datasets

These predicted motifs can then be validated with functional datasets. Predicted motifs with at least one of
the following features are more likely to be real motifs: -enrichment in co-regulated genes. One can extend
this further to larger gene groups; for instance, motifs have been found to be enriched in genes expressed in
specific tissues -overlap with TF binding experiments -enrichment in genes from the same complex -positional
biases with respect to the transcription start site (TSS): motifs are enriched in gene TSS’s -upstream vs.
downstream of genes, inter- vs. intra-genic positonal biases: motifs are generally depleted in coding sequences
-similarity to known transcription factor motifs: some, but not all, discovered motifs may match known motifs
(however, not all motifs are conserved and known motifs may not be exactly correct)

17.5 Evolutionary signatures for instance identification

17.6 Phylogenies, Branch length score Confidence score

17.6.1 Foreground vs. background. Real vs. control motifs.

17.7 Possibly deprecated stuff below:

17.7.1 Greedy

While the greedy algorithm is not used very much in practice, it is important know how it functions and
mainly its advantages and disadvantages compared to EM and Gibbs sampling. The Greedy algorithm works
just like Gibbs sampling except for a main difference in Step 4. Instead of randomly choosing selecting a
new starting location, it always picks the starting location with the highest probability.

261

6.047/6.878 Lecture 15:
Regulatory Motifs, Gibbs Sampling, and EM

This makes the Greedy algorithm slightly faster than Gibbs sampling but reduces its chances of finding
a global maximum considerably. In cases where the starting location probability distribution is fairly evenly
distributed, the greedy algorithm ignores the weights of every other starting position other than the most
likely.

17.8 Comparing different Methods

The main difference between Gibbs, EM, and the Greedy algorithm lies in their maximization step after
computing their Z matrix. Examples of the Z matrix are graphically represented below.THis Z matrix
is then used to recompute theoriginal profile matrix until convergence. Some examples of this matrix are
graphically represented by 17.8

Figure 17.8: Examples of the Z matrix computed via EM, Gibbs Sampling, and the Greedy Algorithm
.

Intuitively, the greedy algorithm will always pick the most probable location for the motif. The EM
algorithm will take an average of all values while Gibbs Sampling will actually use the probability distribution
given by Z to sample a motif in a step.

Figure 17.9: Selecting motif location: the greedy algorithm will always pick the most probable location for
the motif. The EM algorithm will take an average while Gibbs Sampling will actually use the probability
distribution given by Z to sample a motif in each step

17.9 OOPS,ZOOPS,TCM

The different types of sequence model make differing assumptions about how and where motif occurrences
appear in the dataset. The simplest model type is OOPS (One-Occurence-Per-Sequence) since it assumes
that there is exactly one occurrence per sequence of the motif in the dataset. This is the case we have analyzed
in the Gibbs sampling section. This type of model was introduced by Lawrence & Reilly (1990) [2], when they
describe for the first time a generalization of OOPS, called ZOOPS (Zero-or-One-Occurrence-Per-Sequence),
which assumes zero or one motif occurrences per dataset sequence. Finally, TCM (Two-Component Mixture)

262

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 15:
Regulatory Motifs, Gibbs Sampling, and EM

models assume that there are zero or more non-overlapping occurrences of the motif in each sequence in the
dataset, as described by Baily & Elkan (1994). [1] Each of these types of sequence model consists of two
components, which model, respectively, the motif and non-motif (background) positions in sequences. A
motif is modelled by a sequence of discrete random variables whose parameters give the probabilities of each
of the different letters (4 in the case of DNA, 20 in the case of proteins) occurring in each of the different
positions in an occurrence of the motif. The background positions in the sequence are modelled by a single
discrete random variable.

17.10 Extension of the EM Approach

17.10.1 ZOOPS Model

The approach presented before (OOPS) relies on the assumption that every sequence is characterized by
only one motif (e.g., there is exactly one motif occurrence in a given sequence). The ZOOPS model takes
into consideration the possibility of sequences not containing motifs.

In this case let i be a sequence that does not contain a motif. This extra information is added to our
previous model using another parameter λ to denote the prior probability that any position in a sequence is
the start of a motif. Next, the probability of the entire sequence to contain a motif is λ = (L−W + 1) ∗ λ

The E-Step

The E-step of the ZOOPS model calculates the expected value of the missing information–the probability
that a motif occurrence starts in position j of sequence Xi. The formulas used for the three types of model
are given below.

where λt is the probablity that sequence i has a motif, Prt(Xi|Qi = 0) is the probablity that Xi is
generated from a sequence i that does not contain a motif

The M-Step

The M-step of EM in MEME re-estimates the values for λ using the preceding formulas. The math remains
the same as for OOPS, we just update the values for λ and γ

The model above takes into consideration sequences that do not have any motifs. The challenge is to
also take into consideration the situation in which there is more than one motif per sequence. This can be

263

6.047/6.878 Lecture 15:
Regulatory Motifs, Gibbs Sampling, and EM

accomplished with the more general model TCM. TCM (two-component mixture model) is based on the
assumption that there can be zero, one, or even two motif occurrences per sequence.

Figure 17.10: Sequences with zero, one or two motifs.

17.10.2 Finding Multiple Motifs

All the above sequence model types model sequences containing a single motif (notice that TCM model
can describe sequences with multiple occurences of the same motif). To find multiple, non-overlapping,
different motifs in a single dataset, one incorporates information about the motifs already discovered into
the current model to avoid rediscovering the same motif. The three sequence model types assume that
motif occurrences are equally likely at each position j in sequences xi. This translates into a uniform prior
probability distribution on the missing data variables Zij . A new prior on each Zij had to be used during
the E-step that takes into account the probability that a new width-W motif occurrence starting at position
Xij might overlap occurrences of the motifs previously found. To help compute the new prior on Zij we
introduce variables Vij where Vij = 1 if a width-W motif occurrence could start at position j in the sequence
Xi without overlapping an occurrence of a motif found on a previous pass. Otherwise Vij = 0.

17.11 Motif Representation and Information Content

Instead of a Profile Matrix, we can also represent Motifs using information theory. In information theory,
information about a certain event is communicated through a message. The amount of information carried
by a message is measured in bits. We can determine the bits of information carried by a message by observing
the probability distribution of the event described in the message. Basically, if we dont know anything about
the outcome of the event, the message will contain a lot of bits. However, if we are pretty sure how the
event is going to play out, and the message only confirms our suspicions, the message carries very few bits
of information. For example, The sentence 0un will rise tomorrow” is not very surprising, so the information
of that sentence if quite low.. However, the sentence 0un will not rise tomorrow” is very surprising and it
has high information content. We can calculate the specific amount of information in a given message with
the equation: − log p.

Shannon Entropy is a measure of the expected amount of information contained in a message. In other
words, it is the information contained by a message of every event that could possibly occur weighted by
each events probability. The Shannon entropy is given by the equation:

264

6.047/6.878 Lecture 15:
Regulatory Motifs, Gibbs Sampling, and EM

H(X) = −
∑

pi log2 pi
i

Entropy is maximum when all events have an equal probability of occurring. This is because Entropy
tells us the expected amount of information we will learn. If each even has the same chance of occurring we
know as little as possible about the event, so the expected amount of information we will learn is maximized.
For example, a coin flip has maximal entropy only when the coin is fair. If the coin is not fair, then we know
more about the event of the coin flip, and the expected message of the outcome of the coin flip will contain
less information.

Figure 17.11: Entropy is maximized when both heads and tails have an equal chance of occurring

We can model a motif by how much information we have of each position after applying Gibs Sampling
or EM. In the following figure, the height of each letter represents the number of bits of information we
have learned about that base. Higher stacks correspond to greater certainty about what the base is at that
position of the motif while lower stacks correspond to a higher degree of uncertainty. With four codons to
choice from, the Shannon Entropy of each position is 2 bits. Another way to look at this figure is that the
height of a letter is proportional to the frequency of the base at that position.

Figure 17.12: The height of each stack represents the number of bits of information that Gibbs sampling or
EM told us about the postion in the motif

There is a distance metric on probability distributions known as the Kullback-Leibler distance. This
allows us to compare the divergence of the motif distribution to some true distribution. The K-L distance
is given by

P (i)
D (motif
KL Pmotif |Pbackground) = ΣA,T,G,CPmotif (i) log Pbackground(i)

265

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 15:
Regulatory Motifs, Gibbs Sampling, and EM

In Plasmodium, there is a lower G-C content. If we assume a G-C content of 20%, then we get the
following representation for the above motif. C and G bases are much more unusual, so their prevalence is
highly unusual. Note that in this representation, we used the K-L distance, so that it is possible for the
stack to be higher than 2.

Figure 17.13: lexA binding site assuming low G-C content and using K-L distance

Bibliography

[1] Timothy L. Bailey. Fitting a mixture model by expectation maximization to discover motifs in biopoly-
mers. In Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology,
pages 28–36. AAAI Press, 1994.

[2] C E Lawrence and A A Reilly. An expectation maximization (em) algorithm for the identification and
characterization of common sites in unaligned biopolymer sequences. Proteins, 7(1):41–51, 1990.

266

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

CHAPTER

EIGHTEEN

REGULATORY GENOMICS

Lecturer: Pouya Kheradpour
Scribe: Maria Frendberg

Figures

18.1 Challenges in Regulatory Genomics . 266

18.1 Introduction

Every cell has the same DNA, but they all have different expression patterns due to the temporal and spatial
regulation of genes. Regulatory genomics explains these complex gene expression patterns. The regulators
we will be discussing are:

• Transcription Factor (TF)- Regulates transcription of DNA to mRNA. TFs are proteins which bind
to DNA before transcription and either increase or decrease transcription. We can determine the
specificity of a TF through experimental methods using protein or antibodies. We can find the genes
by their similarity to know TFs.

• Micro RNA (miRNA)- Regulates translation of mRNA to Proteins. miRNAs are RNA molecules which
bind to mRNA after transcription and can reduce translation. We can determine the specificity of an
miRNA through experimental methods, such as cloning, or computational methods, using conservation
and structure.

267

6.047/6.878 Lecture 16 Regulatory Genomics

18.1.1 History of the Field

18.1.2 Open Problems

Both TFs and miRNAs are regulators and we can find them through both experimental and computa-
tional methods. We will discuss some of these computational methods, specifically the use of evolutionary
signatures. These regulators bind to specific patterns, called motifs. We can predict the motifs to which a
regulator will bind using both experimental and computational methods. We will be discussing identification
of miRNAs through evolutionary and structural signatures and the identification of both TFs and miRNAs
through de novo comparative discovery, which theoretically can find all motifs. Given a motif, it is difficult
to find the regulator which binds to it.

A target is a place where a factor binds. There are many sequence motifs, however many will not bind;
only a subset will be targets. Targets for a specified regulator can be determined using experimental methods.
In Lecture 11, methods for finding a motif given a target were discussed. We will also discuss finding targets
given a motif.

Figure 18.1: Challenges in Regulatory Genomics

18.2 De Novo Motif Discovery

18.2.1 TF Motif Discovery

Transcription Factors influence the expression of target genes as either activators or repressors by binding to
the DNA near genes. This binding is guided by TF sequence specificity. The closer the DNA is to the base
preference, the more likely it is that the factor will bind. These motifs can be found both computationally
and experimentally. There are three main approaches for discovering these motifs.

• Co-Regulation- In Lecture 11, we discussed a co-regulation type of discovery of motifs by finding
sequences which are likely to have the motif bound. We can then use enumerative approaches or

268

6.047/6.878 Lecture 16 Regulatory Genomics

alignment methods to find these motifs in the upstream regions. We can apply similar techniques to
experimental data where you know where motif is bound.

• Factor Centric- There are also factor centric methods for discovering motifs. These are mostly ex-
perimental methods which require a protein or antibody. Examples include SELEX, DIP-Chip, and
PBMs. All of these methods are in vitro.

• Evolutionary- Instead of focusing on only one factor, evolutionary methods focus on all factors. We
can begin by looking at a single factor and determining which properties we can exploit. There are
certain sequences which are preferentially conserved (conservation islands). However, these are not
always motifs and instead can be due to chance or non-motif conservation. We can then look at many
regions, find more conserved motifs, and determine which ones are more conserved overall. By testing
conservation in many regions across many genomes, we increase the power. These motifs have certain
evolutionary signatures that help us to identify them: motifs are more conserved in intergenic regions
than in coding regions, motifs are more likely to be upstream from a gene than downstream. This is a
method for taking a known motif and testing if it is conserved.

We now want to find everything that is more conserved than expected. This can be done using a hill
climbing approach. We begin by enumerating the motif seeds, which are typically in 3-gap-3 form. Then,
each of these seeds is scored and ranked using a conservation ratio corrected for composition and small
counts. These seeds are then expanded to fill unspecified bases around the seed using hill climbing. Through
these methods, it is possible to arrive at the same, or very similar seeds in different manners. Thus, our final
step consists of clustering the seeds using sequence similarity to remove redundancy.

A final method that we can use is recording the frequency with which one sequence is replaced by another
in evolution. This produces clusters of k-mers that correspond to a single motif.

18.2.2 Validating Discovered Motifs

There are many ways that we can validate discovered motifs. Firstly, we expect them to match real motifs,
which does happen significantly more often than with random motifs. However, this is not a perfect agree-
ment, possibly due to the fact that many known motifs are not conserved and that known motifs are biased
and may have missed real motifs. Positional bias. Biased towards TSS,

Motifs also have functional enrichments. If a specific TF is expressed in a tissue, then we expect the
upstream region will have that factor’s motif. This also reveals modules of cooperating motifs. We also see
that most motifs are avoided in ubiquitously expressed genes, so that they are not randomly turned on and
off.

18.2.3 Summary

There are disadvantages to all of these approaches. Both TF and region-centric approaches are not compre-
hensive and are biased. TF centric approaches require a transcription factor or antibody, take lots of time
and money, and also have computational challenges. De novo discovery using conservation is unbiased, but
it can’t match motifs to factors and requires multiple genomes.

269

6.047/6.878 Lecture 16 Regulatory Genomics

18.3 Predicting Regular Targets

18.3.1 Motif Instance Identification

Once potential motifs are discovered, the next step is to discover which motif matches are real. This can be
done by both experimental and computational methods.

• Experimental - Instances can be identified experimentally using ChIP-Chip and ChIP-Deq methods.
Both of these are in vivo methods. This is done by cross linking cells. DNA is first broken into sections.
Then the protein and its antibody or tagged protein is added, which binds to various sequences. These
bound sequences are now pulled out and cross linking is reversed. This allows us to determine where in
the genome the factor was bound. This has a high false positive rate because there are many instances
where a factor binds, but is not functional. This is a very popular experimental methods, but it is
limited by the availability of antibodies, which are difficult to get for many factors.

• Computational - Computation approaches. There are also many computational approaches to identify
instances. Single genome approaches use motif clustering. They look for many matches to increase
power and are able to find regulatory regions (CRMs). However, they miss instances of motifs that
occur alone and require a set of specific factors that act together. Multi-genome approaches, known
as phylogentic footprinting, face many challenges. They begin by aligning many sequences, but even
in functional motifs, sequences can move, mutate, or be missing. The approach taken by Kheradpour
handles this by not requiring perfect conservation (by using a branch length score) and by not requiring
an exact alignment (by searching within a window).

Branch Length Scores (BLS) are computed by taking a motif match and searching for it in other species.
Then, the smallest subtree containing all species with a motif match is found. The percentage of total tree is
the BLS. Calculating the BLS in this way allows for mutations permitted by motif degeneracy, misalighment
and movement within a window, and missing motifs in dense species trees.

This BLS is then translated into a confidence score. This enables us to evaluate the likelihood of a given
score and to account for differences in motif composition and length. We calculate this confidence score
by counting all motif instances and control motifs at each BLS. We then want to see which fraction of the
motif instances seem to be real. The confidence score is then signal/(signal+noise). The control motifs used
in this calculation are produced by producing 100 shuffles of the original motif, and filtering the results by
requiring that they match the genome with +/- 20% of the original motif. These are then sorted based on
their similarity to known motifs and clustered. At most one motif is taken from each cluster, in increasing
order of similarity, to produce our control motifs.

18.3.2 Validating Targets

Similar to motif discovery, we can validate targets by seeing where they fall in the genome. Confidence selects
for TF motif instances in promoters and miRNA motifs in 3’ UTRs, which is what we expect. TFs can occur
on either strand, whereas miRNA must fall on only one strand. Thus, although there is no preference for
TFs, miRNA are found preferentially on the plus strand.

Another method of validating targets is by computing enrichments. This requires having a background
and foreground set of regions. These could be a promoter of co-regulated genes vs all genes or regions
bound by a factor vs other intergenic regions. Enrichment is computed by taking the fraction of motif

270

6.047/6.878 Lecture 16 Regulatory Genomics

instances inside the foreground vs the fraction of bases in the foreground. Composition and conservation
level are corrected for with control motifs. These fractions can be made more conservative using a binomial
confidence interval.

Targets can then be validated by comparing to experimental instances found using ChIP-Seq. This
shows the conserved CTCF motif instances are highly enriched in ChIP-Seq sites. Increasing confidence
also increases enrichment. Using this, many motif instances are verified. ChIP-Seq does not always find
functional motifs, so these results can further be verified by comparing to conserved bound regions. This
finds that enrichment in intersections is dramatically higher. This shows where factors are binding that have
an effect worthwhile conserving in evolution. These two approaches are complementary and are even more
effective when used together.

18.4 MicroRNA Genes and Targets

18.4.1 MiRNA Gene Discovery

MiRNAs are post-transcriptional regulators that bind to mRNAs to silence a gene. They are an extremely
important regulator in development. These are formed when a miRNA gene is transcribed from the genome.
The resulting strand forms a hairpin at some point. This is processed, trimmed and exported to the cyto-
plasm. Then, another protein trims the hairpin and one half is incorporated into a RISK complex. By doing
this, it is able to tell the RISK complex where to bind, which determines which gene is turned off. The
second strand is usually discarded. It is a computational problem to determine which strand is which. The
computational problem here is how to find the genes which correspond to these miRNAs.

The first problem is finding hairpins. Simply folding the genome produces approximately 760,000 hairpins,
but there are only 60 to 200 true miRNAs. Thus we need methods to help improve specificity. Structural
features, including folding energy, loops (number, symmetry), hairpin length and symmetry, substructures
and pairings, can be considered, however, this only increases specificity by a factor of 40. Thus structure
alone cannot predict miRNAs. Evolutionary signatures can also be considered. MiRNA show characteristic
conservation properties. Hairpins consist of a loop, two arms and flanking regions. In most RNA, the loop
is the most well conserved due to the fact that it is used in binding. In miRNA, however, the arms are
more conserved because they determine where the RISK complex will bind. This increases specificity by a
factor of 300. Both these structural features and conservation properties can be combined to better predict
potential miRNAs.

These features are combined using machine learning, specifically random forests. This produces many
weak classifiers (decision trees) on subsets of positives and negatives. Each tree then votes on the final
classification of a given miRNA. Using this technique allows us to reach the desired sensitivity (increased by
4,500 fold).

18.4.2 Validating Discovered MiRNAs

Discovered miRNAs can be validated by comparing to known miRNAs. An example given in class shows
that 81% of discovered miRNAs were already known to exist, which shows that these methods perform well.
The putative miRNAs have yet to be tested, however this can be difficult to do as testing is done by cloning.

Region specificity is another method for validating miRNAs. In the background, hairpins are fairly evenly

271

6.047/6.878 Lecture 16 Regulatory Genomics

distributed between introns, exons, intergenic regions, and repeats and transposons. Increasing confidence in
predictions causes almost all miRNAs to fall in introns and intergenic regions, as expected. These predictions
also match sequencing reads.

This also produced some genomic properties typical of miRNAs. They have a preference for transcribed
strand. This allows them to piggyback in intron of real gene, and thus not require a separate transcription.
They also clustering with known and predicted miRNAs. This indicates that they are in the same family
and have a common orgin.

18.4.3 MiRNA’s 5’ End Identification

The first seven bases determine where an miRNA binds, thus it is important to know exactly where clevage
occurs. If this clevage point is wrong by even two bases, the miRNA will be predicted to bind to a completely
different gene. These clevage points can be discovered computationally by searching for highly conserved
7-mers which could be targets. These 7-mers also correlate to a lack of anti-targets in ubiquitously expressed
genes. Using these features, structural features and conservational features, it is possible to take a machine
learning approach (SVMs) to predict clevage site. Some miRNAs have no single high scoring position, and
these also show imprecise processing in the cell. If the star sequence is highly scored, then it tends to be
more expressed in the cell also.

18.4.4 Functional Motifs in Coding Regions

Each motif type has distinct signatures. DNA is strand symmetric, RNA is strand-specific and frame-
invariant, and Protein is strand-specific and frame-biased. This frame-invariance can be used as a signature.
Each frame can then be evaluated separately. Motifs due to di-codon usage biases are conserved in only one
frame offset while motifs due to RNA-level regulation are conserved in all three frame offsets. This allows
the ability to distinguish overlapping pressures.

18.5 Current Research Directions

18.6 Further Reading

18.7 Tools and Techniques

18.8 What Have We Learned?

Bibliography

272

CHAPTER

NINETEEN

EPIGENOMICS/CHROMATIN STATES

Figures
19.1 A. There is a wide diversity of modifications in the epigenome. Some regions of DNA are

compactly wound around histones, making the DNA inaccessible and the genes inactive.
Other regions have more accessible DNA and thus active genes. Epigenetic factors can
bind to the tails of these histones to modify these properties. B. Histone modifications
provide information about what types of proteins are bound to the DNA and what the
function of the region is. In this example, The histone modifications allow for an enhancer
region (potentially over 100 kilo bases away) to interact with the promoter region. [6] . . 290

19.2 The method of chromatin immunoprecipitation [5]. The steps in this figure correspond to
the six steps of the procedure. 290

19.3 (Top) In the Burrows-Wheeler forward transformation rotations are generated and sorted.
The last column of the sorted list (bolded) consists of the transformed string. (Bottom)In
the Burrows-Wheeler reverse transformation the transformed string is sorted, and two
columns are generated: one consisting of the original string and the other consisting of the
sorted. These effectively form two columns from the rotations in the forward transforma-
tion. This process is repeated until the complete rotations are generated. 291

19.4 To use input DNA as a control, one can run the ChIP experiment as normal while si-
multaneously running the same experiment (with same DNA) without an antibody. This
generates a background signal for which we can correct. 291

19.5 In the figure above each column is a color-coded histogram that encodes the fraction of
all mapped reads that have base score Q (y-axis) at each position(x-axis). A low average
per base score implies greater probability of mismappings. We typically reject reads whose
average score Q is less than 10. 292

19.6 A sample signal track. Here, the red signal is derived from the number of reads that mapped
to the genome at each position for a ChIP-seq experiment with the target H3K36me3. The
signal gives a level of enrichment of the mark. 292

19.7 Sample signal tracks for both the true experiment and the background (control). Regions
are considered to have statistically significant enrichment when the true experiment signal
values are well above the background signal values. 292

19.8 Example of the data and the annotation from the HMM model. The bottom section shows
the raw number of reads mapped to the genome. The top section shows the annotation
from the HMM model. 293

273

6.047/6.878 Lecture 17: Epigenomics/Chromatin Sites

19.9 Emission probabilities for the final model with 51 states. The cell corresponding to mark
i and state k represents the probability that mark i is observed in state k. 294

19.10Transition probabilities for the final model with 51 states. The transition probability
increases from green to red. Spatial relationships between neighboring chromatin states
and distinct sub-groups of states are revealed by clustering the transition matrix. Notably,
the matrix is sparse, so indicating that most are not possible. 295

19.11Chromatin state definition and functional interpretation. [7] a. Chromatin mark com-
binations associated with each state. Each row shows the specific combination of marks
associated with each chromatin state and the frequencies between 0 and 1 with which they
occur in color scale. These correspond to the emission probability parameters of the HMM
learned across the genome during model training. b. Genomic and functional enrichments
of chromatin states, including fold enrichment in different part of the genome (e.g. tran-
scribed regions, TSS, RefSeq 5 end or 3end of the gene etc), in addition to fold enrichment
for evolutionarily conserved elements, DNaseI hypersensitive sites, CpG islands, etc. All
enrichments are based on the posterior probability assignments. c. Brief description of
biological state function and interpretation (chr, chromatin; enh, enhancer). 296

19.1 Introduction

The human body contains approximately 210 different cell types, but each cell type shares the same genomic
sequence. In spite of having the same genetic code, cells not only develop into distinct types from this same
sequence, but also maintain the same cell type over time and across divisions. This information about the
cell type and the state of the cell is called epigenomic information. The epigenome (“epi” means above
in Greek, so epigenome means above genome) is the set of chemical modifications or marks that influence
gene expression and are transferred across cell divisions and, in some limited cases, across generations of
organisms.

As shown in Figure 19.1, epigenomic information in a cell is encoded in diverse ways. For example,
methylation of DNA (e.g. at CpG dinucleotides) can alter gene expression. Similarly, positioning of nu-
cleosomes (unit of packing of DNA) determines which parts of DNA are accessible for transcription factors
to bind to and other enzymes. Almost two decades of work have revealed hundreds of post translational
modifications of histone tails. Since an extremely large number of histone modification states are possible
for any given histone tail, the ”histone code hypothesis” has been proposed. This hypothesis states that
particular combinations of histone modifications encode information. Although a controversial hypothesis,
it has guided the epigenetics field. The core of epigenetics is understanding how chemical modifications to
chromatin (be they DNA methylation, histone modifications or chromatin architecture) are established and
how the cell ”interprets” this information to establish and maintain gene expression states.

In this chapter we will explore the experimental and computational techniques used to uncover chromatin
states within a cell type. We will learn how chromatin immunoprecipitation can be used to infer the regions
of the genome bound by a protein or interest, and a common algorithm (the Burrows-Wheeler) transform
can be used to rapidly map large numbers of short sequencing reads to a reference genome. From this we
then abstract a level and use a hidden Markov model (HMM) to segment the genome into regions which
share similar chromatin states. We will close by showing how these comprehensive maps of chromatin states
can be compared across cell types and can be used to provide information on how cell states are established
and maintained and the impact of genetic variation on gene expression.

274

6.047/6.878 Lecture 17: Epigenomics/Chromatin Sites

19.2 Epigenetic Information in Nucleosomes

In order to fit two meters of DNA into a 5-20 µm diameter cell nucleus and arrange the DNA for easy
access to transcriptional machinery, DNA is packaged into chromatin. Nucleosomes form the unit of this
packaging. A nucleosome is composed of DNA approximately 150-200 bp long wrapped around an octamer
consisting of two copies each of histone proteins H2A, H2B, H3, and H4 (and occasionally a linker histone
H1 or H5). While the structure and importance of higher-level packaging of nucleosomes is less known, the
lower-level arrangement and modification of nucleosomes is very important to transcriptional regulation and
the development of different cell types. Histone proteins H3 and H4 are the most highly conserved proteins
in the eukaryotic domain of life.

Nucleosomes encode epigenetic information in two main ways: chromatin accessibility and histone mod-
ifications.

First, the nucleosomes’ positions on the DNA determine which parts of DNA are accessible. Nucleosomes
are often positioned at the promoters of inactive genes. To initiate transcription of a gene, transcription
factors (TFs) and the RNA polymerase complex have to bind to its promoter. Therefore, when a gene
becomes active, the nucleosomes located at its promoter are often removed from the promoter to allow RNA
polymerase to initiate transcription. Hence, nucleosome positioning on the DNA is stable, yet mutable. This
property of stability and mutability is a prerequisite for any form of epigenetic information because cells
need to maintain the identity of a particular cell type, yet still be able to change their epigenetic state to
respond to environmental circumstances.

Chromatin accessibility can also be modulated by transcribed RNA (specifically, “enhancer RNA,” or
eRNA) floating around the nucleus. In particular, Mousavi et al. found in 2013 that eRNAs, which are tran-
scribed at extragenic enhancer regions, enhance RNA pol II occupancy (which is rate-limited by chromatin
accessibility) and deployment of other transcriptional machinery, leading to enhanced expression of distal
target genes [9].

Second, histones contain unstructured tails protruding from the globular core domains that comprise the
nucleosome octamer. These tails can undergo post-translational modification such as methylation, acetyla-
tion and phosphorylation, each of which affect gene expression. Some proteins involved in transcriptional
regulation bind specifically to particular histone modifications or combinations of modifications, and recruit
yet more transcription factors which enhance or repress expression of nearby genes. Thus, the “histone code
hypothesis” posits that different combinations of histone modifications at specific genomic loci encode bio-
logical function via differential transcriptional regulation. In this model, histone modifications are analogous
to different readers marking sections of a book with different-colored post-it notes – histone modifications
allow the same genome to be interpreted (i.e., transcribed) differently at different times and in different
tissues. There are over 100 distinct histone modifications that have been found experimentally. Six of the
most well-characterized histone modifications, along with the typical signature widths of their appearances
in the genome and their putative associated regulatory elements, are listed in Table 19.1. Note that all of
these modifications are on lysines in H3 and H4. Modifications of H3 and H4 are most well-characterized be-
cause H3 and H4 are the most highly conserved histones (making modifications of those histones more likely
to have conserved regulatory function) and because good antibodies exist for all of the commonly-observed
modifications of those histones.

Histone modifications are so commonly-referenced that a shorthand has been developed to identify them.
This shorthand consists of the name of the histone protein, the amino acid residue on its tail that has
been modified and the type of modification made to this residue. To illustrate, the fourth residue from the
N-terminus of histone H3, lysine, is often methylated at the promoters of active genes. This modification
is described as H3K4me3 (if methylated thrice). The first part of the shorthand corresponds to the histone
protein, in this case H3; K4 corresponds to the 4th residue from the end, in this case a lysine, and me3

275

6.047/6.878 Lecture 17: Epigenomics/Chromatin Sites

corresponds to the actual modification, the addition of 3 methyl groups in this case.

Histone Modification Signature Associated Regulatory Element

H3K4me1 (wide) focal active promoters/enhancers
H3K4me3 (wide) focal active promoters/enhancers
H3K9me3 wide repressed regions
H3K27ac focal active promoters/enhancers

H3K27me3 wide repressed regions
H3K36me3 wide transcribed regions

Table 19.1: Six of the most well-characterized histone modifications along with their typical signature widths
and putative associated regulatory elements. “Focal” indicates that each instance of the histone modification
has a relatively narrow signature in the genome (peak width < 5kb) whereas “wide” indicates wide signatures.

One example of epigenetic modifications influencing biological function is often seen in enhancer regions
of the genome. Often these enhancer regions are far away from the genes and promoters that they regulate.
The enhancer is able to come into contact with a specific promoter by histone modification (acetylation
and methylation). This causes the DNA to fold upon itself to bring the promoter, enhancer, and recruited
transcription factors into contact, activating the previously repressed promoter. This system can be very
dynamic such that less than a minute after histone modification the cell will show signs of epigenetic influence,
while other modifications (mainly those during development) will show themselves in a slower manner. This
is also an example how how certain types of modifications of the histones can help us to predict enhancer
regions.

It is possible for more than one histone modification to be present at a given genomic locus, and histone
modifications thereby can act cooperatively and competitively. It is even possible for the two copies of a
given histone protein within the same nucleosome to have different modifications (though usually the histone
modification “writers” will localize together, thereby creating the same modification on both copies within
the nucleosome). Thus, it is necessary to simultaneously take into account all histone modifications in a
genomic region in order to accurately call the chromatin state of that region. As described in Section , with
the completion of the Roadmap Epigenome Project in 2015, a robust hidden Markov model (with histone
modifications as emissions and chromatin states as hidden states) can be used to do so.

Did You Know?
The simplest organisms that have epigenetic modifications are yeasts. Yeast is a single celled organ-
ism; thus, epigenetic modifications are not responsible for cell differentiation. As organisms become
more complex they tend to have more epigenetic modifications.

19.2.1 Epigenetic Inheritance

The extent to which epigenetic/epigenomic features are heritable is poorly understood and is therefore
the subject of much debate and ongoing investigation. In organisms that reproduce sexually, most epige-
netic modifications are lost during meiosis and/or at fertilization, but some modifications are sometimes
maintained. Additionally, biases exist in the ways in which paternal versus maternal epigenetic marks are
removed or remodeled during this process. In particular, maternal DNA methylation is often retained at
fertilization, whereas paternal DNA is almost always completely demethylated. Furthermore, for unknown
reasons, some genomic elements, such as centromeric satellites, are more likely to evade epigenetic reset. In
cases where epigenomic erasure does not occur completely at meiosis and fertilization, trans-generational
epigenetic inheritance can occur. See generally [4].

Another mechanism likely to be governed by epigenetic inheritance is the phenomenon of parental im-

276

6.047/6.878 Lecture 17: Epigenomics/Chromatin Sites

printing. In parental imprinting, certain autosomal genes are expressed if and only if they are inherited from
an individual’s mother, and other automsomal genes are expressed if and only if they are inherited from an
individual’s father. Examples are the Igf2 gene in mice (only expressed if inherited from the father) and the
H19 gene in mice (only expressed if inherited from the mother). There are no changes in the DNA sequence
of these genes, but extra methyl groups are observed on certain nucleotides within the inactivated copy of
the gene. The mechanisms and causality of this imprinting are poorly understood.

19.3 Epigenomic Assays

19.3.1 ChIP: a method for determining where proteins bind to DNA or where
histones are modified

Given the importance of epigenomic information in biology, great efforts have been made to study signals
that quantify this information. One common method for epigenomic mark measurement is called chromatin
immunoprecipitation (ChIP). ChIP technology yields fragments of DNA whose location in the genome
denote the positions of a particular histone modification or transcription factor. The procedures of ChIP are
described as follows and are depicted in Figure 19.2:

1. Cells are exposed to a cross-linking agent such as formaldehyde, which causes covalent bonds to form
between DNA and its bound proteins (e.g., histones with specific modifications).

2. Genomic DNA is isolated from the cell nucleus.

3. Isolated DNA is sheared by sonication or enzymes.

4. Antibodies are grown to recognize a specific protein, such as those involved in histone modification.
The antibodies are grown by exposing the proteins of interest to mammals, such as goats or rats, whose
immune response then causes the production of the desired antibodies.

5. Antibodies are added to the solution to immunoprecipitate and purify the complexes.

6. The cross-linking between the protein and DNA is reversed and the DNA fragments specific to the
epigenetic marks are purified.

After a ChIP experiment, we have short sequences of DNA that correspond to places where histones
were bound to the DNA. To identify the location of these DNA fragments in the genome, one can hybridize
them to known DNA segments on an array or gene chip and visualize them with fluorescent marks; this
method is known as ChIP-chip. Alternatively, one can do massive parallel next-generation sequencing of
these fragments; this is known as ChIP-seq. The latter approach, ChIP-seq, is a newer approach that is
used much more frequently. It is preferred because it has a wider dynamic range of detection and avoids
problems like cross-hybridization in ChIP-chip.

Each sequence tag is 30 base pairs long. These tags are mapped to unique positions in the reference
genome of 3 billion bases. The number of reads depending on sequencing depth, but typically there are on
the order of 10 million mapped reads for each ChIP-seq experiment.

There is a fairly standard pipeline used to infer the enrichment of the protein of interest at each site in the
genome given a set of short sequencing reads from a ChIP-seq experiment. First, the DNA fragments must
be mapped to the DNA (called read mapping). Next, we must determine which regions of the genome have
statistically significant enrichment of the protein of interest (called peak calling). After these preprocessing

277

6.047/6.878 Lecture 17: Epigenomics/Chromatin Sites

steps, we can build different supervised and unsupervised models to study chromatin states and their relation
to biological function. We look at each of these steps in turn.

19.3.2 Bisulfite Sequencing: a method for determining where DNA is methy-
lated

DNA methylation was the first epigenomic modification to be discovered and is an important transcrip-
tional regulator in that the methylation of cytosine residues in CpG dinucleotides results in “silencing,” or
repression, of transcription. Bisulfite sequencing is a method by which DNA is treated with bisulfite before
sequencing, allowing the precise determination of the nucleotides at which the DNA had been methylated.
Bisulfite treatment converts unmethylated cytosine residues to uracil, but does not affect methylated cy-
tosines. Thus, genomic DNA can be sequenced with or without bisulfite treatment, and the sequences can
be compared, and the sites at which cytosine has not been converted to uracil in the treated DNA (or, equiv-
alently, sites at which there is bisulfite-generated difference between the treated and untreated sequences)
are sites at which cytosine was methylated. This analysis assumes complete conversion of unmethylated
cytosine residues to uracil, so incomplete conversion can result in false positives (i.e., nucleotides identified
as methylated but which in fact were not methylated) [11].

19.4 Primary data processing of ChIP data

19.4.1 Read mapping

The problem of read mapping seeks to assign a given read to the best matching location in the reference
genome. Given the large number of reads and the size of human genome, one common requirement of all
read mapping algorithms is that they be efficient in both space and time. Furthermore, they must allow
mismatches due to sequencing errors and SNPs.

Based on previous lectures, we know various ways to perform mapping of reads: sequence alignment
(O(mn) time) and hash-based approaches such as BLAST, for example. Other approaches exist as well:
linear time string matching (O(m + n) time) and suffix trees and suffix arrays (O(m) time). However, a
problem with all these techniques is that they have a large memory requirement (often O(mn)). Instead,
state-of-the-art techniques based on the Burrows-Wheeler transformation [1] are used. These run in O(m)
time and require just O(n) space.

The Burrows-Wheeler transform originally arose from the need to compress information. It takes a
long string and rearranges it in a way that has adjacent repeating letters. This string can be compressed
because, for example, instead of writing 100 A’s the computer can now just indicate that there are 100 A’s in
a row. The Burrows-Wheeler transform also has some other special properties that we will exploit to search
in sublinear time.

The Burrows-Wheeler transform creates a unique transformed string that is shorter than the original
string. It also can be reversed easily to generate the original string, so no information is lost. The transformed
string is in sorted order, which allows for easy searching. The details of Burrows-Wheeler transformation
are described below and are illustrated in Figure 19.3.

First, we produce a transform from an original string by the following steps. In particular, we produce
a transform of the reference genome.

278

6.047/6.878 Lecture 17: Epigenomics/Chromatin Sites

1. For a given reference genome, add a special character at the beginning and end of the string (e.g.,
“BANANA” becomes ^BANANA@). Then generate all the rotations of this string (e.g., one such rotation
would be NANA@^BA).

2. Sort the rotations lexicographically — i.e., in alphabetical order — with special characters sorted last.

3. Only keep the last column of the sorted list of rotations. This column contains the transformed string

Once a Burrows-Wheeler transform has been computed, it is possible to reverse the transform to compute
the original string. This can be done with the procedure in Figure ??. Briefly, the reverse transformation
works as follows: given the transformed string, sort the string characters in alphabetical order; this gives
the first column in the transform. Combine the last column with the first to get pairs of characters from the
original rotations. Sort the pairs and repeat.

By using sorting pointers rather than full strings, it is possible to generate this transform of the reference
genome using a space that is linear in its size. Furthermore, even with a very large number of reads, it is
only necessary to do the transform one in a forward direction. After counting the reads in the transformed
space, it is then only necessary to do the reverse transform once to map the counts to genome coordinates.

In particular, from the Burrows-Wheeler transform we observe that all occurrences of the same suffix are
effectively next to each other rather than scattered throughout the genome. Moreover, the ith occurrence of
a character in the first column corresponds to the ith occurrence in the last column. Searching for substrings
using the transform is also easy. Suppose we are looking for the substring “ANA” in the given string.
Then the problem of search is reduced to searching for a prefix “ANA” among all possible sorted suffixes
(generated by rotations). The last letter of the substring (“A”) is first searched for in the first letters of the
sorted rotations. Then, the one-letter rotations of these matches are considered; the last two letters of the
substring (“NA”) are searched for among the first two letters of these one-letter rotations. This process can
be continued with increasing length suffixes to find the substring as a prefix of a rotation. Specifically, each
read is searched for and is found as a prefix of a rotation of the reference genome; this gives the position of
the read in the genome. By doing a reverse transform, it is possible to find the genomic coordinates of the
mapped reads.

Note that this idea is no faster in theory than hashing, but it can be faster in practice because it uses a
smaller memory footprint.

19.4.2 Quality control metrics

As with all experimental data, ChIP methods contain biases and their output may be of varied quality. As
a result, before processing the data, it is necessary to control for these biases, to determine which reads in
the data achieve a certain level of quality, and to set target thresholds on the quality of the data set as a
whole. In this section we will describe these quality control problems and metrics associated with them.

QC1: Use of input DNA as control

First, the reads given by ChIP are not uniformly scattered in the genome. For example, accessible regions
of the genome can be fragmented more easily, leading to non-uniform fragmentation. To control for this
bias, we can run the ChIP experiment on the same portion of DNA without using an antibody. This yields
input DNA, which can then be fragmented and mapped to give a signal track that can be thought of as
a background — i.e., reads we would expect by chance. (Indeed, even in the background we do not see

279

6.047/6.878 Lecture 17: Epigenomics/Chromatin Sites

uniformity.) Additionally, we have a signal track for the true experiment, which comes from the chromo-
immunoprecipitated DNA. Shown in Figure 19.4

QC2: Read-level sequencing quality score threshold

When sequencing DNA, each base pair is associated with a quality score. Thus, the reads given by ChIP-
seq contain quality scores on the base pair level, where lower quality scores imply a greater probability of
mismappings. We can easily use this information in a preprocessing step by simply rejecting any reads whose
average quality score falls below some threshold (e.g., only use reads where Q, the average quality score, is
greater than 10). Shown in Figure 19.5

QC3: Fraction of short reads mapped

Each read that passes the above quality metric may map to exactly one location in the genome, to multiple
locations, or to no locations at all. When reads map to multiple locations, there are a number of approaches
for handling this:

• A conservative approach: We do not assign the reads to any location because we are so uncertain.
Con: we can lose signal

• A probabilistic approach: We fractionally assign the reads to all locations. Con: can add artifacts
(unreal peaks)

• A sampling approach: We only select one location at random for a read. Chances are, across many
reads, we will assign them uniformly. Con: can add artifacts (unreal peaks)

• An EM approach: We can map reads based on the density of unambiguous reads. That is, many
unique reads that map to a region give a high prior probability that a read maps to that region. Note:
we must make the assumption that the densities are constant within each region

• A paired-end approach: Because we sequence both ends of a DNA fragment, if we know the mapping
of the read from one end, we can determine the mapping of the read at the other end even if it is
ambiguous.

Either way, there will likely be reads that do not map to the genome. One quality control metric would be
considering the fraction of reads that map; we may set a target of 50%, for instance. Similarly, there may be
regions to which no reads map. This may be due to a lack of assembly coverage or too many reads mapping
to the region; we treat unmappable regions as missing data.

QC4: Cross-correlation analysis

An additional quality control that is cross-correlation analysis. If single-end reads are employed, the a DNA
binding protein will generate a peak of reads mapping to the forward strand offset a distance roughly equal to
the DNA fragment length from a peak of reads mapping to the reverse strand. A similar pattern is generated
from paired end reads, in which read ends fall into two groups with a given offset, one read end will map
to the forward strand and the other to the reverse strand. The average fragment length can be inferred
by computing the correlation between the number of reads mapping to the forward strand and number of

280

6.047/6.878 Lecture 17: Epigenomics/Chromatin Sites

reads mapping to the reverse strand as a function of distance between the forward and reverse reads. The
correlation will peak at the mean fragment length.

The cross-correlation analysis also provides information on the quality of the ChIP-seq data set. Input
DNA should not contain any real peaks, but often shows a strong cross-correlation at a distance equal to
the read length. This occurs because some reads map uniquely in between regions that are unmappable. If
a read can map uniquely at position x in between two unmappable regions on the forward strand, then a
read can also map uniquely to the reverse strand at position x + r -1, where r is the read length. Reads that
map in this manner generate the strong cross- correlation at distance equal to the read length in the input
DNA. If a ChIP-seq experiment was unsuccessful and did not significantly enrich for the protein of interest,
then a large component of the reads will be similar to the unenriched input, which will produce a peak in
the cross-correlation at read length. Thus, the strength of the cross-correlation at read length relative to
the strength at fragment length can be used to evaluate the quality of the ChIP-seq data set. Acceptable
ChIP-seq libraries should have a cross-correlation at fragment length at least as high as at read-length, and
the higher the ratio between the fragment-length cross-correlation and the read-length cross-correlation, the
better.

QC5: Library Complexity

As a final quality control metric, we can consider the complexity of the library, or the fraction of reads that
are non-redundant. In a region with signal, we might expect reads to come from all positions in that region;
however, we sometimes see that only a small number of positions in a region have reads mapping to them.
This may be the result of an amplification artifact in which a single read amplifies much more than it should.
Consequently, we consider the non-redundant fraction of a library:

No. of distinct unique-mapping reads
NRF =

No. of unique mapping reads

This value measures the complexity of the library. Low values indicate low complexity, which may occur,
for example, when there is insufficient DNA or one DNA fragment is over-sequenced. When working with
at least 10 million uniquely mapped reads, we typically set a target of at least 0.8 for the NRF.

19.4.3 Peak Calling and Selection

After reads are aligned, signal tracks as shown in Figure 19.6 can be generated. This data can be ordered into
a long histogram spanning the length of the genome, which corresponds to the number of reads (or degree
of fluorescence in the case of ChIP-chip) found at each position in the genome. More reads (or fluorescence)
suggests a stronger presence of the epigenetic marker of interest at this particular location.

In particular, to generate these signal tracks we transform the read counts into a normalized intensity
signal. First, we can use the strand cross-correlation analysis to estimate the fragment length distribution
f . Since we now know f , as well as the length of each read, we can extend each read (typically just 36
bp) from the 5’ to 3’ direction so that its length equals the average fragment length. Then, rather than
just summing the intensity of each base in the original reads, we can sum the intensity of each base in the
extended reads from both strands. In other words, even though we only sequence a small read, we are able
to use information about an entire segment of which that read is a part. We can do this same operation
on the control data. This yields signal tracks for both the true experiment and the control, as shown in
Figure 19.7.

To process the data, we are first interested in using these signal tracks to discover regions (i.e., discrete
intervals) of enrichment. This is the goal of peak calling. There are many programs that perform peak

281

6.047/6.878 Lecture 17: Epigenomics/Chromatin Sites

calling with different approaches. For example, MACS uses a local Poission distribution as its statistical
model, whereas PeakSeq uses a conditional binomial model.

One way to model the read count distribution is with a Poisson distribution. We can estimate the
expected read count, λlocal from the control data. Then,

λx cal

Pr(count = x) = lo e−λlo
cal

x!

Thus, the Poisson p-value for a read count x is given by Pr(count ≥ x). We specify a threshold p-value (e.g.,
0.00001) below which genomic regions are considered peaks.

We can transform this p-value into an empirical false discovery rate, or eFDR, by swapping the ChIP
(true) experiment data with the input DNA (control) tracks. This would yield the locations in the genome
where the background signal is higher than the ChIP signal. For each p-value, we can find from both the
ChIP data and the control data. Then, for each p-value, the eFDR is simply the number of control peaks
divided by the number of ChIP peaks. With this, we can then choose which peaks to call based on an eFDR
threshold.

A major problem that arises is that no single universal eFDR or p-value threshold can be used. Ideal
thresholds depend on a range of factors, including the ChIP, the sequencing depth, and the ubiquity of the
target factor. Furthermore, small changes in the eFDR threshold can yield very large changes in the peaks
that are discovered. An alternative measure is the Irreproducible Discovery Rate, or IDR, and this measure
avoids these FDR-specific issues.

Irreducible Discovery Rate (IDR)

A major drawback of using traditional statistical methods to evaluate the significance of ChIP-seq peaks
is that FDR and p-value-based approaches make particular assumptions regarding the relationship between
enrichment and significance. Evaluating the significance of ChIP peaks using IDR rather than a p-value
or FDR is advantageous because it allows us to leverage the information present in biological replicates to
call peaks without setting a threshold for significance. IDR-based approaches rely upon the idea that real
signal is likely to be reproducible between replicates, whereas noise should not be reproducible. Using IDR
to call significant peaks returns peaks that satisfy a given threshold for significance. To determine which
peaks are significant via IDR, the peaks in each biological replicate are ranked based on their enrichment in
descending order.The top N peaks in each replicate are then compared against each other, and the IDR for a
given replicate is the fraction of peaks present in the top N peaks in the replicate that are not present in the
other replicates (i.e, the fraction of peaks that are not reproducible between replicates). To develop more
mathematical intuition, the following (entirely optional) subsection will rigorously introduce the concept of
the IDR.

Mathematical Derivation of the IDR

Since the IDR utilizes ranks, this mean that the marginal distributions are uniform, and the information
is mostly encoded in the joint distributions of the ranks across biological replicates. Specifically, when the
marginal distributions are uniform, we can model the joint distributions through a copula model. Simply
put, a copula is a multivariate probability distribution in which the marginal probability of each variable is
uniform. Skar’s Theorem states that there exists at least one copula function which allows us to express
the joint in terms of the dependence of the marginal distributions.

Fk(x1, x2, . . . xk) = Cx(FX1(x1), . . . FXk
(xK))

282

6.047/6.878 Lecture 17: Epigenomics/Chromatin Sites

Where Cx is the copula function and the F (x) is the cumulative distribution for a variable x. Given this
information, we can set a Bernoulli distribution Ki ∼ Bern(πi) that denotes whether the ith peak is from
the consistent set or the spurious set. We can derive z1 = (z1,1, z1,2) if Ki = 1 or z0 = (z0,1, z0,2) if Ki = 0
(where z0,i means that it’s from the spurious set in biological replicate i). Using this, we can model the z1,1

and z0,1 models as the following:

(
zi,1
zi,2

)
| Ki = k ∼ N

((
µk
µk

)
σ

,

(
2
k ρkσ

2
k

ρkσ
2
k σ2

k

))

We can utilize two different models to model whether it comes from the spurious set (denoted by 0), or
the real set (1). If the real set, we have µ1 > 0 and 0 < ρ1 < 1, whereas in the null set we have µ0 = 0, and
σ2

0 = 1. We can model a variable ui,1 and ui,2 with the following formulas:

zi,1 µ1
ui,1 = G(zi,1) = π1Φ

(
−
σ1

)
+ π0Φ(zi,1)

ui,2 = G(zi,2) = π1Φ

(
zi,2 − µ1

z
σ

)
+ π0Φ(i,2)

1

Where Φ is the normal cumulative distribution function. Then, let the observed xi,1 = F−1(ui,1) and
xi,2 = F−1(ui,2), where F1 and F2 are the marginal distributions of the two coordinates. Thus, for a signal
i, we have:

P (Xi,1 ≤ x1, X
1

i, ≤ x 1 1 1
2 2) = π0h0(G− (F1(xi,1), G− (F2(xi,2)) + π1h1(G− (F1(xi,1), G− (F2(xi,2))

We can express h0 and h1 with the following normal distributions, similar to the z1 and z2 that were defined
above: ((

0
) (

1 0
h0 ∼ N ,

0 0 1

))
h ∼

((
µ1 1 ρ 2

N

)
,

(
σ2

1σ1
1 µ1 ρ1σ

2
1 σ2

1

))
We can now infer the parameters θ = (µ1, ρ1, σ1, π0), using a EM algorithm, where the inference is based on

ˆP (Ki = 1 | (xi,1, xi,2); θ). Thus, we can define the local irreproducible discovery rate as:

ˆidr(xi,1, xi,2) = P (Ki = 0 | (xi,1, xi,2); θ)

So to control the IDR at some level α, we can rank (xi,1, xi,2) by their IDR values. We can then select
(x(i),1, x(i),2), i = 1 . . . l, where

1
I = argmax

i

∑i
idrj

i
j=1

≤ α

IDR is analogous to a FDR control in this copula mixture model. This subsection summarizes the in-
formation provided in this lecture: https://www.biostat.wisc.edu/~kendzior/STAT877/SK_2.pdf. The
original paper, along with an even more detailed formulation of IDR, can be found in Li et al. [10]

Advantages and use cases of the IDR

IDR analysis can be performed with increasing N, until the desired IDR is reached (for example, N is
increased until IDR=0.05, meaning that 5% of the top N peaks are not reproducible). Note that N can be

283

https://www.biostat.wisc.edu/~kendzior/STAT877/SK_2.pdf

6.047/6.878 Lecture 17: Epigenomics/Chromatin Sites

different for different replicates of the same experiment, as some replicates may be more reproducible than
others due to either technical or biological artifacts.

IDR is also superior to simpler approaches to use the reproducibility between experiments to define
significance. One approach might be to take the union of all peaks in both replicates as significant, however;
this method will accept both real peaks and the noise in each data set. Another approach is to take the
intersection of peaks in both replicates, that is, only count peaks present in both data sets as significant.
While this method will very effectively eliminate spurious peaks, it is likely to miss many genuine peaks.
IDR can be thought of as combining both these approaches, as it accepts all peaks, regardless as to whether
they are reproducible, so long as the peaks have sufficient enrichment to fall within the segment of the data
with an overall irreproducibility rate above a given threshold. Another advantage to IDR is that it can still
be performed even if biological replicates are not available, which can often be the case for ChIP experiments
performed in rare cell types. Psuedo-replicates can be generated from a single data set by randomly assigning
half the reads to one pseudo-replicate and half to another pseudo-replicate.

Interpreting Chromatin Marks

We now move onto techniques for interpreting chromatin marks. There are many ways to analyze epigenomic
marks, such as aggregating chromatin signals (e.g., H3K4me3) on known feature types (e.g., promoters
of genes with high or low expression levels) and performing supervised or unsupervised machine learning
methods to derive epigenomic features that are predictive of different types of genomics elements such as
promoters, enhancers or large intergenic non-coding RNAs. In particular, in this lecture, we examine in
detail the analysis of chromatin marks as done in [7].

19.5 Annotating the Genome Using Chromatin Signatures

The histone code hypothesis suggests that chromatin-DNA interactions are guided by combinatorial his-
tone modifications. These combinatorial modifications, when taken together, can in part determine how
a region of DNA is interpreted by the cell (i.e. as a transcription factor binding domain, a splice site, an
enhancer region, an actively expressed gene, a repressed gene, or a non functional region). We are interested
in interpreting this “code” (i.e. determining from histone marks at a region whether the region is a tran-
scription start site, enhancer, promoter, etc.). With an understanding of the combinatorial histone marks,
we can annotate the genome into functional regions and predict novel enhancers, promoters, genes, etc. The
challenge is that there are dozens of marks and they exhibit complex combinatorial effects.

Stated another way, DNA can take on a series of (hidden) states (coding, noncoding, etc). Each of these
states emits a specific combination of epigenetic modifications (H3K4me3, H3K36me3, etc) that the cell
recognizes. We want to be able to predict these hidden, biologically relevant states from observed epigenetic
modifications.

In this section, we explore a technique for interpreting the “code” and its application to a specific dataset
[7], which measured 41 chromatin marks across the human genome.

284

6.047/6.878 Lecture 17: Epigenomics/Chromatin Sites

19.5.1 Data

Data for this analysis consisted of 41 chromatin marks including acetylations, methylations, H2AZ, CTCF
and PollI in CD4 T cells. First, the genome was divided into 200 bp non-overlapping bins in which the binary
absence or presence of each of the 41 chromatin marks was determined. This data was processed using data
binarization, in which each mark in each interval is assigned a value of 0 or 1 depending on whether the
enrichment of the mark’s signal in that interval exceeds a threshold. Specifically, let Cij be the number of
reads detected by ChIP-seq for mark i, mapping to the 200bp bin j. Let λi be the average number of reads
mapping to a bin for mark i. The mark i is determined to be present in bin j if P (X > Cij) is less than the
accepted threshold of 10−4 where X is a Poisson random variable with mean λi and absent otherwise. The
threshold is user defined, similar to a Poisson p-value. In order words, the read enrichment for a specific bin
has to be significantly greater than a random process of putting reads into bins. An example for chromatin
states around the CAPZA2 gene on chromosome 7 is shown in Figure 19.8. So in this way, for each mark i,
we can label each bin j with a 1 if the mark is present and a 0 if it isn’t. Looking at the data as a whole, we
can think of it as large binary matrix, where each row corresponds to a mark and each column corresponds
to a bin (which is simply a 200bp region of the genome).

Additional data used for analysis included gene ontology data, SNP data, expression data, and others.

19.5.2 HMMs for Chromatin State Annotation

Our goal is to identify biologically meaningful and spatially coherent combinations of chromatin marks.
Remember that we broke the genome up into 200bp blocks, so by spatially coherent we mean that if we
have a genomic element that is longer than 200bps, we expect the combination of chromatin marks to be
consistent on each 200bp bin in the region. We’ll call these biologically meaningful and spatially coherent
combinations of chromatin marks chromatin states. In previous lectures, we’ve seen HMMs applied to
genome annotation for genes and CpG islands. We would like to apply the same ideas to this situation, but
in this case, we don’t know the hidden states a priori (e.g. CpG island region or not), we’d like to learn
them de novo. This model can capture both the functional ordering of different states (e.g from promoter
to transcribed regions) and the spreading of certain chromatin domains across the genomes. To summarize,
we want to learn an HMM where the hidden states of the HMM are chromatin states.

As we learned previously, even if we don’t know the emission probabilities and transition probabilities of
an HMM, we can use the Baum-Welch training algorithm to learn the maximum likelihood values for those
parameters. In our case, we have an added difficulty, we don’t even know how many chromatin states exist!
In the following subsections, we’ll expand on how the data is modeled and how we can choose the number
of states for the HMM.

Emission of a Vector

In HMMs from previous lectures, each state emitted either a single nucleotide or a single string of nucleotides
at a time. In the HMM for this problem, each state emits a combination of epigenetic marks. Each
combination can be represented as an n-dimensional vector where n is the number of chromatin marks being
analyzed (n = 41 for our data). For example, assuming you have four possible epigenetic modifications:
H3K4me3, H2BK5ac, Methyl-C, and Methyl-A, a sequence containing H3K4me3 and Methyl-C could be
presented as the vector (1, 0, 1, 0). One could imagine many different probability distributions on binary
n-vectors and for simplicity, we assume that the marks are independent and modeled as Bernoulli random
variables. So we are assuming the marks are independent given the hidden state of the HMM (note that this
is not the same as assuming the marks are independent).

285

6.047/6.878 Lecture 17: Epigenomics/Chromatin Sites

If there are n input marks, each state k has a vector (pk1, .., pkn) of probabilities of observing marks 1 to
n. Since the probability is modeled as a set of independent Bernoulli random variables, the probability of
observing a set of marks given that we are in the hidden state k equals the product of the probabilities of
observing individual marks. For example if n = 4, the observed marks at bin j were (1, 0, 1, 0) and we were
in state k, then the likelihood of that data is pk1(1− pk2)pk3(1− pk4).

The learned emission probabilities for the data are shown in Figure 19.9.

Transition Probabilities

Recall that the transition probabilities represent the frequency of transitioning from one hidden state to
another hidden state. In this case, our hidden states are chromatin states. The transition matrix for our
data is shown in Figure 19.10. As seen from the figure, the matrix is sparse, indicating that only a few
of the possible transitions actually occur. The transition matrix reveals the spatial relationships between
neighboring states. Blocks of states in the matrix reveal sub-groups of states and from these higher level
blocks, we can see transitions between these meta-states.

19.5.3 Choosing the Number of states to model

As with most machine learning algorithms, increasing the complexity of the model (e.g. the number of
hidden states) will allow it to better fit training data. However, the training data is only a limited sample of
the true population. As we add more complexity, at some point we are fitting patterns in the training data
that only exist due to limited sampling, so that the model will not generalize to the true population. This
is called over-fitting training data; we should stop adding complexity to the model before it fits the noise
in the training data.

Bayesian Information Criterion (BIC) is a common technique for optimizing the complexity of a
model that balances increased fit to the data with complexity of the model. Using BIC, we can visualize the
increasing power of the HMM as a function of the number of states. Generally, one will choose a value for k
(the number of states) such that the addition of more states has relatively little benefit in terms of predictive
power gain. However, there is a tradeoff between model complexity and model interpretability that BIC
cannot help with. The optimal model according to BIC is likely to have more states than an ideal model
because we are willing to trade some predictive power for a model with fewer states that can be interpreted
biologically. The human genome is so big and the chromatin marks so complex that statistically significant
differences are easy to find, yet many of these differences are not biologically significant.

To solve this problem, we start with a model with more hidden states than we believe are necessary
and prune hidden states as long as all states of interest in the larger model are adequately captured. The
Baum-Welch algorithm (and EM in general) is sensitive to the initial conditions, so we try several random
initializations in our learning. For each number of hidden states from 2 - 80, we generate three random
initializations of the parameters and train the model using Baum-Welch. The best model according to BIC
had 79 states and states were then iteratively removed from this set of 79 states.

As we mentioned earlier, Baum-Welch is sensitive to the initial parameters, so when we pruned states,
we used a nested initialization rather than a randomized initialized for the pruned model. Specifically, states
were greedily removed from the BIC-optimal 79 state model. The state to be removed was the state that
such that all states from the 237 randomly initialized models were well captured. When removing a state, the
emission probabilities would be removed and any state transitioning to the removed state would have that
transition probability uniformly redistributed to the remaining states. This was used as the initialization to

286

6.047/6.878 Lecture 17: Epigenomics/Chromatin Sites

the Baum-Welch training. The number of states for a model to analyze can then be selected by choosing the
model trained from such nested initialization with the smallest number of states that sufficiently captures
all states offering distinct biological interpretations. The resulting final model had 51 states.

We can also check model fit by looking at how the data violates model assumptions. Given the hidden
state, the HMM assumes that each mark is independent. We can test how well the data conforms to this
assumption by plotting the dependence between marks. This can reveal states that fit well and those that do
not. In particular, repetitive states reveal a case where the model does not fit well. As we add more states,
the model is better able to fit the data and hence fit the dependencies. By monitoring the fit on individual
states that we are interested in, we can control the complexity of the model.

19.5.4 Results

This multivariate HMM model resulted in a set of 51 biologically relevant chromatin states. However, there
were no one-to-one relationship between each state and known classes of genomic elements (e.g. introns,
exons, promoters, enhancers, etc) Instead, multiple chromatin states were often associated with one genomic
element. Each chromatin state encoded specific biological relevant information about its associated genomic
element. For instance, three different chromatin states were associated with transcription start site (TSS),
but one was associated with TSS of highly expressed genes, while the other two were associated with TSS
of medium and lowly expressed genes respectively. Such use of epigenetic markers greatly improved genome
annotation, particularly when combined with evolutionary signals discussed in previous lectures. The 51
chromatin states can be divided in five large groups. The properties of these groups are described as follows
and further illustrated in 19.11:

1. Promoter-Associated States (1-11):

These chromatin states all had high enrichment for promoter regions. 40-89% of each state was within
2 kb of a RefSeq TSS. compared to 2.7% genome-wide. These states all had a high frequency of
H3K4me3, significant enrichments for DNase I hypersensitive sites, CpG islands, evolutionarily con-
served motifs and bound transcription factors. However, these states differed in the levels of associated
marks such as H3K79me2/3, H4K20me1, acetylations etc. These states also differed in their functional
enrichment based on Gene Ontology (GO). For instance, genes associated with T cell activation were
enriched in state 8 while genes associated with embryonic development were enriched in state 4. Ad-
ditionally, among these promoter states there were distinct positional enrichments. States 1-3 peaked
both upstream and downstream of TSS; states 4-7 were concentrated right over TSS whereas states
8-11 peaked between 400 bp and 1200 bp downstream of TSS. This suggests that chromatin marks
can recruit initiation factors and that the act of transcript can reinforce these marks. The distinct
functional enrichment also suggests that the marks encode a history of activation.

2. Transcription-Associated States (12-28):

This was the second largest group of chromatin states and included 17 transcription-associated states.
There are 70-95% contained in annotated transcribed regions compared to 36% for rest of genome.
These states were not predominantly associated with a single mark but rather they were defined by a
combination of seven marks - H3K79me3, H3K79me2, H3K79me1, H3K27me1, H2BK5me1, H4K20me1
and H3K36me3. These states have subgroups associated with 5’-proximal or 5’-distal locations. Some
of these states were associated with spliced exons, transcription start sites or end sites. Of interest,
state 28, which was characterized by high frequency for H3K9me3, H4K20me3, and H3K36me3, showed
a high enrichment in zinc-finger genes. This specific combination of marks was previously reported as
marking regions of KAP1 binding, a zinc-finger specific co-repressor.

3. Active Intergenic States (29-39):

287

6.047/6.878 Lecture 17: Epigenomics/Chromatin Sites

These states were associated with several classes of candidate enhancer regions and insulator regions
and were associated with higher frequencies for H3K4me1, H2AZ, several acetylation marks but lower
frequencies of methylation marks. Moreover, the chromatin marks could be used to distinguish active
from less active enhancers. These regions were usually away from promoters and were outside of tran-
scribed genes. Interestingly, several active intergenic states showed a significant enrichment for disease
SNPs, or single nucleotide polymorphism in genome-wide association study (GWAS). For instance, a
SNP (rs12619285) associated with plasma eosinophil count levels in inflammatory diseases was found to
be located in the chromatin state 33, which was enriched for GWAS hits. In contrast, the surrounding
region of this SNP was assigned to other chromatin states with no significant GWAS association. This
can shed light on the possible functional significance of disease SNPs based on its distinct chromatin
states.

4. Large-Scale Repressed States (40-45):

These states marked large-scale repressed and heterochromatic regions, representing 64% of the genome.
H3K27me3 and H3K9me3 were two most frequently detected marks in this group.

5. Repetitive States (46-51):

These states showed strong and distinct enrichments for specific repetitive elements. For instance, state
46 had a strong sequence signature of low-complexity repeats such as (CA)n, (TG)n, and (CATG)n.
States 48-51 showed seemingly high frequencies for many modification but also enrichment in reads
from non-specific antibody control. The model was thus able to also capture artifacts resulting from
lack of coverage for additional copies of repeat elements.

Since many of the chromatin states were described by multiple marks, the contribution of each mark
to a state was quantified. Varying subsets of chromatin marks were tested to evaluate their potential for
distinguishing between chromatin states. In general, increasing subsets of marks were found to converge to
an accurate chromatin state when marks were chosen greedily.

The predictive power of chromatin states for discovery of functional elements consistently outperformed
predictions based on individual marks. Such unsupervised model using epigenomic mark combination and
spatial genomic information performed as well as many supervised models in genome annotation. It was
shown that this HMM model based on chromatin states was able to reveal previously unannotated promoters
and transcribed regions that were supported by independent experimental evidence. When chromatin marks
were analyzed across the whole genome, some of the properties observed were satellite enriched states (47-51)
enriched in centromere, the zinc-finger enriched state (state 28) enriched on chromosome 19 etc. Thus, such
genome-wide annotation based on chromatin states can help better interpret biological data and potentially
discover new classes of functional elements in the genome.

19.5.5 Multiple Cell Types

All of the above work was done in a single cell type (CD4+ T cells). Since epigenomic markers vary over
time, across cell types, and environmental circumstances, it is important to consider the dynamics of the
chromatin states across different cell types and experimental conditions. The ENCODE project [3] in the
Brad Bernstein Chromatin Group has measured 9 different chromatin marks in nine human cell lines. In
this case, we want to a learn a single set of chromatin marks for all of the data. There are two approaches
to this problem: concatenation and stacking. For concatenation, we could combine all of the 9 cell lines
as if they were a single cell line. By concatenating the different cell lines, we ensure that a common set
of state definitions are learned. We can do this here because the profiled marks were the same in each
experiment. However, if we profiled different marks for different cell lines, we need to use another approach.
Alternatively, we can align the 9 cell lines and treat all of the marks as a super-vector. This allows us to
learn cell line specific activity states, for example there might be a state for ES-specific enhancers (in that

288

6.047/6.878 Lecture 17: Epigenomics/Chromatin Sites

state there would be enhancer marks in ES, but no marks in other cell types). Unfortunately, this greatly
increases the dimension of the vectors emitted by the HMM, which translates to an increase in the model
complexity needed to adequately fit the data.

Suppose we had multiple cell types where we profiled different marks and we wanted to concatenate them.
One approach is to learn independent models and then combine them. We could find corresponding states
by matching emission vectors that are similar or by matching states that appear at the same places in the
genome. A second approach is to treat the missing marks as missing data. The EM framework allows for
unspecified data points, so as long as pairwise relationships are observed between marks in some cell type,
we can use EM. Lastly, we can predict the missing chromatin marks based on the observed marks using
maximum-likelihood as in the Viterbi algorithm. This is a less powerful approach if the ultimate goal is
chromatin state learning because we are only looking at the most likely state instead of averaging over all
possibilities as in the second approach.

In the case with 9 marks in 9 human cell lines, the cell lines were concatenated and a model with 15
states was learned [8]. Each cell type was analyzed for class enrichment. It was shown that some chromatin
states, such as those encoding active promoters were highly stable across all cell types. Other states, such as
those encoding strong enhancers, were highly enriched in a cell-type specific manner, suggesting their roles
in tissue specific gene expression. Finally, it was shown that there was significant correlation between the
epigenetic marks on enhancers and the epigenetic marks on the genes they regulate, even though these can
be thousands of base pairs away. Such chromatin state model has proven useful in matching enhancers to
their respective genes, a problem that has been largely unsolved in modern biology. Thus, chromatin states
provide a means to study the dynamic nature of chromatin across many cell types. In particular, we can
see the activity of a particular region of the genome based on the chromatin annotation. It also allows us to
summarize important information contained in 2.4 billion reads in just 15 chromatin states.

A 2015 Nature publication by the Epigenome Roadmap Project has shown produced an unparalleled
reference for human epigenomics signatures across over a hundred different tissues [2]. In their analysis, they
make use of several of the concepts we have discussed in-depth in this chapter, such as a 15-state or 18-state
ChromHMM model to annotate the epigenome. Training over a 111 data sets allowed for greater robustness
to the HMM models discussed earlier. The Roadmap project explored many interesting directions in their
paper, and interested readers are strongly encouraged to read over this publication. Interesting conclusions
include that H3K4-me1 associated states are the most tissue-specific chromatin marks, and that bivalent
promoters and repressed states were also the most highly variable annotations across different tissue types.
For enhancers, the Roadmap project found that a significant amount of disease-related SNPs are associated
with annotated enhancer regions. Active exploration of this connection is ongoing in the Computational
Biology Group at MIT.

19.6 Current Research Directions

Several large-scale data production efforts such as ENCODE, modENCODE and Epigenome Roadmap
projects are currently in progress and therefore there are several opportunities to computationally ana-
lyze this new data. Epigenomic data is also being used to study how behavior can alter your genome. There
are studies being done that look at diet and exercise and their effects on disease susceptibility.

Another interesting area of research is the analysis of epigenetic changes in disease. Current research in
the Computational Biology Group at MIT is looking at the link between chromatin states and Alzheimer’s
disease. A selection of papers in epigenetics-disease linkage has been provided below.

289

6.047/6.878 Lecture 17: Epigenomics/Chromatin Sites

19.7 Further Reading

There are several interesting papers that are looking at chromatin states and epigenetics in general. Several
urls are listed below to begin your exploration:

1. http://www.nature.com/nmeth/journal/v8/n9/full/nmeth.1673.html

2. http://www.nature.com/nature/journal/v473/n7345/full/nature09906.html

3. http://www.nature.com/nbt/journal/v28/n8/abs/nbt.1662.html

4. http://www.nytimes.com/2012/09/09/opinion/sunday/why-fathers-really-matter.html?_r=1

5. http://www.nature.com/doifinder/10.1038/nature14248

These are a few selected publications that deal with epigenetics and disease.

1. http://www.nature.com/nature/journal/v429/n6990/full/nature02625.html

2. http://www.sciencedirect.com/science/article/pii/S2211124712003725

3. http://www.nature.com/nbt/journal/v28/n10/pdf/nbt.1685.pdf

19.8 Tools and Techniques

ChromHMM is the HMM described in the text. It is available free for download with instructions and
examples at: http://compbio.mit.edu/ChromHMM/.

Segway is another method for analyzing multiple tracks of functional genomics data. It uses a dynamic
Bayesian network (HMMs are a particular type of dynamic Bayesian network) which enables it to analyze
the entire genome at 1-bp resolution. The downside is that it is much slower than ChromHMM. It is available
free for download here: http://noble.gs.washington.edu/proj/segway/.

19.9 What Have We Learned?

In this lecture, we learned how chromatin marks can be used to infer biologically relevant states. The analysis
in [7] presents a sophisticated method to apply previously learned techniques such as HMMs to a complex
problem. The lecture also introduced the powerful Burrows-Wheeler transform that has enabled efficient
read mapping.

Bibliography

[1] Langmead B, Trapnell C, Pop M, and Salzberg S. Ultrafast, memory-efficient alignment of short DNA
sequences to the human genome. Genome Biology, 10(3), 2009.

290

http://www.nature.com/nmeth/journal/v8/n9/full/nmeth.1673.html
http://www.nature.com/nature/journal/v473/n7345/full/nature09906.html
http://www.nature.com/nbt/journal/v28/n8/abs/nbt.1662.html
http://www.nytimes.com/2012/09/09/opinion/sunday/why-fathers-really-matter.html?_r=1
http://www.nature.com/doifinder/10.1038/nature14248
http://www.nature.com/nature/journal/v429/n6990/full/nature02625.html
http://www.sciencedirect.com/science/article/pii/S2211124712003725
http://www.nature.com/nbt/journal/v28/n10/pdf/nbt.1685.pdf
http://compbio.mit.edu/ChromHMM/
http://noble.gs.washington.edu/proj/segway/

6.047/6.878 Lecture 17: Epigenomics/Chromatin Sites

[2] Roadmap Epigenomics Consortium, Kundaje A, Meuleman W, et al. Integrative analysis of 111 reference
human epigenomes. Nature, 518(7539):317–330, 2015.

[3] The ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome.
Nature, 489(7414):57–74, 2012.

[4] Heard E and Martienssen RA. Transgenerational epigenetic inheritance: Myths and mechanisms. Cell,
157(1):95–109, 2014.

[5] Mardis ER. ChIP-seq: welcome to the new frontier. Nature Methods, 4(8):614–614, 2007.

[6] Herz H-M, Hu D, and Shilatifard A. Enhancer malfunction in cancer. Molecular Cell, 53(6):859–866,
2014.

[7] Ernst J and Kellis M. Discovery and characterization of chromatin states for systematic annotation of
the human genome. Nature Biotechnology, 28:817–825, 2010.

[8] Ernst J, Kheradpour P, Mikkelsen TS, et al. Mapping and analysis of chromatin state dynamics in nine
human cell types. Nature, 473(7345):43–49, 2011.

[9] Mousavi K, Zare H, Dell’orso S, Grontved L, et al. eRNAs promote transcription by establishing
chromatin accessibility at defined genomic loci. Molecular Cell, 51(5):606–17, 2013.

[10] Qunhua Li, James B. Brown, Haiyan Huang, and Peter J. Bickel. Measuring reproducibility of high-
throughput experiments. The Annals of Applied Statistics, 5(3):1752–1779, 2011.

[11] Li Y and Tollefsbol TO. DNA methylation detection: Bisulfite genomic sequencing analysis. Methods
Molecular Biology, 791:11–21, 2011.

291

6.047/6.878 Lecture 17: Epigenomics/Chromatin Sites

Figure 19.1: A. There is a wide diversity of modifications in the epigenome. Some regions of DNA are
compactly wound around histones, making the DNA inaccessible and the genes inactive. Other regions have
more accessible DNA and thus active genes. Epigenetic factors can bind to the tails of these histones to
modify these properties. B. Histone modifications provide information about what types of proteins are
bound to the DNA and what the function of the region is. In this example, The histone modifications allow
for an enhancer region (potentially over 100 kilo bases away) to interact with the promoter region. [6]

Courtesy of National Institutes of Health.
Image in the public domain. Courtesy of Elsevier, Inc. Used with permission.

Source: Herz, Hans-Martin, Deqing Hu, et al. "Enhancer Malfunction in Cancer."
Molecular Cell 53, no. 6 (2014): 859-66.

Courtesy of Nature Publishing Group. Used with permission.
Source: Mardis, Elaine R. "ChIP-seq: Welcome to the New Frontier."
Nature Methods 4, no. 8 (2007): 613.

Figure 19.2: The method of chromatin immunoprecipitation [5]. The steps in this figure correspond to the
six steps of the procedure.

292

http://dx.doi.org/10.1016/j.molcel.2014.02.033
https://en.wikipedia.org/wiki/Epigenetics_of_schizophrenia#/media/File:Epigenetic_mechanisms.jpg
http://dx.doi.org/10.1038/nmeth0807-613

6.047/6.878 Lecture 17: Epigenomics/Chromatin Sites

Figure 19.3: (Top) In the Burrows-Wheeler forward transformation rotations are generated and sorted. The
last column of the sorted list (bolded) consists of the transformed string. (Bottom)In the Burrows-Wheeler
reverse transformation the transformed string is sorted, and two columns are generated: one consisting of the
original string and the other consisting of the sorted. These effectively form two columns from the rotations
in the forward transformation. This process is repeated until the complete rotations are generated.

Figure 19.4: To use input DNA as a control, one can run the ChIP experiment as normal while simultaneously
running the same experiment (with same DNA) without an antibody. This generates a background signal
for which we can correct.

293

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 17: Epigenomics/Chromatin Sites

Figure 19.5: In the figure above each column is a color-coded histogram that encodes the fraction of all
mapped reads that have base score Q (y-axis) at each position(x-axis). A low average per base score implies
greater probability of mismappings. We typically reject reads whose average score Q is less than 10.

Figure 19.6: A sample signal track. Here, the red signal is derived from the number of reads that mapped
to the genome at each position for a ChIP-seq experiment with the target H3K36me3. The signal gives a
level of enrichment of the mark.

Figure 19.7: Sample signal tracks for both the true experiment and the background (control). Regions are
considered to have statistically significant enrichment when the true experiment signal values are well above
the background signal values.

294

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 17: Epigenomics/Chromatin Sites

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Ernst, Jason, and Manolis Kellis. "Discovery and Characterization of Chromatin States for
Systematic Annotation of the Human Genome." Nature Biotechnology 28, no. 8 (2010): 817-25.

Figure 19.8: Example of the data and the annotation from the HMM model. The bottom section shows the
raw number of reads mapped to the genome. The top section shows the annotation from the HMM model.

295

http://dx.doi.org/10.1038/nbt.1662
http://dx.doi.org/10.1038/nbt.1662

6.047/6.878 Lecture 17: Epigenomics/Chromatin Sites

© Macmillan Publishers Limited. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Ernst, Jason, and Manolis Kellis. "Discovery and Characterization of Chromatin States for
Systematic Annotation of the Human Genome." Nature Biotechnology 28, no. 8 (2010): 817-25.

Figure 19.9: Emission probabilities for the final model with 51 states. The cell corresponding to mark i and
state k represents the probability that mark i is observed in state k.

296

http://ocw.mit.edu/help/faq-fair-use/
http://dx.doi.org/10.1038/nbt.1662
http://dx.doi.org/10.1038/nbt.1662

6.047/6.878 Lecture 17: Epigenomics/Chromatin Sites

Figure 19.10: Transition probabilities for the final model with 51 states. The transition probability increases
from green to red. Spatial relationships between neighboring chromatin states and distinct sub-groups of
states are revealed by clustering the transition matrix. Notably, the matrix is sparse, so indicating that most
are not possible.

297

6.047/6.878 Lecture 17: Epigenomics/Chromatin Sites

Figure 19.11: Chromatin state definition and functional interpretation. [7] a. Chromatin mark combinations
associated with each state. Each row shows the specific combination of marks associated with each chromatin
state and the frequencies between 0 and 1 with which they occur in color scale. These correspond to the
emission probability parameters of the HMM learned across the genome during model training. b. Genomic
and functional enrichments of chromatin states, including fold enrichment in different part of the genome
(e.g. transcribed regions, TSS, RefSeq 5 end or 3end of the gene etc), in addition to fold enrichment for
evolutionarily conserved elements, DNaseI hypersensitive sites, CpG islands, etc. All enrichments are based
on the posterior probability assignments. c. Brief description of biological state function and interpretation
(chr, chromatin; enh, enhancer).

298

CHAPTER

TWENTY

NETWORKS I: INFERENCE, STRUCTURE, SPECTRAL METHODS

Figures
20.1 Interactions between biological networks. 299

20.2 Representation of different types of networks. 300

20.3 A simple network on 3 nodes. The adjacency matrix of this graph is given in equation (21.1).301

20.4 Wigner semicircle law . 306

20.5 Structural inference using SVD . 307

20.6 Eigen-gene decomposition using PCA . 308

20.7 Least squares solution of linear regression. Left: 2-D case, right: 3-D case 309

20.8 PCA in a regression framework . 310

20.9 PCA vs SPCA . 311

20.10The iterative classification algorithm . 311

20.11Prediction of gene function using associations . 312

20.12An example network containing a 4-clique . 312

20.13A network with 8 nodes. 317

20.14What other distance metrics are useful? . 319

20.15Illustration of a random walk . 320

20.16Illustration of a neural network . 321

20.17A flowchart of the DeepBind procedure (taken from the DeepBind paper). Five sequences
are being processed in parallel by the model. The model convolves the sequences (we can
think of the deepbind model as a filter scanning through the sequencs), recitifies and pools
them in order to produce a feature vector which is then passed through a deep neural
network. The output from the deepnet is compared against the desired output and the
error is back-propagated through the pipeline. 323

20.18An illustration of the calibration, training and testing procedure used by the DeepBind
method (taken from the DeepBind paper). 323

20.19An illustration (taken from the Srivastava et al. paper) of a thinned net produced after the
dropout procedure was applied. The units that have been crossed out have been dropped. 324

20.20A plot (taken from the Srivastava et al. paper) illustrating that the classification error rate
decreases noticeably when the dropout procedure is applied. 325

299

6.047/6.878 Lecture 12B: Networks I

20.1 Introduction

Molecular and cellular biology describe a hugely diverse system of interacting components that is capable of
producing intricate and complex phenomena. Interactions within the proteome describe cellular metabolism,
signaling cascades, and response to the environment. Networks are a valuable tool to assist in representing,
understanding, and analyzing the complex interactions between biological components. Living systems
can be viewed as a composition of multiple layers that each encode information about the system. Some
important layers are:

1. Genome: Includes coding and non-coding DNA. Genes defined by coding DNA are used to build RNA,
and Cis-regulatory elements regulate the expression of these genes.

2. Epigenome: Defined by chromatin configuration. The structure of chromatin is based on the way that
histones organize DNA. DNA is divided into nucleosome and nucleosome-free regions, forming its final
shape and influencing gene expression. 1

3. Transcriptome RNAs (ex. mRNA, miRNA, ncRNA, piRNA) are transcribed from DNA. They have
regulatory functions and manufacture proteins.

4. Proteome Composed of proteins. This includes transcription factors, signaling proteins, and metabolic
enzymes.

Each layer consists of a network of interactions. For example, mRNAs and miRNAs interact to regulate
the production of proteins. Layers can also interact with each other, forming a network between networks.
For example, a long non-coding RNA called Xist produces epigenomic changes on the X-chromosome to
achieve dosage compensation through X-inactivation.

20.1.1 Introducing Biological Networks

Five example types of biological networks:

Regulatory Network – set of regulatory interactions in an organism.

• Nodes represent regulators (ex. transcription factors) and associated targets.

• Edges represent regulatory interaction, directed from the regulatory factor to its target. They are
signed according to the positive or negative effect and weighted according to the strength of the
reaction.

Metabolic Network – connects metabolic processes. There is some flexibility in the representation, but
an example is a graph displaying shared metabolic products between enzymes.

• Nodes represent enzymes.

1More in the epigenetics lecture.

300

6.047/6.878 Lecture 12B: Networks I

Figure 20.1: Interactions between biological networks.

• Edges represent regulatory reactions, and are weighted according to the strength of the reaction.
Edges are undirected.

Signaling Network – represents paths of biological signals.

• Nodes represent proteins called signaling receptors.

• Edges represent transmitted and received biological signals, directed from transmitter to receiver.
Edges are directed and unweighted.

Protein Network – displays physical interactions between proteins.

• Nodes represent individual proteins.

• Edges represent physical interactions between pairs of proteins. These edges are undirected and
unweighted.

Coexpression Network – describes co-expression functions between genes. Quite general; represents func-
tional rather than physical interaction networks, unlike the other types of nets. Powerful tool in
computational analysis of biological data.

• Nodes represent individual genes.

• Edges represent co-expression relationships. These edges are undirected and unweighted.

Today, we will focus exclusively on regulatory networks. Regulatory networks control context-specific
gene expression, and thus have a great deal of control over development. They are worth studying because
they are prone to malfunction and are associated with disease.

20.1.2 Interactions Between Biological Networks

Individual biological networks (that is, layers) can themselves be considered nodes in a larger network repre-
senting the entire biological system. We can, for example, have a signaling network sensing the environment
governing the expression of transcription factors. In this example, the network would display that TFs
govern the expression of proteins, proteins can play roles as enzymes in metabolic pathways, and so on.

The general paths of information exchange between these networks are shown in figure 21.1a.

301

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 12B: Networks I

Figure 20.2: Representation of different types of networks.

20.1.3 Network Representation

In figure 20.2 we show a number of these networks and their visualizations as graphs. However, how did we
decide on these particular networks to represent the underlying biological models? Given a large biological
dataset, how can we understand dependencies between biological objects and what is the best way to model
these dependencies? Below, we introduce several approaches to network representation. In practice, no
model is perfect. Model choice should balance biological knowledge and computability for reasonably efficient
analysis.

Networks are typically described as graphs. Graphs are composed of 1. nodes, which represent objects;
and 2. edges, which represent connections or interactions between nodes. There are three main ways to
think about biological networks as graphs.

Probabilistic Networks – also known as graphical models. They model a probability distribution between
nodes.

• Modeling joint probability distribution of variables using graphs.

• Some examples are Bayesian Networks (directed), Markov Random Fields (Undirected). More on
Bayesian networks in the later chapters.

Physical Networks – In this scheme we usually think of nodes as physically interacting with each other
and the edges capture that interaction.

• Edges represent physical interaction among nodes.

• Example: physical regulatory networks.

Relevance Network – Model the correlation between nodes.

• Edge weights represent node similarities.

• Example: functional regulatory networks.

Networks as Graphs

Computer scientists consider subtypes of graphs, each with different properties for their edges and nodes.

302

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 12B: Networks I

Figure 20.3: A simple network on 3 nodes. The adjacency matrix of this graph is given in equation (21.1).

1

3

2

• Weighted graph: Edges have an associated weight. Weights are generally positive. When all the
weights are 1, then we call it an unweighted graph.

• Directed graphs: Edges possess directionality. For example A → B is not the same as A ← B.
When the edges do not have direction, we call it an undirected graph.

• Multigraphs (pseudographs): When we allow more than one edge to go between two nodes (more
than two if it’s directed) then we call it a multigraph. This can be useful for modeling multiple
interactions between two nodes each with different weights for example.

• Simple graph: All edges are undirected and unweighted. Multiple edges between nodes and self-edges
are forbidden.

Matrix Representation of Graphs

Adjacency matrix One way to represent a network is using the so-called adjacency matrix. The adjacency
matrix of a network with n nodes is an n×n matrix A where Aij is equal to one if there is an edge between
nodes i and j, and 0 otherwise. For example, the adjacency matrix of the graph represented in figure 21.6b
is given by:

A =


0 0 10 0 1 (20.1)
1 1 0



If the network is weighted (i.e., if the edges of the network each have an associated weight), the definition
of the adjacency matrix is modified so that Aij holds the weight of the edge between i and j if the edge
exists, and zero otherwise.

Another convenience that comes with the adjacency matrix representation is that when we have a binary
matrix (unweighted graph) then the sum of row i gives us the degree of node i. In an undirected graph,
the degree of a node is the number of edges it has. Since every entry in the row tells us whether node i is
connected to another node, by summing all these values we know how many nodes is node i connected to,
thus we get the degree.

20.2 Network Centrality Measures

We discussed in the previous chapter how we can take a biological network and model it mathematically.
Now as we visualize these graphs and try to understand them we need some measure for the importance of a
node/edge to the structural characteristics of the system. There are many ways to measure the importance
(what we refer to as centrality) of a node. In this chapter we will explore these ideas and investigate their
significance.

303

EDCBA

Matrix representation of networks

• A matrix representation of a network:
– Unweighted network: binary adjacency matrix
– Weighted network: real-valued matrix

Goals for today: Network analysis
1. Introduction to networks

– Network types: regulatory, metab., signal., interact., func.
– Bayesian (probabilistic) and Algebraic views

2. Network Centrality Measures
– Local centrality metrics (degree, betweenness, closeness, etc)
– Global centrality metrics (eigenvector centrality, page-rank)

3. Linear Algebra Review
– Eigenvector and singular vector decomposition
– Low rank approximations, Wigner semicircle law

4. Sparse Principle Component Analysis
– Lasso and Elastic lasso

st

Low
still i
Low
still i

•
in

•

inf
• Ed

6.047/6.878 Lecture 12B: Networks I

20.2.1 Degree Centrality

The first idea about centrality is measure importance by the degree of a node. This is probably one of the
most intuitive centrality measures as it’s very easy to visualize and reason about. The more edges you have
connected to you, the more important to the network you are.

Let’s explore a simple example and see how the go about finding these centralities. We have the following
graph

B

ED

C

A

And our goal is to find the degree centrality of every node in the graph. To proceed, we first write out
the adjacency matrix for this graph. The order for the edges is A, B, C, D, E

⎡
0 1 1 0 0

⎤
1 0 1 1 1

A =

⎢⎢
1 1 0 0 0

⎥⎥
(20.2)⎢⎢

0 1 0 0 0

⎥⎥⎣
0 1 0 0 0

⎦

Previously we discussed how to find the degree for a node given an adjacency matrix. We sum along
every row of the adjacency matrix.

⎡
1
⎤
4

D =

⎢ ⎥⎢
3
⎥

(20.3)⎢⎢
1

⎥⎥⎣
1

⎦

Now D is a vector with the degree of every node. This vector gives us a relative centrality measures for
nodes in this network. We can observe that node B has the highest degree centrality.

Although this metric gives us a lot of insight, it has its limitations. Imagine a situation where there is
one node that connects two parts of the network together. The node will have a degree of 2, but it is much
more important than that.

304

6.047/6.878 Lecture 12B: Networks I

20.2.2 Betweenness Centrality

Betweenness centrality gives us another way to think about importance in a network. It measures the number
of shortest paths in the graph that pass through the node divided by the total number of shortest paths. In
other words, this metric computes all the shortest paths between every pair of nodes and sees what is the
percentage of that passes through node k. That percentage gives us the centrality for node k.

• Nodes with high betweenness centrality control information flow in a network.

• Edge betweenness is defined in a similar fashion.

20.2.3 Closeness Centrality

In order to properly define closeness we need to define the term farness. Distance between two nodes is the
shortest paths between them. The farness of a node is the sum of distances between that node and all other
nodes. And the closeness of a node is the inverse of its farness. In other words, it is the normalized inverse
of the sum of topological distances in the graph.

The most central node is the node that propagates information the fastest through the network.

The description of closeness centrality makes it similar to the degree centrality. Is the highest degree
centrality always the highest closeness centrality? No. Think of the example where one node connects two
components, that node has a low degree centrality but a high closeness centrality.

20.2.4 Eigenvector Centrality

The eigenvector centrality extends the concept of a degree. The best to think of it is the average of the
centralities of it’s network neighbors. The vector of centralities can be written as:

1
x = Ax

λ

where A is the adjacency matrix. The solution to the above equation is going to be the eigenvector
corresponding to the principle component (largest eigenvalue).

The following section includes a review of linear algebra concepts including eigenvalue and eigenvectors.

20.3 Linear Algebra Review

Our goal of this section is to remind you of some concepts you learned in your linear algebra class. This
is not meant to be a detailed walk through. If you would want to learn more about any of the following
concepts, I recommend picking up a linear algebra book and reading from that section. But this will serve
as a good reminder and noting concepts that are important for us in this chapter.

305

6.047/6.878 Lecture 12B: Networks I

20.3.1 Eigenvectors

Given a square matrix A, (m×m), the eigenvector v is the solution to the following equation.

Av = λv

In other words, if we multiply the matrix by that vector, we only change our position parallel the vector
(we get back a scaled version of the vector v).

And λ (how much the vector v is scaled) is called the eigenvalue.

So how many eigenvalues are there at most? Let’s take the first steps to solving this equation.

Av = λv ⇒ (A− λI)v = 0

that has non-zero solutions when |A − λI| = 0. That is an m-th order equation in λ which can have at
most m distinct solutions. Remember that those solutions can be complex, even though A is real.

20.3.2 Vector decomposition

Since the eigenvectors form the set of all bases they fully represent the column space. Given that, we can
decompose any arbitrary vector x to a combination of eigenvectors.

x =
∑

civi
i

Thus when we multiply a vector with a matrix A, we can rewrite it in terms of the eigenvectors.

Ax = A(c1v1 + c2v2 + ...)

Ax = c1Av1 + c2Av2 + ...

Ax = c1λ1v1 + c2λ2v2 + c3λ3v3 + ...

So the action of A on x is determined by the eigenvalues of and eigenvectors. And we can observe that
small eigenvalues have a small effect on the multiplication.

306

6.047/6.878 Lecture 12B: Networks I

Did You Know?

• For symmetric matrices, eigenvectors for distinct eigenvalues are orthogonal.

• All eigenvalues of a real symmetric matrix are real.

• All eigenvalues of a positive semidefinite matrix are non-negative.

20.3.3 Diagonal Decomposition

Also known as Eigen Decomposition. Let S be a square m ×m matrix with m linearly independent eigen-
vectors (a non-defective matrix).

Then, there exist a decomposition (matrix digitalization theorem)

S = UΛU−1

Where the columns of U are the eigenvectors of S. And Λ is a diagonal matrix with eigenvalues in its
diagonal.

20.3.4 Singular Value Decomposition

Oftentimes, singular value decomposition (SVD) is used for the more general case of factorizing an m × n
non-square matrix:

A = UΣVT (20.4)

where U is a m×m matrix representing orthogonal eigenvectors of AAT , V is a n×n matrix representing
orthogonal eigenvectors of ATA and Σ is a m n matrix representing square roots of the eigenvalues of
AT

×
A (called singular values of A):

Σ = diag(σ1, ..., σr), σi =
√
λi (20.5)

The SVD of any given matrix can be calculated with a single command in Matlab and we will not cover
the technical details of computing it. Note that the resulting “diagonal” matrix Σ may not be full-rank, i.e.
it may have zero diagonals, and the maximum number of non-zero singular values is min(m,n).

For example, let

A =


1 −11 0
1 0

 ,
307

6.047/6.878 Lecture 12B: Networks I

thus m = 3, n = 2. Its SVD is

 0 2√
6

1√
3

1√
2
− 1√

6
1√
3

1√
2

1√
6
− 1√

3


1 0

0
√

3
0 0

[1√
2

1√
2

1√
2
− 1√ .

2

]

Typically, the singular values are arranged in decreasing order.

SVD is widely utilized in statistical, numerical analysis and image processing techniques. A typical
application of SVD is optimal low-rank approximation of a matrix. For example if we have a large matrix
of data ,e.g. 1000 by 500, and we would like to approximate it with a lower-rank matrix without much loss
of information, formulated as the following optimization problem:

Find Ak of rank k such that Ak = min ||A−X||F (20.6)
X:rank(X)=k

where the subscript F denotes Frobenius norm ||A||F =
√

2
i j |aij | . Usually k is much smaller than

r. The solution to this problem is the SVD of X, UΣVT , with

∑
the

∑
smallest r − k singular values in Σ set

to zero:

Ak = Udiag(σ T
1, ..., σk, ..., 0)V . (20.7)

Such an approximation can be shown to have an error of ||A−Ak||F = σk+1. This is also known as the
Eckart-Young theorem.

A common application of SVD to network analysis is using the distribution of singular values of the
adjacency matrix to assess whether our network looks like a random matrix. Because the distribution of
the singular values (Wigner semicircle law) and that of the largest eigenvalue of a matrix (Tracy-Widom
distribution) have been theoretically derived, it is possible to derive the distribution of eigenvalues (singular
values in SVD) of an observed network (matrix), and calculate a p-value for each of the eigenvalues. Then we
need only look at the significant eigenvalues (singular values) and their corresponding eigenvectors (singular
vectors) to examine significant structures in the network. The following figure shows the distribution of
singular values of a random Gaussian unitary ensemble (GUE, see this Wikipedia link for definition and
properties http://en.wikipedia.org/wiki/Random_matrix) matrix, which form a semi-circle according to
Wigner semicircle law (Figure 20.4).

An example of using SVD to infer structural patterns in a matrix or network is shown in Figure 20.5.
The top-left panel shows a structure (red) added to a random matrix (blue background in the heatmap),
spanning the first row and first three columns. SVD detects this by the identification of a large singular value
(circled in red on singular value distribution) and corresponding large row loadings (U1) as well as three large
column loadings (V1). As more structures are added to the network (top-right and bottom panels), they
can be discovered using SVD by looking at the next largest singular values and corresponding row/column
loadings, etc..

308

http://en.wikipedia.org/wiki/Random_matrix

6.047/6.878 Lecture 12B: Networks I

Figure 20.4: Wigner semicircle law

20.4 Sparse Principal Component Analysis

20.4.1 Limitations of Principal Component Analysis

When analyzing microarray-based gene expression data, we are often dealing with data matrices of dimensions
m×n where m is the number of arrays and n is the number of genes. Usually n is in the order of thousands
and m is in the order of hundreds. We would like to identify the most important features (genes) that best
explain the expression variation, or patterns, in the dataset. This can be done by performing PCA on the
expression matrix:

E = UDVT . (20.8)

This is in essence an SVD of the expression matrix E that rotates and scales the feature space so that
expression vectors of each gene in the new orthogonal coordinate system are as uncorrelated as possible,
where E is the m by n expression matrix, U is the m by m matrix of left singular vectors (i.e. principal
components), or “eigen-genes”, V is the n by n matrix of right singular vectors, or “eigen-arrays”, and D is
a diagonal matrix of singular values, or “eigen-expressions” of eigen-genes. This is illustrated in Figure 20.6.

In PCA, each principal component (eigen-gene, a column of U) is a linear combination of n variables
(genes), which corresponds to a loading vector (column of V) where the loadings are coefficients corresponding
to variables in the linear combination.

However, a straightforward application of PCA to expression matrices or any large data matrices can
be problematic because the principal components (eigen-genes) are linear combinations of all n variables
(genes), which is difficult to interpret in terms of functional relevance. In practice we would like to use a
combination of as few genes as possible to explain expression patterns, which can be achieved by a sparse
version of PCA.

309

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 12B: Networks I

Figure 20.5: Structural inference using SVD

20.4.2 Sparse PCA

Sparse PCA (SPCA) modifies PCA to constrain the principal components (PCs) to have sparse loadings,
thus reducing the number of explicitly used variables (genes in microarray data, etc.) and facilitating
interpretation. This is done by formulating PCA as a linear regression-type optimization problem and
imposing sparsity constraints.

A linear regression problem takes a set of input variables x = (1, x1, ..., xp) and response variables
y = xβ + ε where β is a row vector of regression coefficients (β0, β1, ..., βp)

T and ε is the error. The
regression model for N observations can be written in matrix form:


y1

 
1 x1, x1, · · · x 1,p y2

..


β

.
yN

 0

β

 
ε 1

ε




1 ,1 x2,2
=
 2

1 x x 2 2,p 1 2   . . .
· · ·
. .. .  . . (20.9)

. . .

 +
..

1 xN,1 xN,2 · · xN,p βp

  .

·


.
εN


The goal of the linear regression problem is to estimate the coefficients β. There are several ways to do

this, and the most commonly used methods include the least squares method, the Lasso method and the
elastic net method.

Least Squares method minimizes the residual sum of squared error:

310

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 12B: Networks I

Figure 20.6: Eigen-gene decomposition using PCA

β̂ = argminβ{RSS(β)|D} (20.10)

where RSS(β ≡
∑N
i=1(yi − Xiβ)2 (Xi is the ith instance of input variables x). This is illustrated in

Figure 20.7 for the 2-D and 3-D cases, where either a regression line or hyperplane is produced.

Figure 20.7: Least squares solution of linear regression. Left: 2-D case, right: 3-D case

Lasso method not only minimizes the sum of residual errors but at the same time minimizes a Lasso
penalty, which is proportional to the L-1 norm of the coefficient vector β:

β̂ = argminβ{RSS(β) + L1(β)|D} (20.11)

p
where L1(β) = λ

∑
j=1 |βj |, λ ≥ 0. The ideal penalty for Sparse PCA is the L0 norm which penalizes

each non-zero element by 1, while zero elements are penalized by 0. However, the L0 penalty function is
non-convex and the best solution for exploring the exponential space (number of possible combinations of
non-zero elements) is NP-hard. The L1 norm provides a convex approximation to the L0 norm. The Lasso
regression model in essence continuously shrinks the coefficients toward zero as much as possible, producing
a sparse model. It automatically selects for the smallest set of variables that explain variations in the data.
However, the Lasso method suffers from the problem that if there exists a group of highly correlated variables
it tends to select only one of these variables. In addition, Lasso selects at most N variables, i.e. the number
of selected variables is limited by sample size.

Elastic Net method removes the group selection limitation of the Lasso method by adding a ridge con-
straint:

311

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 12B: Networks I

β̂ = argminβ{RSS(β) + L1(β) + L2(β)|D} (20.12)

p
where L2(β) = λ2 j=1 |βj |2, λ2 ≥ 0. In the elastic net solution, a group of highly correlated variables

will be selected once one

∑
of them is included.

All of the added penalty terms above arise from the theoretical framework of regularization. We skip the
mathematics behind the technique and point to an online concise explanation and tutorial of regularization
at http://scikit-learn.org/stable/modules/linear_model.html.

PCA can be reconstructed in a regression framework by viewing each PC as a linear combination of
the p variables. Its loadings can thus be recovered by regressing PC on the p variables (Figure 20.8). Let
X = UDVT . ∀i, denote Yi = UiDii, then Yi is the ith principal component of X. We state without proving
the following theorem that confirms the correctness of reconstruction:

Theorem 20.4.1. ∀ ˆλ > 0, suppose βridge is the ridge estimate given by

β̂ridge = argminβ |Yi −Xiβ|2 + λ|β|2,

β̂
and let v̂ = ridge

|β̂ridge|
, then v̂ = Vi.

Figure 20.8: PCA in a regression framework

Note that the ridge penalty does not penalize the coefficients but rather ensure the reconstruction of the
PCs. Such a regression problem cannot serve as an alternative to näıve PCA as it uses exactly its results U
in the model, but it can be modified by adding the Lasso penalty to the regression problem to penalize for
the absolute values of coefficients:

β̂ridge = argminβ |Yi −Xiβ|2 + λ|β|2 + λ1|β|, (20.13)

ˆwhere X = UDVT and ∀i, Yi = UiDii is the ith principal component of X. The resulting β when scaled
by its norm are exactly what SPCA aims at - sparse loadings:

β̂
V̂i =

|β̂|
≈ Vi, (20.14)

312

http://scikit-learn.org/stable/modules/linear_model.html

6.047/6.878 Lecture 12B: Networks I

ˆwith XVi ≈ Yi being the ith sparse principal component.

Here we give a simulated example dataset and compare the recovery of hidden factors using PCA and
SPCA. We have 10 variables for which to generate data points: X = (X1, ..., X10), and a model of 3 hidden
factors V1, V2 and V3 is used to generate the data:

V1 ∼ N(0, 290)

V2 ∼ N(0, 300)

V3 ∼ −0.3V1 + 0.925V2 + e, e N(0, 1)

X = V + e1, e1

∼

i 1 i i ∼ N(0, 1), i = 1, 2, 3, 4

Xi = V 2
2 + ei , e

2
i ∼ N(0, 1), i = 5, 6, 7, 8

Xi = V3 + e3
i , e

3
i ∼ N(0, 1), i = 9, 10

From these data we expect two significant structures to arise from a sparse PCA model, each governed
by hidden factors V1 and V2 respectively (V3 is merely a linear mixture of the two). Indeed, as shown in
Figure 20.9, by limiting the number of variables used, SPCA correctly recovers the PCs explaining the effects
of V1 and V2 while PCA does not distinguish well among the mixture of hidden factors.

Figure 20.9: PCA vs SPCA

20.5 Network Communities and Modules

Is it possible to use networks to infer the labels of unlabeled nodes, or data? Assuming that some of the data
is labeled in a network, we can use the idea that networks capture relational information through a “Guilt
by association” methodology. Simply put, we can look at the labeled “friends” of a node in a network to
infer the label of a new node. Even though the “Guilt By Association” way of reasoning is a logical fallacy
and insufficient in legal court settings, it is often helpful to predict labels (e.g. gene functions) for nodes in a
network by looking at the labels of a node’s neighbors. Essentially, a node connected to many nodes with the
same label is likely to have that label too. In terms of biological networks where nodes represent genes, and
edges represent interactions (regulation, co-expression, protein-protein interactions etc., see Figure 20.11),
it is possible to predict function of an unannotated gene based on the functions of the genes that the query
gene is connected to. It is easy to see that we can immediately apply this into an iterative algorithm, where
we start with a set of labeled nodes and unlabeled nodes, and we iteratively update relational attributes

313

6.047/6.878 Lecture 12B: Networks I

and then re-infer labels of nodes. We iterate until all nodes are labeled. This is known as the iterative
classification algorithm.

Figure 20.10: The iterative classification algorithm

“Guilt By Association” implies a notion of association. The definition of association we implicitly consid-
ered above is a straightforward definition where we consider all the nodes directly connected to a particular
node. Can we give a better definition of association? Considering this question, we arrive naturally at
the idea of communities, or modules, in graphs. The term community attempts to capture the notion of a
region in a graph with densely connected nodes, linked to other regions in the graph with a sparse number
of edges. Graphs like these, with densely connected subgraphs, are often termed as modular. Note that
there is no consensus upon the exact definition of communities. For practical use, the definition of commu-
nities should be biologically motivated and informed by prior knowledge about the system being modeled.
In biology, regulatory networks are often modular, with genes in each densely connected subgraph sharing
similar functions and co-regulation. However, broad categories of communities have been developed based
on different topological features. They can be roughly divided into 4 categories: node-centric, group-centric,
network-centric and hierarchy-centric communities. Here we examine a commonly used criterion for each of
the first three types and briefly walk through some well-known algorithms that detect these communities.

Figure 20.11: Prediction of gene function using associations

20.5.1 Node-Centric Communities

Node-centric community criteria usually require that each node in a group satisfies certain properties. A
frequently used node-centric community definition is the clique, which is a maximum complete subgraph in
which all nodes are adjacent to each other. Figure 20.12 shows an example of a clique (nodes 5,6 7 and 8)
in a network.

Exactly finding the maximum clique in a network is NP-hard, thus it is very computationally expensive to
implement a straightforward algorithm for clique-finding. Heuristics are often used to limit time complexity
by trading a certain fraction of accuracy. A commonly used heuristic for maximum clique finding is based
on the observation that in a clique of size k, each node maintains degree of at least k − 1. We therefore can
apply the following pruning procedure:

• Sample a sub-network from the given network and find a clique in the subnetwork using an efficient

314

6.047/6.878 Lecture 12B: Networks I

Figure 20.12: An example network containing a 4-clique

(e.g. greedy) approach

• Suppose the identified clique has size k, to find a larger clique, all nodes with degree less than or equal
to k − 1 are removed

• Repeat until network is small enough

In practice many nodes will be pruned as social media networks and many forms of biological networks
follow a power law distribution of node degrees that results in large numbers of nodes with low degrees.

Take the network in Figure 20.12 for an example of such a clique finding procedure. Suppose we sampled
a subnetwork with nodes numbered 1 to 9 and found a clique {1, 2, 3} of size 3. In order to find a clique
with size larger than 3, we iteratively remove al nodes with degree ≤ 2, i.e. nodes {2, 9}, {1, 3} and 4 will
be sequentially removed. This leaves us with the 4-clique {5, 6, 7, 8}.

20.5.2 Group-Centric Communities

Group-centric community criteria consider connections within a group as a whole, and the group has to
satisfy certain properties without zooming into node-level, e.g. the group edge density must exceed a given
threshold. We call a subgraph Gs(Vs, Es) a γ − dense quasi-clique if

2|Es| ≥ γ (20.15)
|Vs||Vs − 1|

where the denominator is the maximum number of edges in the network. With such a definition, a similar
strategy to the heuristic we discussed for finding maximum cliques can be adopted:

• Sample a subnetwork and find a maximal γ − dense quasi-clique (e.g. of size |Vs|

• 2 ERemove nodes with degree less than the average degree (< |Vs|γ ≤ | s|
|Vs|−1)

• Repeat until network is small enough

315

6.047/6.878 Lecture 12B: Networks I

20.5.3 Network-Centric Communities

Network-centric definitions seek to partition the entire network into several disjoint sets. Several approaches
exist for such a goal, as listed below:

• Markov clustering algorithm [6]: The Markov Clustering Algorithm (MCL) works by doing a ran-
dom walk in the graph and looking at the steady-state distribution of this walk. This steady-state
distribution allows to cluster the graph into densely connected subgraphs.

• Girvan-Newman algorithm [2]: The Girvan-Newman algorithm uses the number of shortest paths going
through a node to compute the essentiality of an edge which can then be used to cluster the network.

• Spectral partitioning algorithm

In this section we will look in detail at the spectral partitioning algorithm. We refer the reader to the
references [2, 6] for a description of the other algorithms.

The spectral partitioning algorithm relies on a certain way of representing a network using a matrix.
Before presenting the algorithm we introduce an important description of a network - its Laplacian matrix.

Laplacian matrix For the clustering algorithm that we will present later in this section, we will need to
count the number of edges between the two different groups in a partitioning of the network. For example,
in Figure 21.6a, the number of edges between the two groups is 1. The Laplacian matrix which we will
introduce now comes in handy to represent this quantity algebraically. The Laplacian matrix L of a network
on n nodes is a n × n matrix L that is very similar to the adjacency matrix A except for sign changes and
for the diagonal elements. Whereas the diagonal elements of the adjacency matrix are always equal to zero
(since we do not have self-loops), the diagonal elements of the Laplacian matrix hold the degree of each node
(where the degree of a node is defined as the number of edges incident to it). Also the off-diagonal elements
of the Laplacian matrix are set to be −1 in the presence of an edge, and zero otherwise. In other words, we
have:

Li,j =

degree(i) if i = j

−1 if i 6= j and there is an edge between i and j (20.16)

0 if i =6 j and there is no edge between i and j

For example the Laplacian matrix of the graph of figure 21.6b is given by (we emphasized the diagonal
elements in bold):

L =


1 0 −1 0 1 −1
−1


−1 2



Some properties of the Laplacian matrix The Laplacian matrix of any network enjoys some nice
properties that will be important later when we look at the clustering algorithm. We briefly review these
here.

The Laplacian matrix L is always symmetric, i.e., Li,j = Lj,i for any i, j. An important consequence
of this observation is that all the eigenvalues of L are real (i.e., they have no complex imaginary part). In
fact one can even show that the eigenvalues of L are all nonnegative2 The final property that we mention

2One way of seeing this is to notice that L is diagonally dominant and the diagonal elements are strictly positive (for more
details the reader can look up “diagonally dominant” and “Gershgorin circle theorem” on the Internet).

316

6.047/6.878 Lecture 12B: Networks I

about L is that all the rows and columns of L sum to zero (this is easy to verify using the definition of L).
This means that the smallest eigenvalue of L is always equal to zero, and the corresponding eigenvector is
s = (1, 1, . . . , 1).

Counting the number of edges between groups using the Laplacian matrix Using the Laplacian
matrix we can now easily count the number of edges that separate two disjoint parts of the graph using
simple matrix operations. Indeed, assume that we partitioned our graph into two groups, and that we define
a vector s of size n which tells us which group each node i belongs to:

1 if node i is in group 1
si =

{
−1 if node i is in group 2

Then one can easily show that the total number of edges between group 1 and group 2 is given by the
quantity 1sTLs where L is the Laplacian of the network.4

To see why this is case, let us first compute the matrix-vector product Ls. In particular let us fix a node
i say in group 1 (i.e., si = +1) and let us look at the i’th component of the matrix-vector product Ls. By
definition of the matrix-vector product we have:

n

(Ls)i =
∑

Li,jsj .
j=1

We can decompose this sum into three summands as follows:

n

(Ls)i =
∑

Li,jsj = Li,isi +
∑

Li,jsj +
∑

Li,jsj
j=1 j in group 1 j in group 2

Using the definition of the Laplacian matrix we easily see that the first term corresponds to the degree of
i, i.e., the number of edges incident to i; the second term is equal to the negative of the number of edges
connecting i to some other node in group 1, and the third term is equal to the number of edges connecting
i to some node ingroup 2. Hence we have:

(Ls)i = degree(i)− (# edges from i to group 1) + (# edges from i to group 2)

Now since any edge from i must either go to group 1 or to group 2 we have

degree(i) = (# edges from i to group 1) + (# edges from i to group 2).

Thus combining the two equations above we get:

(Ls)i = 2× (# edges from i to group 2).

Now to get the total number of edges between group 1 and group 2, we simply sum the quantity above
over all nodes i in group 1:

1
(# edges between group 1 and group 2) = Ls

2
i

∑
()i

in group 1

We can also look at nodes in group 2 to compute the same quantity and we have:

1
(# edges between group 1 and group 2) = −

2

∑
i in group 2

(Ls)i

317

6.047/6.878 Lecture 12B: Networks I

Now averaging the two equations above we get the desired result:

1
(# edges between group 1 and group 2) =

4

∑
i in group 1

(Ls)i −
1

(
4
i in

∑
Ls)i

group 2

1
=

4

∑
i

si(Ls)i

=
1
sTLs

4

where sT is the row vector obtained by transposing the column vector s.

The spectral clustering algorithm We will now see how the linear algebra view of networks given in
the previous section can be used to produce a “good” partitioning of the graph. In any good partitioning
of a graph the number of edges between the two groups must be relatively small compared to the number
of edges within each group. Thus one way of addressing the problem is to look for a partition so that the
number of edges between the two groups is minimal. Using the tools introduced in the previous section, this
problem is thus equivalent to finding a vector s ∈ {−1,+1}n taking only values −1 or +1 such that 1sTLs4
is minimal, where L is the Laplacian matrix of the graph. In other words, we want to solve the minimization
problem:

1
minimize
s∈{−1,+1}n

sTLs
4

If s∗ is the optimal solution, then the optimal partioning is to assign node i to group 1 if si = +1 or else to
group 2.

This formulation seems to make sense but there is a small glitch unfortunately: the solution to this
problem will always end up being s = (+1, . . . ,+1) which corresponds to putting all the nodes of the
network in group 1, and no node in group 2! The number of edges between group 1 and group 2 is then
simply zero and is indeed minimal!

To obtain a meaningful partition we thus have to consider partitions of the graph that are nontrivial.
Recall that the Laplacian matrix L is always symmetric, and thus it admits an eigendecomposition:

n

L = UΣUT =
∑

λiuiu
T
i

i=1

where Σ is a diagonal matrix holding the nonnegative eigenvalues λ1, . . . , λn of L and U is the matrix of
eigenvectors and it satisfies UT = U−1.

The cost of a partitioning s ∈ {−1,+1}n is given by

1

4
sTLs =

1

4
sTUΣUT s =

1 2

4

∑n
λiαi

i=1

where α = UT
n

s give the decomposition of s as a linear combination of the eigenvectors of L: s =
∑
i=1 αiui.

Recall also that 0 = λ1 ≤ λ2 ≤ · · · ≤ λn. Thus one way to make the quantity above as small as possible
(without picking the trivial partitioning) is to concentrate all the weight on λ2 which is the smallest nonzero
eigenvalue of L. To achieve this we simply pick s so that α2 = 1 and αk = 0 for all k 6= 2. In other words,
this corresponds to taking s to be equal to u2 the second eigenvector of L. Since in general the eigenvector
u2 is not integer-valued (i.e., the components of u2 can be different than −1 or +1), we have to convert first

318

6.047/6.878 Lecture 12B: Networks I

Figure 20.13: A network with 8 nodes.

the vector u2 into a vector of +1’s or −1’s. A simple way of doing this is just to look at the signs of the
components of u2 instead of the values themselves. Our partition is thus given by:

1 if (u2)i 0
s = sign(u2) =

{
≥

−1 if (u2)i < 0

To recap, the spectral clustering algorithm works as follows:

Spectral partitioning algorithm

• Input: a network

• Output: a partitioning of the network where each node is assigned either to group 1 or group
2 so that the number of edges between the two groups is small

1. Compute the Laplacian matrix L of the graph given by:degree(i) if i = j

Li,j = −1 if i 6= j and there is an edge between i and j

0 if i 6= j and there is no edge between i and j

2. Compute the eigenvector u2 for the second smallest eigenvalue of L.

3. Output the following partition: Assign node i to group 1 if (u2)i ≥ 0, otherwise assign node i
to group 2.

We next give an example where we apply the spectral clustering algorithm to a network with 8 nodes.

Example We illustrate here the partitioning algorithm described above on a simple network of 8 nodes
given in figure 21.7. The adjacency matrix and the Laplacian matrix of this graph are given below:

0 1 1 1 0 0 0 0 3 −1 −1 −1 0 0 0 0 1 0 1 1 0 0 0 0 −1 3 −1 −1 0 0 0 0 1 1 0 1 0 0 0 0

  
−1 −1 3 −1 0 0 0 0 1 1 1 0 1 0 0 0



 


 −1 −1 −1 4 −1 0 0 0

A =  L
0 1  =

0 0 1 0 1 1


  0 0 0 −1 −   4 −1 1 −1


 0 0 0 0 1 0 1 1   0 0 0 0 −1 3 −1 −1


0 0 0 0 1 1 0 1 0 0 0 0 1 1 3


0 0 0 0

 − − −1
1 1 1 0


0 0 0 0 −1 −1 −1 3


319

6.047/6.878 Lecture 12B: Networks I

Using the eig command of Matlab we can compute the eigendecomposition L = UΣUT of the Laplacian
matrix and we obtain:


0.3536 −0.3825 0.2714 −0.1628 −0.7783 0.0495 −0.0064 −0.1426 0.3536 −0.3825 0.5580 −0.1628 0.6066 0.0495 −0.0064 −0.1426 0.3536 −0.3825 −0.4495 0.6251 0.0930 0.0495 .1426


−0.3231 −0 0.3536 −0.2470

U =
−0.3799 −0.2995 0.0786 −0.1485 0.3358 0.6626


 0.3536 0.2470 −0.3799 −0.2995 0.0786 −0.1485 0.3358 − 0.6626


 0.3536 0.3825 0.3514 0.5572


−0.0727 −0.3466 0.3860 0.1426


 0.3536 0.3825 0.0284


−0.2577 −0.0059 −0.3466 −0.7218 0.1426



 0.3536 0.3825 0.0000 0.0000 0.0000 0.8416


−0.0000 0.1426


0 0 0 0 0 0 0 0



 0 0.3542 0 0 0 0 0 0


 0 0 4.0000 0 0 0 0 0 0 0 0 4.0000 0 0 0 0

Σ =  0 0 0 0 4.0000 0 0 0


 0 0 0 0 0 4.0000 0 0


 0 0 0 0 0 0 4.0000 0


0 0 0 0 0 0 0 5.6458



We have highlighted in bold the second smallest eigenvalue of L and the associated eigenvector. To cluster
the network we look at the sign of the components of this eigenvector. We see that the first 4 components
are negative, and the last 4 components are positive. We will thus cluster the nodes 1 to 4 together in the
same group, and nodes 5 to 8 in another group. This looks like a good clustering and in fact this is the
“natural” clustering that one considers at first sight of the graph.

Did You Know?
The mathematical problem that we formulated as a motivation for the spectral clustering algorithm
is to find a partition of the graph into two groups with a minimimal number of edges between the two
groups. The spectral partitioning algorithm we presented does not always give an optimal solution
to this problem but it usually works well in practice.
Actually it turns out that the problem as we formulated it can be solved exactly using an efficient
algorithm. The problem is sometimes called the minimum cut problem since we are looking to cut
a minimum number of edges from the graph to make it disconnected (the edges we cut are those
between group 1 and group 2). The minimum cut problem can be solved in polynomial time in
general, and we refer the reader to the Wikipedia entry on minimum cut [9] for more information.
The problem however with minimum cut partitions it that they usually lead to partitions of the
graph that are not balanced (e.g., one group has only 1 node, and the remaining nodes are all in
the other group). In general one would like to impose additional constraints on the clusters (e.g.,
lower or upper bounds on the size of clusters, etc.) to obtain more realistic clusters. With such
constraints, the problem becomes harder, and we refer the reader to the Wikipedia entry on Graph
partitioning [8] for more details.

320

6.047/6.878 Lecture 12B: Networks I

FAQ

Q: How to partition the graph into more than two groups?

A: In this section we only looked at the problem of partitioning the graph into two clusters. What if
we want to cluster the graph into more than two clusters? There are several possible extensions
of the algorithm presented here to handle k clusters instead of just two. The main idea is to
look at the k eigenvectors for the k smallest nonzero eigenvalues of the Laplacian, and then to
apply the k-means clustering algorithm appropriately. We refer the reader to the tutorial [7]
for more information.

20.6 Network Diffusion Kernels

Earlier, we defined a distance metric between two nodes as the weighted shortest path. This simple distance
metric is sufficient for many purposes, but it notably does not use any information about the overall graph
structure. Often times, defining distance based on the number of possible paths between two nodes, weighted
by the plausibility or likelihood of taking such paths, gives a better representation of the actual system we
are modeling. We explore alternative distance metrics in this section.

Figure 20.14: What other distance metrics are useful?

Diffusion kernel matrices help capture the global network structure of graphs, informing a more complex
definition of distance.

Let A be our regular adjacency matrix. D is the diagonal matrix of degrees. We can define L, the
Laplacian matrix, as follows:

L = D −A

We then define a diffusion kernel K as

K = exp(−βL)

Where β is the diffusion parameter. Note that we are taking a matrix exponential and not an element-wise
exponential, which is based on the Taylor series expansion as follows:

βL
exp(−βL) = lim (1

n→∞
−

n
)n

321

6.047/6.878 Lecture 12B: Networks I

=
∞∑
k=0

1
(

k
−βL)k

So what does the matrix K represent? There are multiple ways to interpret K, we will list the most
relevant to us below:

Random Walks – One way to interpret K as the results of a random walk. Let’s assume we have a
graph and at the node of interest, we have a probability distribution over the edges representing that
probability that we move along that edge. Like the figure below:

Figure 20.15: Illustration of a random walk

β is the transition probability along a specific edge. And there is also a probability that we don’t move
(represented here as a self loop). Note that for the probability distribution to be valid it must sum up
to 1.

If we have the setup above, then Kij is equal to the probability of the walk that started at i being at
j after infinite time steps. To derive that result, we can write our graph as a Markov model and take
the limit as t→∞

Stochastic Process – Another way we can interpret the diffusion kernel is through a stochastic process.

• for each node i, consider a random variable Zi(t)

• let Zi(t) be zero-mean with some defined variance.

• covariance for Zi(t) and Zj(t) is zero (independent to each other).

• each variable sends a fraction to the neighbors

Zi(t+ 1) = Zi(t) + β
∑

(Zj(t)− Zi(t))
j=6 i

Z(t+ 1) = (I − βL)Z(t)

Z(t) = (I − βL)tZ(0)

let the time evolution operator T (t) be

T (t) = (I − βL)t

then the covariance is equal to

Covij(t) = σ2Tij(2t)

Then as we take ∆t→ 0 we get

Cov(t) = σ2exp(−2βtL)

322

6.047/6.878 Lecture 12B: Networks I

20.7 Neural Networks

Neural networks came out modeling the brain and the nervous system in an attempt to achieve brain-like
learning. They are highly parallel and by learning simple concepts we can achieve very complex behaviors.
In relevance to this book, they also have proved to be very good biological models (not surprising giving
where they came about).

20.7.1 Feed-forward nets

In a neural network we map the input to the output passing through hidden states that are parametrized
by learning.

Figure 20.16: Illustration of a neural network

• Information flow is unidirectional

• Data is presented to Input layer

• Passed on to Hidden Layer

• Passed on to Output layer

• Information is distributed

• Information processing is parallel

20.7.2 Back-propagation

Back-propagation is one of the most influential results for training neural nets and allowing us to easily deal
with multi-layer networks.

• Requires training set (input / output pairs)

• Starts with small random weights

323

6.047/6.878 Lecture 12B: Networks I

• Error is used to adjust weights (supervised learning)

It basically performs gradient descent on the error landscape trying to minimize the error. Thus, back
propagation can be slow.

20.7.3 Deep Learning

Deep learning is a collection of statistical machine learning techniques used to learn feature hierarchies.
Often based on artificial neural networks. Deep neural networks have more than one hidden layer. Each
successive layer in a neural network uses features in the previous layer to learn more complex features. One
of the (relevant) aims of deep learning methods is to perform hierarchical feature extraction. This makes
deep learning an attractive approach to modeling hierarchical generative processes as are commonly found
in systems biology.

Example: DeepBind (Alipanahi et al. 2015)

DeepBind[1] is a machine learning tool developed by Alipanahi et al. to predict the sequence specificities of
DNA- and RNA-binding proteins using deep learning based methods.

The authors point out three difficulties encountered when training models of sequence of specificities
on the large volumes of sequence data produced by modern high-throughput technologies: (a) the data
comes in qualitatively different forms, including protein binding microarrays, RNAcompete assays, ChIP-
seq and HT-SELEX, (b) the quantity of data is very large (typical experiments measure ten to a hundred
thousand sequences and (c) each data acquisition technology has it’s own formats and error profile and thus
an algorithm is needed that is robust to these unwanted effects.

The DeepBind method is able to resolve these difficulties by way of (a) parallel implementation on a
graphics processing unit, (b) tolerating a moderate degree of noise and mis-classified training data and (c)
train predictive model in an automatic fashion while avoiding the need for hand-tuning. The following figures
illustrate aspects of the Deep Bind pipeline.

To address the concern of overfitting, the authors used several regularizers, including dropout, weight
decay and early stopping.

Dropout: Prevention of Over-Fitting

Dropout[5] is a technique for addressing the problem of overfitting on the training data in the context of
large networks. Due to the multiplication of gradients in the computation of the chain rule, hidden unit
weights are co-adapted which can lead to overfitting. One way to avoid co-adaption of hidden unit weights is
to simply drop units (randomly). A beneficial consequence of dropping units is that larger neural networks
are more computationally intensive to train.

However, this approach take a little longer with respect to training. Furthermore, tuning step-size is a bit
of a challenge. The authors provide an Appendix, in which they (in part (A)) provide a helpful “Practical
Guide for Training Dropout Networks.” They note that typical values for the dropout parameter p (which

324

6.047/6.878 Lecture 12B: Networks I

Figure 20.17: A flowchart of the DeepBind procedure (taken from the DeepBind paper). Five sequences are
being processed in parallel by the model. The model convolves the sequences (we can think of the deepbind
model as a filter scanning through the sequencs), recitifies and pools them in order to produce a feature
vector which is then passed through a deep neural network. The output from the deepnet is compared
against the desired output and the error is back-propagated through the pipeline.

Figure 20.18: An illustration of the calibration, training and testing procedure used by the DeepBind method
(taken from the DeepBind paper).

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Alipanahi, Babak, Andrew Delong, et al. "Predicting the Sequence Specificities of
DNA-and RNA-binding Proteins by Deep Learning." Nature Biotechnology (2015).

determines the probability that a node will be dropped) are between 0.5 and 0.8 for hidden layers and 0.8
for input layers.

20.8 Open Issues and Challenges

Some of the challenges regarding the previous covered topics are

• Validation How do we know the network structure is right?

• How do we know if the network function is right?

• Measuring and modeling protein expression

• Understanding the evolution of regulatory networks

• Mostly it is intractable to compute joint distributions so we focus on marginal distributions.

325

http://dx.doi.org/10.1038/nbt.3300
http://dx.doi.org/10.1038/nbt.3300

6.047/6.878 Lecture 12B: Networks I

Figures of neural nets before and after dropout removed due to copyright restrictions.
Source: Srivastava, Nitish et al. "Dropout: A simple way to prevent neural networks from
overfitting." The Journal of Machine Learning Research 15, no. 1 (2014): 1929-1958.

Figure 20.19: An illustration (taken from the Srivastava et al. paper) of a thinned net produced after the
dropout procedure was applied. The units that have been crossed out have been dropped.

• Often we have a very large number of regulators or targets making some of the problems require
simplifying assumption to be able to make it tractable.

20.9 Current Research Directions

20.10 Further Reading

To learn more about the topics discussed in this chapter, you can look for following key terms.

• Probabilistic graphical models

• Network Completion

• Non-negative matrix factorization

• Network Alignment

• Network Integration

326

http://dl.acm.org/citation.cfm?id=2670313
http://dl.acm.org/citation.cfm?id=2670313

6.047/6.878 Lecture 12B: Networks I

Figure 20.20: A plot (taken from the Srivastava et al. paper) illustrating that the classification error rate
decreases noticeably when the dropout procedure is applied.

20.11 Tools and Techniques

20.12 What Have We Learned?

• Networks come in various types and can be represented in probabilistic and algebraic views

• Different centrality measures gauge the importance of nodes/edges from different aspects

• PCA and SVD are useful for uncovering structural patterns in the network by performing matrix
decomposition

• Sparse PCA improves upon PCA by selecting a few most representative variables in the data and more
accurately recovers community structure

• Network communities have a variety of definitions, each of which has specific algorithms designed for
community detection

• Neural networks and deep learning networks are supervised learning machines that capture complex
patterns in data.

Bibliography

[1] B. Alipanahi, A. Delong, M.T. Weirauch, and B.J. Frey. Predicting the sequence specificities of dna and
rna-binding proteins by deep learning. Nature Biotechnology, 33:831–838, 2015.

[2] M. Girvan and M.E.J. Newman. Community structure in social and biological networks. Proceedings of
the National Academy of Sciences, 99(12):7821–7826, 2002.

[3] O. Hein, M. Schwind, and W. König. Scale-free networks: The impact of fat tailed degree distribution
on diffusion and communication processes. Wirtschaftsinformatik, 48(4):267–275, 2006.

327

Figures of neural nets before and after dropout removed due to copyright restrictions.
Source: Srivastava, Nitish et al. "Dropout: A simple way to prevent neural networks from
overfitting." The Journal of Machine Learning Research 15, no. 1 (2014): 1929-1958.

http://dl.acm.org/citation.cfm?id=2670313
http://dl.acm.org/citation.cfm?id=2670313

6.047/6.878 Lecture 12B: Networks I

[4] T.I. Lee, N.J. Rinaldi, F. Robert, D.T. Odom, Z. Bar-Joseph, G.K. Gerber, N.M. Hannett, C.T. Harbison,
C.M. Thompson, I. Simon, et al. Transcriptional regulatory networks in saccharomyces cerevisiae. Science
Signalling, 298(5594):799, 2002.

[5] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A simple way to
prevent neural networks from overfitting. Journal of Machine Learning Research, 15:1929–1958, 2014.

[6] S.M. van Dongen. Graph clustering by flow simulation. PhD thesis, University of Utrecht, The Nether-
lands, 2000.

[7] U. Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17(4):395–416, 2007.

[8] Wikipedia. Graph partitioning. http://en.wikipedia.org/wiki/Graph_partitioning, 2012.

[9] Wikipedia. Minimum cut. http://en.wikipedia.org/wiki/Minimum_cut, 2012.

328

http://en.wikipedia.org/wiki/Graph_partitioning
http://en.wikipedia.org/wiki/Minimum_cut

CHAPTER

TWENTYONE

REGULATORY NETWORKS: INFERENCE, ANALYSIS, APPLICATION

Guest Lecture by
Sushmita Roy (2010) / Soheil Feizi (2012)
Scribed by Ben Holmes (2010) / Hamza Fawzi and Sara Brockmueller (2012)

Figures
21.3 The solid symbols give the in-degree distribution of genes in the regulatory network of S.

cerevisiae (the in-degree of a gene is the number of transcription factors that bind to the
promoter of this gene). The open symbols give the in-degree distribution in the comparable
random network. Figure taken from [4]. 336

21.4 Scale-free vs. random Erdős-Renyi networks . 337

21.5 Network motifs in regulatory networks: Feed-forward loops involved in speeding-up re-
sponse of target gene. Regulators are represented by blue circles and gene promoters are
represented by red rectangles (figure taken from [4]) . 338

21.6 . 339

21.7 A network with 8 nodes. 342

21.1 Introduction

Living systems are composed of multiple layers that encode information about the system. The primary
layers are:

1. Epigenome: Defined by chromatin configuration. The structure of chromatin is based on the way that
histones organize DNA. DNA is divided into nucleosome and nucleosome-free regions, forming its final
shape and influencing gene expression. 1

1More in the epigenetics lecture.

329

6.047/6.878 Lecture 18: Regulatory Networks: Inference, Analysis, Application

2. Genome: Includes coding and non-coding DNA. Genes defined by coding DNA are used to build RNA,
and Cis-regulatory elements regulate the expression of these genes.

3. Transcriptome RNAs (ex. mRNA, miRNA, ncRNA, piRNA) are transcribed from DNA. They have
regulatory functions and manufacture proteins.

4. Proteome Composed of proteins. This includes transcription factors, signaling proteins, and metabolic
enzymes.

Interactions between these components are all different, but understanding them can put particular parts
of the system into the context of the whole. To discover relationships and interactions within and between
layers, we can use networks.

21.1.1 Introducing Biological Networks

Biological networks are composed as follows:

Regulatory Net – set of regulatory interactions in an organism.

• Nodes are regulators (ex. transcription factors) and associated targets.

• Edges correspond to regulatory interaction, directed from the regulatory factor to its target. They
are signed according to the positive or negative effect and weighted according to the strength of
the reaction.

Metabolic Net – connects metabolic processes. There is some flexibility in the representation, but an
example is a graph displaying shared metabolic products between enzymes.

• Nodes are enzymes.

• Edges correspond to regulatory reactions, and are weighted according to the strength of the
reaction.

Signaling Net – represents paths of biological signals.

• Nodes are proteins called signaling receptors.

• Edges are transmitted and received biological signals, directed from transmitter to receiver.

Protein Net – displays physical interactions between proteins.

• Nodes are individual proteins.

• Edges are physical interactions between proteins.

Co-Expression Net – describes co-expression functions between genes. Quite general; represents func-
tional rather than physical interaction networks, unlike the other types of nets. Powerful tool in
computational analysis of biological data.

• Nodes are individual genes.

• Edges are co-expression relationships.

Today, we will focus exclusively on regulatory networks. Regulatory networks control context-specific
gene expression, and thus have a great deal of control over development. They are worth studying because
they are prone to malfunction and causing disease.

330

6.047/6.878 Lecture 18: Regulatory Networks: Inference, Analysis, Application

(a) Interactions between biological networks.

21.1.2 Interactions Between Biological Networks

Individual biological networks (that is, layers) can themselves be considered nodes in a larger network repre-
senting the entire biological system. We can, for example, have a signaling network sensing the environment
governing the expression of transcription factors. In this example, the network would display that TFs
govern the expression of proteins, proteins can play roles as enzymes in metabolic pathways, and so on.

The general paths of information exchange between these networks are shown in figure 21.4.

21.1.3 Studying Regulatory Networks

In general, networks are used to represent dependencies among variables. Structural dependencies can
be represented by the presence of an edge between nodes - as such, unconnected nodes are conditionally
independent. Probabilistically, edges can be assigned a ”weight” that represents the strength or the likelihood
of the interaction. Networks can also be viewed as matrices, allowing mathematical operations. These
frameworks provides an effective way to represent and study biological systems.

These networks are particularly interesting to study because malfunctions can have a large effect. Many
diseases are caused by rewirings of regulatory networks. They control context specific expression in develop-
ment. Because of this, they can be used in systems biology to predict development, cell state, system state,
and more. In addition, they encapsulate much of the evolutionary difference between organisms that are
genetically similar.

To describe regulatory networks, there are several challenging questions to answer.

Element Identification What are the elements of a network? Elements constituting regulatory networks
were identified last lecture. These include upstream motifs and their associated factors.

Network Structure Analysis How are the elements of a network connected? Given a network, structure
analysis consists of examination and characterization of important properties. It can be done biological
networks but is not restricted to them.

Network Inference How do regulators interact and turn on genes? This is the task of identifying gene
edges and characterizing their actions.

Network Applications What can we do with networks once we have them? Applications include predict-
ing function of regulating genes and predicting expression levels of regulated genes.

331

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 18: Regulatory Networks: Inference, Analysis, Application

21.2 Structure Inference

21.2.1 Key Questions in Structure Inteference

How to choose network models? A number of models exist for representing networks, a key problem is
choosing between them based on data and predicted dynamics.

How to choose learning methods? Two broad methods exist for learning networks. Unsupervised meth-
ods attempt to infer relationships for unalabeled datapoints and will be described in sections to come.
Supervised methods take a subset of network edges known to be regulatory, and learn a classifier to
predict new ones.2

How to incorporate data? A variety of data sources can be used to learn and build networks including
Motifs, ChIP binding assays, and expression. Data sources are always expanding; expanding availability
of data is at the heart of the current revolution in analyzing biological networks.

21.2.2 Abstract Mathematical Representations for Networks

Think of a network as a function, a black box. Regulatory networks for example, take input expressions of
regulators and spit out output expression of targets. Models differ in choosing the nature of functions and
assigning meaning to nodes and edges.

Boolean Network This model discretizes node expression levels and interactions. Functions represented
by edges are logic gates.

Differential Equation Model These models capture network dynamics. Expression rate changes are func-
tion of expression levels and rates of change of regulators. For these it can be very difficult to estimate
parameters. Where do you find data for systems out o equilibrium?

Probabilistic Graphical Model These systems model networks as a joint probability distribution over
random variables. Edges represent conditional dependencies. Probabilistic graphical models (PGMs)
are focused on in the lecture.

Probabilistic Graphical Models

Probabilistic graphical models (PGMs) are trainable and able to deal with noise and thus they are good
tools for working with biological data.3 In PGMs, nodes can be transcription factors or genes and they are
modeled by random variables. If you know the joint distribution over these random variables, you can build
the network as a PGMs. Since this graph structure is a compact representation of the network, we can work
with it easily and accomplish learning tasks. Examples of PGMS include:

Bayesian Network Directed graphical technique. Every node is either a parent or a child. Parents fully
determine the state of children but their states may not be available to the experimenter. The network
structure describes the full joint probablility distribution of the network as a product of individual
distributions for the nodes. By breaking up the network into local potentials, computational complexity
is drastically reduced.

2Supervised methods will not be addressed today.
3These are Dr. Roys models of choice for dealing with biological nets.

332

6.047/6.878 Lecture 18: Regulatory Networks: Inference, Analysis, Application

Dynamic Bayesian Network Directed graphical technique. Static bayesian networks do not allow cyclic
dependencies but we can try to model them with bayesian networks allowing arbitrary dependencies
between nodes at different time points. Thus cyclic dependencies are allowed as the network progresses
through time and the network joint probability itself can be described as a joint over all times.

Markov Random Field Undirected graphical technique. Models potentials in terms of cliques. Allows
modelling of general graphs including cyclic ones with higher order than pairwise dependencies.

Factor Graph Undirected graphical technique. Factor graphs introduce “factor” nodes specifying interac-
tion potentials along edges. Factor nodes can also be introduced to model higher order potentials than
pairwise.

It is easiest to learn networks for Bayesian models. Markov random fields and factor graphs require
determination of a tricky partition function. To encode network structure, it is only necessary to assign
random variables to TFs and genes and then model the joint probability distribution.

Bayesian networks provide compact representations of JPD

The main strength of Bayesian networks comes from the simplicity of their decomposition into parents
and children. Because the networks are directed, the full joint probability distribution decomposes into a
product of conditional distributions, one for each node in the network.4

Network Inference from Expression Data

Using expression data and prior knowledge, the goal of network inference is to produce a network graph.
Graphs will be undirected or directed. Regulatory networks for example will often be directed whil expression
nets for example will be undirected.

21.3 Overview of the PGM Learning Task

We have to learn parameters from the data we have. Once we have a set of parameters, we have to use
parametrizations to learn structure. Wewill focus on score based approaches to network building, defining a
score to be optimized as a metric for network construction.

21.3.1 Parameter Learning for Bayesian Networks

Maximum Likelihood Chooses parameters to maximize the likelihood of the available data given the
model.

In maximum likelihood, compute data likelihood as scores of each ran- dom variable given parents
and note that scores can be optimized in- dependently. Depending on the choice of a model, scores

4Bayesian networks are parametrized by θ according to our specific choice of network model. With different choices of
random variables, we will have different options for parametrizations,θ and therefore different learning tasks:

Discrete Random variables suggest simple θ corresponding to parameter choices for a multinomial distribution.

Continuous Random variables may be modelled with θ corresponding to means and covariances of gaussians or other contin-
uous distribution.

333

6.047/6.878 Lecture 18: Regulatory Networks: Inference, Analysis, Application

will be max- imized in different manners. For gaussian distriubution it is possible to simply compute
parameters optimizing score. For more complicated model choices it may be necessary to do gradient
descent.

Bayesian Parameter Estimation Treats θ itself as a random variable and chooses the parameters maxi-
mizing the posterior probability. These methods require a fixed structure and seek to choose internal
parameters maximizing score.

Structure Learning

We can compute best guess parametrizations of structured networks. How do we find structures themselves?

Structure learning proceeds by comparing likelihood of ML parametrizations across different graph struc-
tures and in order to seek those structures realizing optimal of ML score.

A Bayesian framework can incorporate prior probabilities over graph structures if given some reason to
believe a-priori that some structures are more likely than others.

To perform search in structure learning, we will inevitably have to use a greedy approach because the
space of structures is too large to enumerate. Such methods will proceed by an incremental search analogous
to gradient descent optimization to find ML parametrizations.

A set of graphs are considered and evaluated according to ML score. Since local optima can exist, it is
good to seed graph searches from multiple starting points.

Besides being unable to capture cyclic dependencies as mentioned above, Bayesian networks have certain
other limitations.

Indirect Links Since Bayesian networks simply look at statistical dependencies between nodes, it is easy
for them to be tricked into putting edges where only indirect relations are in fact present.

Neglected Interactions Especially when structural scores are locally optimized, it is possible that signifi-
cant biological interactions will be missed entirely. Coexpressed genes may not share proper regulators.

Slow Speed Bayesian methods so far discussed are too slow to work effectively whole-genome data.

Excluding Indirect Links

How to eliminate indirect links? Information theoretic approaches can be used to remove extraneous
links by pruning network structures to remove redundant information. Two methods are described.

ARACNE For every triplet of edges, a mutual information score is computed and the ARACNE algorithm
excludes edges with the least information subject to certain thresholds above which minimal edges are
kept.

MRNET Maximizes dependence between regulators and targets while minimizing the amount of redundant
information shared between regulators by stripping edges corresponding to regulators with low variance.

Alternately it is possible to simply look at regulatory motifs and eliminate regulation edges not predicted
by common motifs.

334

6.047/6.878 Lecture 18: Regulatory Networks: Inference, Analysis, Application

21.3.2 Learning Regulatory Programs for Modules

How to fix omissions for coregulated genes? By learning parameters for regulatory models instead of
individual genes, it is possible to exploit the tendency of coexpressed genes to be regulated similarly.
Similar to the method of using regulatory motifs to prune redundant edges, by modeling modules at
once, we reduce network edge counts while increasing data volume to work with.

With extensions, it is possible to model cyclic dependencies as well. Module networks allow clustering
revisitation where genes are reassigned to clusters based on how well hey are predicted by a regulatory
program for a module.

Modules however cannot accomodate genes sharing module membership. divide and conquer for speed-
ing up learning

How to speed up learning? Dr. Roy has developed a method to break the large learning problem into
smaller tasks using a divide and conquer technique for undirected graphs. By starting with clusters
it is possible to infer regulatory networks for individual clusters then cross edges, reassign genes, and
iterate.

21.3.3 Conclusions in Network Inference

Regulatory networks are important but hard to construct in general. By exploiting modularity, it is often
possible to find reliable structures for graphs and subgraphs.5

Many extensions are on the horizon for regulatory networks. These include inferring causal edges from
expression correlations, learning how to share genes between clusters, and others.

21.4 Applications of Networks

Using linear regression and regression trees, we will try to predict expression from networks. Using collective
classification and relaxation labeling, we will try to assign function to unknown network elements.

We would like to use networks to:

1. predict the expression of genes from regulators.

In expression prediction, the goal is to parametrize a relationship giving gene expression levels from
regulator expression levels. It can be solved in various manners including regression and is related to
the problem of finding functional networks.

2. predict functions for unknown genes.

21.4.1 Overview of Functional Models

One model for prediction is a conditional gaussian: a simple model trained by linear regression. A more
complex prediction model is a regression tree trained by nonlinear regression.

5Dr. Roy notes that many algorithms are available for running module network inference with various distributions. Neural
net pacakges and Bayesian packages among others are available.

335

6.047/6.878 Lecture 18: Regulatory Networks: Inference, Analysis, Application

Conditional Gaussian Models

Conditional gaussian models predict over a continuous space and are trained by a simple linear regression
to maximize likelihood of data. They predict targets whose expression levels are means of gaussians over
regulators.

Conditional gaussian learning takes a structured, directed net with targets and regulating transcription
factors. You can estimate gaussian parameters,µ, σ from the the data by finding parameters maximizing
likelihood - after a derivative, the ML approach reduces to solving a linear equation.

From a functional regulatory network derived from multiple data sources 6,Dr, Roy trained a gaussian
model for prediction using time course expression data and tested it on a hold-out testing set. In comparisons
to predictions by a modle trained from a random network, found out that the network predicted substantially
better than random.

The linear model used makes a strong assumption on linearity of interaction. This is probably not a very
accurate assumption to make but it appears to work to some extent with the dataset tested.

Regression Tree Models

Regression tree models allow the modeler to use a multimodal distribtion incorporating nonlinear depen-
dencies between regulator and target gene expression. The final structure of a regression tree describes
expression grammar in terms of a series of choices made at regression tree nodes. Because targets can share
regulatory programs, notions of recurring motifs may be incorporated. Regression trees are rich models but
tricky to learn. regression trees in predicting expression

In practice, prediction works its way down a regression tree given regulator expression levels. Upon
reaching the leaf nodes of the regression tree, a prediction for gene expression is made.

21.4.2 Functional Prediction for Unannotated Nodes

Given a network with an incomplete set of labels, the goal of function annotation is to predict labels for
unknown genes. We will use methods falling under the broad category of guilt by association. If we know
nothing about a node but that its neighbors are involved in a function, assign that function to the unknown
node.

Association can include any notion of network relatedness discussed above such as co-expression, protein-
protein interactions and co-regulation. Many methods work, two will be discussed: collective classification
and relaxation classification; both of which work for regulatory networks encoded as undirected graphs.

Collective Classification

View functional prediction as a classification problem: Given a node, what is its regulatory class?.

6data sources included chromatin, physical binding, expression, motif

336

6.047/6.878 Lecture 18: Regulatory Networks: Inference, Analysis, Application

(a) Fly development.

In order to use the graph structure in the prediction problem, we capture properties of the neighborhood
of a gene in relational attribute. Since all points are connected in a network, data points are no longer inde-
pendently distributed - the prediction problem becomes substantially harder than a standard classification
problem.

Iterative classification is a simple method with which to solve the classification problem. Starting with
an initial guess for unlabeled genes it infers labels iteratively, allowing changed labels to influence node label
predictions in a manner similar to gibbs sampling7

Relaxation labeling is another approach originally developed to trac terrorist networks. The model uses a
suspicion score where nodes are labeled with a suspiciousness according to the suspiciousness of its neighbors.
The method is called relaxation labeling because it gradually settles on to a solution according to a learning
parameter. It is another instance of iterative learning where genes are assigned probabilities of having a
given function.

Regulatory Networks for Function Prediction

For pairs of nodes, compute a regulatory similarity – the interaction quantity – equal to the size of the
intersection of their regulators divided by the size of their union. Having this interaction similarity in the
form of an undirected graph over netowrk targets, can use clusters derived from a network in final functional
classification.

The model is successful in predicting invaginal disk and neural system development. The blue line in
Fig. 21.2a shows the score of every gene predicting its participation in neural system development.

Co-expression an co-regulation can be used side by side to augment the set of genes known to particiapte
in neural system development.

7see the previous lecture by Manolis describing motif discovery

337

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 18: Regulatory Networks: Inference, Analysis, Application

21.5 Structural Properties of Networks

Much of the early work on networks was done by scientists outside of biology. Physicists looked at internet
and social networks and described their properties. Biologists observed that the same properties were also
present in biological networks and the field of biological networks was born. In this section we look at some
of these structural properties shared by the different biological networks, as well as the networks that arise
in other disciplines as well.

21.5.1 Degree distribution

Figure 21.3: The solid symbols give the in-degree distribution of genes in the regulatory network of S.
cerevisiae (the in-degree of a gene is the number of transcription factors that bind to the promoter of this
gene). The open symbols give the in-degree distribution in the comparable random network. Figure taken
from [4].

In a network, the degree of a node is the number of neighbors it has, i.e., the number of nodes it is
connected to by an edge. The degree distribution of the network gives the number of nodes having degree
d for each possible value of d = 1, 2, 3, For example figure 21.3 gives the degree distribution of the S.
cerevisiae gene regulatory network. It was observed that the degree distribution of biological networks follow
a power law, i.e., the number of nodes in the network having degree d is approximately cd−γ where c is a
normalization constant and γ is a positive coefficient. In such networks, most nodes have a small number of
connections, except for a few nodes which have very high connectivity.

This property –of power law degree distribution– was actually observed in many different networks across
different disciplines (e.g., social networks, the World Wide Web, etc.) and indicates that those networks are
not “random”: indeed random networks (constructed from the Erdős-Renyi model) have a degree distribution
that follows a Poisson distribution where almost all nodes have approximately the same degree and nodes
with higher or smaller degree are very rare [6] (see figure 21.4).

Networks that follow a power law degree distribution are known as scale-free networks. The few nodes
in a scale-free network that have very large degree are called hubs and have very important interpretations.
For example in gene regulatory networks, hubs represent transcription factors that regulate a very large
number of genes. Scale-free networks have the property of being highly resilient to failures of “random”
nodes, however they are very vulnerable to coordinated failures (i.e., the network fails if one of the hub
nodes fails, see [1] for more information).

338

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 18: Regulatory Networks: Inference, Analysis, Application

(a) Scale-free graph vs. a random graph (figure taken from [10]) .

© Carlos Castillo. Some rights reserved. License: CC BY-SA. This content is excluded from our
Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

(b) Degree distribution of scale-free network vs. random network (figure taken from
[3]).

© Vieweg Verlag. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Hein, Oliver, et al. "Scale-free Networks." Wirtschaftsinformatik 48, no. 4
(2006): 267-75.

Figure 21.4: Scale-free vs. random Erdős-Renyi networks

In a regulatory network, one can identify four levels of nodes:

1. Influential, master regulating nodes on top. These are hubs that each indirectly control many targets.

2. Bottleneck regulators. Nodes in the middle are important because they have a maximal number of
direct targets.

3. Regulators at the bottom tend to have fewer targets but nonetheless they are often biologically essential!

4. Targets.

21.5.2 Network motifs

Network motifs are subgraphs of the network that occur significantly more than random. Some will have
interesting functional properties and are presumably of biological interest.

Figure 21.5 shows regulatory motifs from the yeast regulatory network. Feedback loops allow control of
regulator levels and feedforward loops allow acceleration of response times among other things.

339

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/
http://dx.doi.org/10.1007/s11576-006-0058-2

6.047/6.878 Lecture 18: Regulatory Networks: Inference, Analysis, Application

© American Association for the Advancement of Science. All rights reserved. This content is excluded
from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Lee, Tong Ihn et al. "Transcriptional Regulatory Networks in Saccharomyces Cerevisiae."
Science 298, no. 5594 (2002): 799-804.

Figure 21.5: Network motifs in regulatory networks: Feed-forward loops involved in speeding-up response of
target gene. Regulators are represented by blue circles and gene promoters are represented by red rectangles
(figure taken from [4])

21.6 Network clustering

An important problem in network analysis is to be able to cluster or modularize the network in order
to identify subgraphs that are densely connected (see e.g., figure 21.6a). In the context of gene interaction
networks, these clusters could correspond to genes that are involved in similar functions and that are co-
regulated.

There are several known algorithms to achieve this task. These algorithms are usually called graph
partitioning algorithms since they partition the graph into separate modules. Some of the well-known
algorithms include:

• Markov clustering algorithm [5]: The Markov Clustering Algorithm (MCL) works by doing a ran-
dom walk in the graph and looking at the steady-state distribution of this walk. This steady-state
distribution allows to cluster the graph into densely connected subgraphs.

• Girvan-Newman algorithm [2]: The Girvan-Newman algorithm uses the number of shortest paths going
through a node to compute the essentiality of an edge which can then be used to cluster the network.

• Spectral partitioning algorithm

In this section we will look in detail at the spectral partitioning algorithm. We refer the reader to the
references [2, 5] for a description of the other algorithms.

The spectral partitioning algorithm relies on a certain way of representing a network using a matrix.
Before presenting the algorithm we will thus review how to represent a network using a matrix, and how to
extract information about the network using matrix operations.

340

http://ocw.mit.edu/help/faq-fair-use/
http://dx.doi.org/10.1126/science.1075090

6.047/6.878 Lecture 18: Regulatory Networks: Inference, Analysis, Application

(a) A partition of a network into two groups.

1

3

2

(b) A simple network on 3 nodes. The adja-
cency matrix of this graph is given in equation
(21.1) .

Figure 21.6

21.6.1 An algebraic view to networks

Adjacency matrix One way to represent a network is using the so-called adjacency matrix. The adjacency
matrix of a network with n nodes is an n×n matrix A where Ai,j is equal to one if there is an edge between
nodes i and j, and 0 otherwise. For example, the adjacency matrix of the graph represented in figure 21.6b
is given by:

A =


0 0 10 0 1
1 1 0


(21.1)

If the network is weighted (i.e., if the edges of the network


each have an associated weight), the definition

of the adjacency matrix is modified so that Ai,j holds the weight of the edge between i and j if the edge
exists, and zero otherwise.

Laplacian matrix For the clustering algorithm that we will present later in this section, we will need to
count the number of edges between the two different groups in a partitioning of the network. For example,
in Figure 21.6a, the number of edges between the two groups is 1. The Laplacian matrix which we will
introduce now comes in handy to represent this quantity algebraically. The Laplacian matrix L of a network
on n nodes is a n × n matrix L that is very similar to the adjacency matrix A except for sign changes and
for the diagonal elements. Whereas the diagonal elements of the adjacency matrix are always equal to zero
(since we do not have self-loops), the diagonal elements of the Laplacian matrix hold the degree of each node
(where the degree of a node is defined as the number of edges incident to it). Also the off-diagonal elements
of the Laplacian matrix are set to be −1 in the presence of an edge, and zero otherwise. In other words, we
have: degree(i) if i = j

Li,j = −1 if i 6= j and there is an edge between i and j (21.2)

0 if i 6= j and there is no edge between i and j

For example the Laplacian matrix of the graph of figure 21.6b is given by (we emphasized the diagonal
elements in bold):

L =


1 0 −1 0 1 −1
−1 −1 2


341

© source unknown. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 18: Regulatory Networks: Inference, Analysis, Application

Some properties of the Laplacian matrix The Laplacian matrix of any network enjoys some nice
properties that will be important later when we look at the clustering algorithm. We briefly review these
here.

The Laplacian matrix L is always symmetric, i.e., Li,j = Lj,i for any i, j. An important consequence
of this observation is that all the eigenvalues of L are real (i.e., they have no complex imaginary part). In
fact one can even show that the eigenvalues of L are all nonnegative8 The final property that we mention
about L is that all the rows and columns of L sum to zero (this is easy to verify using the definition of L).
This means that the smallest eigenvalue of L is always equal to zero, and the corresponding eigenvector is
s = (1, 1, . . . , 1).

Counting the number of edges between groups using the Laplacian matrix Using the Laplacian
matrix we can now easily count the number of edges that separate two disjoint parts of the graph using
simple matrix operations. Indeed, assume that we partitioned our graph into two groups, and that we define
a vector s of size n which tells us which group

=

{ each node i belongs to:

1 if node i is in group 1
si −1 if node i is in group 2

Then one can easily show that the total number of edges between group 1 and group 2 is given by the
quantity 1sTLs where L is the Laplacian of the network.4

To see why this is case, let us first compute the matrix-vector product Ls. In particular let us fix a node
i say in group 1 (i.e., si = +1) and let us look at the i’th component of the matrix-vector product Ls. By
definition of the matrix-vector product we have:

n

(Ls)i =
∑

Li,jsj .
j=1

We can decompose this sum into three summands as follows:

n

(Ls)i =
∑

Li,jsj = Li,isi +
∑

Li,jsj +
∑

Li,jsj
j=1 j in group 1 j in group 2

Using the definition of the Laplacian matrix we easily see that the first term corresponds to the degree of
i, i.e., the number of edges incident to i; the second term is equal to the negative of the number of edges
connecting i to some other node in group 1, and the third term is equal to the number of edges connecting
i to some node ingroup 2. Hence we have:

(Ls)i = degree(i)− (# edges from i to group 1) + (# edges from i to group 2)

Now since any edge from i must either go to group 1 or to group 2 we have

degree(i) = (# edges from i to group 1) + (# edges from i to group 2).

Thus combining the two equations above we get:

(Ls)i = 2× (# edges from i to group 2).

Now to get the total number of edges between group 1 and group 2, we simply sum the quantity above
over all nodes i in group 1:

1
(# edges between group 1 and group 2) =

2

∑
i in group 1

(Ls)i

8One way of seeing this is to notice that L is diagonally dominant and the diagonal elements are strictly positive (for more
details the reader can look up “diagonally dominant” and “Gershgorin circle theorem” on the Internet).

342

6.047/6.878 Lecture 18: Regulatory Networks: Inference, Analysis, Application

We can also look at nodes in group 2 to compute the same quantity and we have:

1
(# edges between group 1 and group 2) = − (

2
i in

∑
Ls)i

group 2

Now averaging the two equations above we get the desired result:

1
(# edges between group 1 and group 2) =

4

∑
i in group 1

(Ls)i −
1

4

∑
i in group 2

(Ls)i

=
1

4

∑
i

si(Ls)i

=
1
sTLs

4

where sT is the row vector obtained by transposing the column vector s.

21.6.2 The spectral clustering algorithm

We will now see how the linear algebra view of networks given in the previous section can be used to produce
a “good” partitioning of the graph. In any good partitioning of a graph the number of edges between the
two groups must be relatively small compared to the number of edges within each group. Thus one way
of addressing the problem is to look for a partition so that the number of edges between the two groups is
minimal. Using the tools introduced in the previous section, this problem is thus equivalent to finding a
vector s ∈ {−1,+1}n taking only values −1 or +1 such that 1

4s
TLs is minimal, where L is the Laplacian

matrix of the graph. In other words, we want to solve the minimization problem:

minimize
s∈{−1,+1}n

1
sTLs

4

If s∗ is the optimal solution, then the optimal partioning is to assign node i to group 1 if si = +1 or else to
group 2.

This formulation seems to make sense but there is a small glitch unfortunately: the solution to this
problem will always end up being s = (+1, . . . ,+1) which corresponds to putting all the nodes of the
network in group 1, and no node in group 2! The number of edges between group 1 and group 2 is then
simply zero and is indeed minimal!

To obtain a meaningful partition we thus have to consider partitions of the graph that are nontrivial.
Recall that the Laplacian matrix L is always symmetric, and thus it admits an eigendecomposition:

n

L = UΣUT =
∑

λiuiu
T
i

i=1

where Σ is a diagonal matrix holding the nonnegative eigenvalues λ1, . . . , λn of L and U is the matrix of
eigenvectors and it satisfies UT = U−1.

The cost of a partitioning s ∈ {−1,+1}n is given by

1

4
sTLs =

1

4
sTUΣUT s =

1
α

4

∑n
λ 2
i i

i=1

where α = UT
n

s give the decomposition of s as a linear combination of the eigenvectors of L: s =
∑
i=1 αiui.

343

6.047/6.878 Lecture 18: Regulatory Networks: Inference, Analysis, Application

Figure 21.7: A network with 8 nodes.

Recall also that 0 = λ1 ≤ λ2 ≤ · · · ≤ λn. Thus one way to make the quantity above as small as possible
(without picking the trivial partitioning) is to concentrate all the weight on λ2 which is the smallest nonzero
eigenvalue of L. To achieve this we simply pick s so that α2 = 1 and αk = 0 for all k 6= 2. In other words,
this corresponds to taking s to be equal to u2 the second eigenvector of L. Since in general the eigenvector
u2 is not integer-valued (i.e., the components of u2 can be different than −1 or +1), we have to convert first
the vector u2 into a vector of +1’s or −1’s. A simple way of doing this is just to look at the signs of the
components of u2 instead of the values themselves. Our partition is thus given by:

1 if (u2)i 0
s = sign(u2) =

{
≥

−1 if (u2)i < 0

To recap, the spectral clustering algorithm works as follows:

Spectral partitioning algorithm

• Input: a network

• Output: a partitioning of the network where each node is assigned either to group 1 or group
2 so that the number of edges between the two groups is small

1. Compute the Laplacian matrix L of the graph given by:

Li,j =

degree(i) if i = j

−1 if i 6= j and there is an edge between i and j

0 if i 6= j and there is no edge between i and j

2. Compute the eigenvector u2 for the second smallest eigenvalue of L.

3. Output the following partition: Assign node i to group 1 if (u2)i ≥ 0, otherwise assign node i
to group 2.

We next give an example where we apply the spectral clustering algorithm to a network with 8 nodes.

344

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 18: Regulatory Networks: Inference, Analysis, Application

Example We illustrate here the partitioning algorithm described above on a simple network of 8 nodes
given in figure 21.7. The adjacency matrix and the Laplacian matrix of this graph are given below:

0 1 1 1 0 0 0 0 3 −1 −1 −1 0 0 0 0 1 0 1 1 0 0 0 0 −1 3 −1 −1 0 0 0 0 1 1 0 1 0 0 0 0

 
−1 −1 3 −1 0 0 0 0


 1 1 1 0 1 0 0 0

 1 1 4 1 0 0
A =   1 0  L =


−

0 0 0 1 0 1 1 1

 − − − 0 0 0


−1 − 4 −1 1 −1


 0 0 0 0 1 0 1 1 − 3 0 0 0 0 1

  0 0 0 0


1 0 1   1 −1 −1

0 0 0 0 −1 −1 3


−1


0 0 0 0 1 1 1 0 0 0 0 0 −1 −1 −1 3


Using the eig command of Matlab we can compute the eigendecomposition L = UΣUT of the Laplacian

matrix and we obtain:
0.3536 −0.3825 0.2714 −0.1628 −0.7783 0.0495 −0.0064 −0.1426 0.3536 −0.3825 0.5580 −0.1628 0.6066 0.0495 −0.0064 −0.1426 0.3536 −0.3825 −0.4495 0.6251 0.0930 0.0495 −0.3231 −0.1426


 0.3536 −0.2470 −0.3799 −0.2995 0.0786

U =
−0.1485 0.3358 0.6626


 0.3536 0.2470 −0.3799 −0.2995 0.0786 −0.1485 0.3358 −0.6626


 0.3536 0.3825 0.3514 0.5572 −0.0727 −0.3466 0.3860 0.1426


 0.3536 0.3825 0.0284 0.2577 0.0059 0.3466 0.7218 0.1426


− − − −

 0.3536 0.3825 0.0000 0.0000 0.0000 0.8416 −0.0000 0.1426


0 0 0 0 0 0 0 0


 0 0.3542 0 0 0 0 0 0 0 0 4.0000 0 0 0 0 0



=
 0 0 0 4.0000 0 0 0 0

Σ


 0 0 0 0 4.0000 0 0 0


0 0 0 0 0 4.0000 0 0


 0 0 0 0 0 0 4.0000 0


0 0 0 0 0 0 0 5.6458


We have highlighted in bold the second smallest eigenvalue of L and the associated eigenvector. To cluster

the network we look at the sign of the components of this eigenvector. We see that the first 4 components
are negative, and the last 4 components are positive. We will thus cluster the nodes 1 to 4 together in the
same group, and nodes 5 to 8 in another group. This looks like a good clustering and in fact this is the
“natural” clustering that one considers at first sight of the graph.

Did You Know?
The mathematical problem that we formulated as a motivation for the spectral clustering algorithm
is to find a partition of the graph into two groups with a minimimal number of edges between the two
groups. The spectral partitioning algorithm we presented does not always give an optimal solution
to this problem but it usually works well in practice.
Actually it turns out that the problem as we formulated it can be solved exactly using an efficient
algorithm. The problem is sometimes called the minimum cut problem since we are looking to cut
a minimum number of edges from the graph to make it disconnected (the edges we cut are those
between group 1 and group 2). The minimum cut problem can be solved in polynomial time in
general, and we refer the reader to the Wikipedia entry on minimum cut [9] for more information.
The problem however with minimum cut partitions it that they usually lead to partitions of the
graph that are not balanced (e.g., one group has only 1 node, and the remaining nodes are all in
the other group). In general one would like to impose additional constraints on the clusters (e.g.,
lower or upper bounds on the size of clusters, etc.) to obtain more realistic clusters. With such
constraints, the problem becomes harder, and we refer the reader to the Wikipedia entry on Graph
partitioning [8] for more details.

345

6.047/6.878 Lecture 18: Regulatory Networks: Inference, Analysis, Application

FAQ

Q: How to partition the graph into more than two groups?

A: In this section we only looked at the problem of partitioning the graph into two clusters. What if
we want to cluster the graph into more than two clusters? There are several possible extensions
of the algorithm presented here to handle k clusters instead of just two. The main idea is to
look at the k eigenvectors for the k smallest nonzero eigenvalues of the Laplacian, and then to
apply the k-means clustering algorithm appropriately. We refer the reader to the tutorial [7]
for more information.

Bibliography

[1] R. Albert. Scale-free networks in cell biology. Journal of cell science, 118(21):4947–4957, 2005.

[2] M. Girvan and M.E.J. Newman. Community structure in social and biological networks. Proceedings
of the National Academy of Sciences, 99(12):7821–7826, 2002.

[3] O. Hein, M. Schwind, and W. König. Scale-free networks: The impact of fat tailed degree distribution
on diffusion and communication processes. Wirtschaftsinformatik, 48(4):267–275, 2006.

[4] T.I. Lee, N.J. Rinaldi, F. Robert, D.T. Odom, Z. Bar-Joseph, G.K. Gerber, N.M. Hannett, C.T. Harbi-
son, C.M. Thompson, I. Simon, et al. Transcriptional regulatory networks in saccharomyces cerevisiae.
Science Signalling, 298(5594):799, 2002.

[5] S.M. van Dongen. Graph clustering by flow simulation. PhD thesis, University of Utrecht, The Nether-
lands, 2000.

[6] M. Vidal, M.E. Cusick, and A.L. Barabasi. Interactome networks and human disease. Cell, 144(6):986–
998, 2011.

[7] U. Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17(4):395–416, 2007.

[8] Wikipedia. Graph partitioning, 2012.

[9] Wikipedia. Minimum cut, 2012.

[10] Wikipedia. Scale-free network, 2012.

346

CHAPTER

TWENTYTWO

CHROMATIN INTERACTIONS

Silvia Canas; Vivek Dasari

Figures
22.1 Chromosome Territories . 346

22.2 1) ChIP and DamID only identify regions that have come into close contact with the
nuclear lamina. 2) 3C-based methods identify all DNA-DNA interactions, regardless of
whether they are in the periphery of the nucleus or not 348

22.3 ChIP Method of Measurement . 349

22.4 DamID Method of Measurement . 350

22.5 3C-based methods for identifying chromatin interactions 350

22.6 Method for generating Hi-C data . 352

22.7 ChIA-PET protocol . 352

22.8 Lamina Associated Domains (LADs) . 353

22.9 Matrix representing Hi-C read count . 354

22.10Image depicting sources of bias . 355

22.11Chromosome Territories in 3D . 356

22.12A core chromosome architecture is evident. About 70% of regions are constitutive (cLAD/-
ciLAD) and 30% of regions are facultative (fLAD) . 357

22.13AT regions are indicators for constitutive regions . 357

22.14LADs Through The (Single) Cell Cycle (Kind et al, Cell 2013) 358

22.15Loop Extrusion as a Mechanism of Chromosome Orientation 358

22.1 Introduction

In recent years, many subtle and previously disregarded mechanisms for fine genetic regulation have been
discovered. Aside from direct regulation by proteins, these mechanisms include the involvement of non-
protein coding regions of the genome, epigenomic factors such histone modifications, and diverse RNA

347

6.047/6.878 Lecture 30: Chromatin Interactions

switches. The spatial organization of chromatin inside the nucleus, chromatin modifier complexes and its
functional consequences have also become an area of interest. In this chapter, we will delve into the study
of 3D chromatin structures, starting with the state of art in this field, the most relevant terminology and
current methods. Specially we will focus on the study of DNA regions located by peripheral regions of the
nucleus (thus in close contact with the nuclear lamina) Finally, we will discuss the computational methods
involved in studying nuclear genome organization.

22.1.1 What’s already known

DNA is locally compacted in nucleosomes, by wrapping around histone octamers. Each nucleosome comprises
about 147 bps packed in 1.67 lef-handed superhelical turns. DNA is globally compacted as chromosomes
(during cell division and mitosis). Chromosomes have been dyed with different colors, and it has been shown
that some chromosomes have radial preferences within the cell nucleus, even when the cell is not actively
undergoing division and the chromosomes are not condensed. That is, some chromosomes prefer to stay
near the center of the nucleus while others tend towards the periphery. These are known as chromosome
territories (CT). The territories of homologous chromosomes usually do not lie not near one another. It
is also know that there is an overarching nuclear ’architecture’ that is observable, conserved even between
different cell types.

Figure 22.1: Chromosome Territories

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Cremer, Thomas, and Christoph Cremer. "Chromosome Territories, Nuclear Architecture
and Gene Regulation in Mammalian Cells." Nature Reviews Genetics 2, no. 4 (2001): 292-301.

22.1.2 What we don’t know

While local organization (nucleosome packaging) and global organization (chromosome condensation) of
DNA are somehow understood, the intermediate structures of DNA are not yet well characterized - many
speculated states have only been observed in vitro. The positioning of genomic regions in the nucleus on a
sub-chromosomal level, for example the specific 3D conformation of a certain chromosomal region containing
several genes, is also largely unknown.

While it is known that chromosomes retain some general architecture during the entire cell cycle, it is
unknown how that location is maintained and how different chromosomes continue to interact over the couse
of the entire cell cycle.

348

http://dx.doi.org/10.1038/35066075
http://dx.doi.org/10.1038/35066075

6.047/6.878 Lecture 30: Chromatin Interactions

Together, although we do understand certain parts of the function of chromosomes, we do not have a
complete mechanistic understanding of this process.

22.1.3 Why do we study it?

In general, we are interested in understanding the functional characteristics of genomic regions and the
molecular mechanisms encoded within, which might have implications in human diseases. Particularly, it
has been shown that genes that are encoded in spatially neighboring regions are likely to be co-regulated.
Also, the DNA packed inside the nucleus is the equivalent of wrapping 20 km of 20 µm thick thread in
something the size of a tennis ball, which would reach from Kendall Square to Harvard and back over 6 and
a half times! Isnt this amazing??

22.2 Relevant terminology

22.2.1 Nuclear lamina

The nuclear lamina is a dense network of proteins and filaments that lies on the inner surface of the inner
nuclear membrane. Its functions include: Maintenance of the nuclear stability, interact with nuclear pore
complexes, and organization of the chromatin by directly interacting and binding with it. The protein
meshwork is predominantly made up of lamin proteins.

22.2.2 Lamina Associated Domains(LADs)

Lamina associated domains(LADs) are the portions of the chromatin that interact with the nuclear lamina.
Mapping the interactions of the chromatin and the nuclear lamina provides insight towards mapping chro-
mosome folding. While not much is known about LADs, it is known that these regions are closely related
to both high gene expression and low gene density, an interesting combination. Additionally LADs are
associated with CTCFs, promoters, and CPG islands along its borders.

22.2.3 Histones

Histones are highly alkaline proteins found eukaryotes that comprise the core of nucleosomes, packaging and
ordering the nuclear DNA. An octamer form by 2 copies of the core histones H2A, H2B, H3, and H4 forms
the nucleosome, which acts as a spool for DNA to wind around.

22.2.4 Chromatin

Chromatin is a complex form by DNA, proteins and RNA that generates the global architecture of DNA
in eukaryote nuclei. Its main functions involve DNA packaging, reinforcing the DNA macromolecule to
allow mitosis, preventing DNA damage, and regulating gene expression and DNA replication Most of the

349

6.047/6.878 Lecture 30: Chromatin Interactions

mechanisms underlying the formation and regulation of the structure of chromatin are largely unknown;
however, during cell division, chromatin organizes by way of chromosomes.

22.2.5 Chromosome territories (CT)

Chromosomes are not randomly distributed throughout the nucleus. Chromosomes occupy specific regions
of the nucleus. These regions are called chromosome territories.

22.2.6 Gross folding principles

22.3 Molecular Methods for Studying Nuclear Genome Organiza-
tion

There are two main types of methods for investigating the three-dimensional structure of chromatin in the
nucleus.

• The first set of methods, ChIP and DamID, are methods that measure DNA-’landmark’ interactions.
That is, they measure interactions of genome loci with relatively fixed nuclear landmarks, and only
regions of the genome that come into contact with the nuclear lamina will be identified.

• The second set of methods, the 3C-based methods, are those that measure DNA-DNA interactions.
Any two regions of DNA that interact may be identified, regardless of whether they are near the interior
or periphery of the nucleus.

Figure 22.2: 1) ChIP and DamID only identify regions that have come into close contact with the nuclear
lamina. 2) 3C-based methods identify all DNA-DNA interactions, regardless of whether they are in the
periphery of the nucleus or not

22.3.1 Methods for measuring DNA-Nuclear Lamina interactions

The following methods, ChIP and DamID, both examine regions of DNA the specifically come in contact
with the nuclear lamina.

350

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 30: Chromatin Interactions

ChIP: Chromatin Immuno Precipitation

ChIP is a method for detecting regions of DNA that are bound to proteins of interest. Proteins bound
with DNA are cross-linked in place with formaldehyde. The protein-DNA complexes are pulled-down using
affinity chromatography, mainly using specific antibodies that target the protein of interest. The recovered
complexes are then dessassociated, cross-links are broken, and the DNA that was bound to the proteins is
fragmented and analyzed. DNA fragments can be then analyzed using sequencing (ChiP-Seq) or microarrays
(ChiP-Chip). However, a big challenge associated with the various ChIP techniques is that it can be difficult
to get a high-affinity antibody. To study the 3D structure of DNA within the nucleus, ChIP-Seq can be used
with antibodies that targed lamina proteins.

DamID: DNA adenine methyltransferase IDentification

DamID is used to map the binding sites of Chromatin-binding proteins. In the DamID method, DNA
adenine methyltransferase (Dam) from E. coli is fused to the LaminB1 protein (the Dam enzyme hangs off
the end of the protein and is thus in the vicinity for interactions). In E. coli, the Dam enzyme methylates
the adenine in the sequence GATC; bacterial genomes contain proteins with functions like Dam to protect
their own DNA from digestion by restriction enzymes, or as part of their DNA repair systems. As this
process doesnt naturally occur in eukaryotes, the methylated adenines in a region can thus be attributed to
an interaction with the protein fused with Dam, thereby implying that that particular region came into close
contact with the nuclear lamina. As a control, unfused Dam can be expressed at low levels. This results in
a sparse distribution of methylated adenine for which the precise position of the methylated adenines can be
used to infer variation in DNA accessibility. The methylated adenine are determined using disulphide PCR
assays or other PCR technique sensitive to methylations in the template DNA. In one of those assays, the
genome can digested by DpnI, which only cuts methylated GATC sequences. Adapter sequences are then
ligated to the ends of these digested pieces, and PCR is run using primers matching the adapters. Only the
regions occurring between proximal GATC positions are amplified. The final measurement is the log of the
ratio between test and control lamina assocation: positive values are preferentially lamina-associated, and
are thus identified as LADs. One advantage of using DamID over ChIP is that DamID does not require a
specific antibody which may be difficult to find. However, a disadvantage of using DamID is that the fusion
protein must be made and expressed.

Figure 22.3: ChIP Method of Measurement
Courtesy of Anthony P. Fejes. Used with permission.

351

http://blog.fejes.ca/?p=1309

6.047/6.878 Lecture 30: Chromatin Interactions

Figure 22.4: DamID Method of Measurement

FAQ

Q: How close does DNA have to come to DamID to be methylated?

A: It doesn’t have to bind directly to the lamina, but it does have to come pretty close. DamID
has a range of about 1.5kb.

22.3.2 Measuring DNA-DNA contacts

All of the following methods are based on Chromosome Conformation Capturing (3C) with certain modifi-
cations.

Courtesy of Bas van Steensel. Used with permission.

Figure 22.5: 3C-based methods for identifying chromatin interactions

352

© Cold Spring Harbor Laboratory Press. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: de Wit, Elzo and Wouter de Laat. "A decade of 3C Technologies: Insights into Nuclear Organization."
Genes & Development 26, no. 1 (2012): 11-24.

http://research.nki.nl/vansteensellab/DamID_FAQ.htm
http://ocw.mit.edu/help/faq-fair-use/
http://dx.doi.org/10.1101/gad.179804.111

6.047/6.878 Lecture 30: Chromatin Interactions

3C

Chromosome Conformation Capturing (3C) is a method that detects which genomic loci are in close vicinity
to other loci within the nucleus. Similar to the ChIP method, a cross-linking agent is used freeze proteins
bound to DNA in place and forming protein-DNA complexes. The DNA can be then be digested by a
restriction enzyme after allowing the bound protein to disassociate. Typically an enzyme with a 6 bps long
recognition site that leaves sticky ends, like HindIII, is used. The generated fragments are then induce to
self-ligate (Using very low concentration of DNA to prevent the ligation of the fragment with another random
fragment). The result is a pool of linear DNA fragments, known as the 3C library, that may be analyzed via
PCR by designing primers specifically for the interaction of interest. 3C can be described as a ’one vs one’
method, because the primers used are specifically target to amplify the product of the interaction between
2 regions of interest.

Circularized Chromatin Conformation Capture (4C)

4C methods can be described as a ’one vs all’ because for a single region of interest, we can examine all
its interactions with all other regions in the genome. 4C works similarly to 3C with the main difference
being the restriction enzyme used. In 4C, a common cutter is employed to generate more and smaller
fragments. These fragments are then again ligated. Some smaller fragments may be excluded, but the result
is a circularized fragment of DNA. Primers can be designed to amplify the ’unknown’ fragment of DNA so
that all interactions with the region of interest are identified.

Carbon-Copy Chromosome Conformation Capture (5C)

5C is a ’many vs many’ method and allows the identification of interactions between many regions of interest
and many other regions, also of interest, to be analyzed at once. 5C works similarly to 3C. However, after
obtaining the 3C library, multiplex ligation-mediated amplification (LMA) is performed. LMA is a method
in which multiple targets are amplified. The resulting 5C library may be analyzed on a microarray or
high-throughput sequencing.

Hi-C

Hi-C can be described as an ’all vs all’ method because it identifies all chromatin interactions. Hi-C works
by labeling all DNA fragments with biotin before ligation, which marks all the ligation junctions. Magnetic
beads are then used to purify the biotin-marked junctions. This Hi-C library may then be fed into next
generation sequencing.

ChIP-loop

ChIP-loop can be described as a ’one vs one’ method, because similar to 3C, only an interaction between two
regions of interest may be identified. ChIP-loop is a hybrid between ChIP and the 3C methods. DNA-protein
complexes are first cross-linked and digested. Then, as in ChIP, the protein of interest and the DNA bound
to it are pulled down using an antibody. The protocol then proceeds as in 3C: the free ends of the fragments
are ligated, the cross-linking are reversed, and sequencing can proceed using primers designed specifically
for a ’one vs one’ interaction.

353

6.047/6.878 Lecture 30: Chromatin Interactions

Figure 22.6: Method for generating Hi-C data

ChIA-PET

Chromatin Interception Analysis by Paired-End Tag Sequencing, or ChIA-PET, combines the ChIP and
3C methodologies to determine long-range chromatin interactions genome-wide. It can be described as a
’all vs all’ method, because although a single protein of interest must be identified, any interactions will
be identified. In ChIA-PET, DNA-protein complexes are cross-linked, as in previously discussed methods.
However, sonication is then used to break up chromatin, and to reduce non-specific interactions. As in the
ChIP protocol, an antibody is used to pull down regions of DNA bound to a protein of interest. Two different
oligonucleotide linkers are then ligated to the free ends of the DNA. These linkers both have MmeI cut sites.
The linkers are then ligated together so that the free ends are connected, after which the fragments are
digested with MmeI. MmeI cuts 20 nt downstream of its recognition sequence, so the result of the digestion
is the linker bordered by the sequence of interest on either side. This is a ’tag-linker-tag’ structure, and the
fragments are known as PETs. The PETs may be sequenced and mapped back to the genome to determine
regions of interacting DNA.

Figure 22.7: ChIA-PET protocol

22.4 Mapping Genome-Nuclear Lamina Interactions (LADs)

In this section, we will present how the DamID and Hi-C methods were used to map lamina-associated
domains in the genome.

354

© American Association for the Advancement of Science. All rights reserved. This content is excluded
from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Lieberman-Aiden, Erez, et al. "Comprehensive Mapping of Long-range Interactions Reveals
Folding Principles of the Human Genome." Science 326, no. 5950 (2009): 289-93.

 Courtesy of the authors. License: CC BY.
Source: Li, Guoliang, et al. "Software ChIA-PET tool for Comprehensive Chromatin Interaction
Analysis with Paired-end Tag Sequencing." Genome Biology 11 (2010): R22.

http://ocw.mit.edu/help/faq-fair-use/
http://dx.doi.org/10.1126/science.1181369
http://dx.doi.org/10.1126/science.1181369
http://www.genomebiology.com/2010/11/2/R22
http://www.genomebiology.com/2010/11/2/R22

6.047/6.878 Lecture 30: Chromatin Interactions

22.4.1 Interpreting DamID Data

The DamID method (described in section 3) was used to identify regions of DNA that interacted with the
lamin protein at the nuclear lamina.

Did You Know?
DamID experiments typically run for 24 hours and the methylation is irreversible. The results
are also the average over millions of cells. Therefore, DamID is not suitable for exact time related
positioning of the genome, though single cell studies may soon make address this issue!

The re-

sults of the DamID experiment were plotted as log Damfusionprotein
2 , as done in the figure below (blackDamonly

peaks). For the LaminB1 fusion experiment, positive regions (underlined in yellow in the figure below)
indicate regions which preferentially associate with the nuclear lamina. These positive regions are de-
fined as Lamina Associated Domains, or LADs. Approximately 1300 LADs were discovered in human

Figure 22.8: Lamina Associated Domains (LADs)

fibroblasts. They were surprisingly large, ranging from about 0.1Mb - 10Mb, with a median size of 5Mb.

FAQ

Q: In this representation is a value of 0 significant?

A: No, there is definitely a point where we do not know where the real 0 is. Instead, we can try to
make a good estimate of where the 0 value should be, in order to see relative preference (the
interior vs exterior of the nucleus)

After LADs have been identified, we can align their boundaries to discover various interesting features
such as known gene densities or gene expression levels to the data to build our LAD model. Experiments have
shown that LADs are characterized by low gene density and gene expression levels. It was noticed that the
LAD boundaries are very sharply defined. By aligning the start positions of many LADs, it was discovered
that the borders are particularly marked by CpG islands, outward pointing promoters, and CTCF binding

sites.

FAQ

Q: Why CTCF binding sites? What’s so important about them?

A: That’s the question! Perhaps they help maintain LADs. They could perhaps prevent the LADs
from ’spreading’.

355

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 30: Chromatin Interactions

FAQ

Q: How does organization relate to polyclonal expression?

A: Certainly something going on; however, polyclonal repression works on a smaller scale than
LAD. It occurs outside of LADs, as an additional repression mechanism

22.4.2 Interpreting Hi-C Data

Hi-C data was collected, and the read were mapped back to the genome. The read counts were compiled
into a matrix O (shown below for chromosome 14) where the element Oi,j indicates the number of reads
corresponding to an interaction between positions i and j. A strong diagonal is clearly present, and indicates
that regions that are close together in 1D are also likely to interact in 3D. Errors in Hi-C data interpretation
may occur when the assumptions of the technique are violated: for example, the assumption that the
reference genome is correct, which may not be true in the case of a cancerous cell. The matrix was then

Figure 22.9: Matrix representing Hi-C read count

normalized to account genetic distance between two regions, and a matrix indicating which interactions are
enriched or depleted in the data. In order to compare the data in the matrix, which is two dimensional, to
genomic data sets, which are one dimensional, Principal Component Analysis (PCA) must be used. After
PCA, functional characterization of the data is possible. Hi-C identified two global types of regions:

• Type A, which is characterized by open chromatin, gene richness, and active chromatin marks.

• Type B, which is characterized by closed chromatin, and is gene poor.

Both types of regions are primarily self-interacting and interactions between the two types are infrequent.
Hi-C also confirmed the presence of chromosome territories, as there were far more intra-chromosomal rather
than inter-chromosomal interactions.

356

© American Association for the Advancement of Science. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Lieberman-Aiden, Erez, et al. "Comprehensive Mapping of Long-range Interactions Reveals Folding Principles of
the Human Genome." Science 326, no. 5950 (2009): 289-93.

http://ocw.mit.edu/help/faq-fair-use/
http://dx.doi.org/10.1126/science.1181369
http://dx.doi.org/10.1126/science.1181369

6.047/6.878 Lecture 30: Chromatin Interactions

22.5 Computational Methods for Studying Nuclear Genome Or-
ganization

22.5.1 Sources of Bias

Figure 22.10: Image depicting sources of bias

The three steps that could potentially introduce biases include: Digestion, Ligation, and Sequencing.
Digestion efficiency is a function of the restriction enzymes used and therefore some regions of the genome
could be less prone to be digested as their distribution of the particular recognition site could be really
sparse. Also, some regions could be enriched in the recognition site and thereby will be over-represented
in the results. One solution for this is using many different restriction enzymes and compare the results.
Ligation efficiency is a function of the fragment lengths. Depending on how the restriction enzymes cut the
sequence, some ends may be more or less likely to ligate together. Finally, sequencing efficiency is a function
of the composition of the sequence. Some DNA strands will be more difficult to sequence, based on GC
richness and presence of repeats, which will introduce bias.

22.5.2 Bias Correction

To minimize ligation bias, non-specific ligation products are removed. Since non-specific ligation products
typically have far-away restriction sites, they introduce much larger fragments. In addition, the influence
of fragment size on ligation efficiency(Flen(alen, blen)), the influence of G/C content on amplification and
sequencing(Fgc(agc, bgc)), and the influence of sequence uniqueness on mappability(M(a) ∗M(b)) can all be
accounted for and corrected with the equation:

P (Xa,b) = Pprior ∗ Flen(alen, blen) ∗ Fgc(agc, bgc) ∗M(a) ∗M(b)

Alternatively, the sources of bias can be less explicitly represented by the following equation:

Oi,jj = Bi ∗Bj ∗ Ti,j

where the sum of all relative contact probabilities Ti,j for each bin equals 1. The biases are only assumed
to be multiplicative. This is solved by matrix balancing, or proportional fitting by an iterative correction
algorithm.

357

© American Association for the Advancement of Science. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Lieberman-Aiden, Erez, et al. "Comprehensive Mapping of Long-range Interactions Reveals Folding
Principles of the Human Genome." Science 326, no. 5950 (2009): 289-93.

http://ocw.mit.edu/help/faq-fair-use/
http://dx.doi.org/10.1126/science.1181369
http://dx.doi.org/10.1126/science.1181369

6.047/6.878 Lecture 30: Chromatin Interactions

22.5.3 3D-modeling of 3C-based data

3D-modeling can reveal many general principles of genome organization. Current models are generated using
a combination of inter-locus interactions and known spatial distances between nuclear landmarks. However,
a lot of uncertainty remains in current 3D-models because the data is gathered from millions of cells. The
practical problems affecting 3D-modeling are due to the large amount of data necessary to construct models
and the different dynamics between an individual cell and a population, which lead to unstable models. Next
generation modeling is trending towards using single cell genomics.

Figure 22.11: Chromosome Territories in 3D

22.6 Architecture of Genome Organization

22.6.1 Multiple cell types influence on determining architecture

Embryonic stem cells (ESC), Neural Progenitor Cells (NPC), and Astrocytes(AC) are all isogenic cell types
(they all start as embryonic stem cells). Embryonic stem cells are constantly dividing and are completely
undifferentiated; they generate the neural progenitor cells, which are still dividing but less so, and are only
halfway differentiated. The neural progenitor cells then generate the completely differentiated astrocytes. It
was discovered that during this differentiation process, some areas switched from being Lamina Associated
Domains to being interior domains. In the embryonic stem cells, there is very little transcription. However,
transcription goes up as the cells become more and more differentiated. This matches the localization of
the domains from being primarily associated with the lamina (and thus not expressed) to being localized to
the interior. Even though these cell types each have very different properties, a DamID map shows a high
level of similarity between the three isogenic cells as well as an independent fibroblast cell. Hidden Markov
Models were employed to identify the Lamina Associated Domains between the cells. A core chromosome
architecture was found with about 70% of the chromosome being constitutive (cLad/ ciLAD) and 30% of
the chromosome being facultative(fLAD).

22.6.2 Inter-species comparison of lamina associations

To determine lamina associations between species, a mouse and a human were used. A genome wide alignment
was constructed between a mouse and a human. For each genomic region in the mouse, the best reciprocal
region was matched in the human. Then the human genome was re-mapped, and used to reconstruct a

358

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Kalhor, Reza, et al. "Genome Architectures Revealed by Tethered Chromosome Conformation
Capture and Population-based Modeling." Nature Biotechnology 30, no. 1 (2012): 90-98.

http://dx.doi.org/10.1038/nbt.2057
http://dx.doi.org/10.1038/nbt.2057

6.047/6.878 Lecture 30: Chromatin Interactions

Figure 22.12: A core chromosome architecture is evident. About 70% of regions are constitutive (cLAD/-
ciLAD) and 30% of regions are facultative (fLAD)

mouse genome. DamID data was projected onto this map and there was 83% concordance between the two
genomes (91% for the constitutive regions; 67% for the facultative regions).

22.6.3 A-T Content Rule

A-T content has been found to be a strong predictor for lamina association within core architecture. Addi-
tional support for this prediction is that the LAD-structure that makes up the core architecture is similar
to an isochore structure (a large uniform region of DNA).

Figure 22.13: AT regions are indicators for constitutive regions

359

© Cold Spring Harbor Laboratory Press. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Meuleman, Wouter, et al. "Constitutive Nuclear Lamina–genome Interactions are Highly Conserved
and Associated with A/T-rich Sequence." Genome Research 23, no. 2 (2013): 270-80.

© Cold Spring Harbor Laboratory Press. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Meuleman, Wouter, et al. "Constitutive Nuclear Lamina–genome Interactions are Highly Conserved
and Associated with A/T-rich Sequence." Genome Research 23, no. 2 (2013): 270-80.

http://ocw.mit.edu/help/faq-fair-use/
http://dx.doi.org/10.1101/gr.141028.112
http://dx.doi.org/10.1101/gr.141028.112
http://ocw.mit.edu/help/faq-fair-use/
http://dx.doi.org/10.1101/gr.141028.112
http://dx.doi.org/10.1101/gr.141028.112

6.047/6.878 Lecture 30: Chromatin Interactions

22.7 Mechanistic Understanding of Genome Architecture

22.7.1 Understanding Mitosis and LADs

Organization of chromosomes, particularly in spatial relation to other parts of the chromosome, is not well
understood during the mitotic process. The conformation of cells is thought to conform to two different states.
Highly compartmentalized and cell-type specific conformations are almost entirely limited to interphase.
During the transition into metaphase, chromosomes enter a locus and tissue-independent folding state.

During the mitotic process, approximately 30% of LADs are positioned along the cellular periphery.
This positioning, however, reflects protein-lamina contact at intermittent intervals, however, the cells are
restricted to the periphery of the cells. During mitotic division, this laminar positioning is stochastically
inherited by child cells.

Figure 22.14: LADs Through The (Single) Cell Cycle (Kind et al, Cell 2013)

22.7.2 Modeling

Three dimensional modeling will be increasingly important in understanding the chromosomal interactions.
Current techniques have modeled the yeast genome and the α -globin locus (Duan et al. Nature (2010), Bau
et al. Nature SMB (2011)). From modeling studeis it has become clear that we cannot generate a direct
relationship between contact probability and spatial distance (i.e. contact probability != spatial distance).

Modelling, however, is an inverse problem, it is harder to go one way than the other. Specifically, it
is easier to go from protein structure to a protein contact map than vice versa. Similarly, chromosomal
structure is a hard problem, even if we have a contact mapping.

Figure 22.15: Loop Extrusion as a Mechanism of Chromosome Orientation

360

Courtesy of Elsevier, Incorporate, Used with permission.
Source: Kind, Jop, et al. "Single-cell Dynamics of Genome-nuclear
Lamina Interactions." Cell 153, no. 1 (2013): 178-92.

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://www.sciencedirect.com
http://dx.doi.org/10.1016/j.cell.2013.02.028
http://dx.doi.org/10.1016/j.cell.2013.02.028
http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 30: Chromatin Interactions

22.8 Current Research Directions:

22.8.1 LADs

(a) 30% of the genome is variable between cell types, how are we able to differentiate these differences

(b) How do lamina and LADs interact? Is there an attractions between LADs and these domains, or is it
based on repulsion of the interior

(c) Why and how are the genes along the periphery of LADs repressed.

22.8.2 TADs and Other Compartments:

(a) What is the biological basis of compartments, is there some multifaceted component of the compart-
ments?

(b) How do cohesins work? Are cohesin-extrusion pairs enough to explain all domains?

(c) Enhancer-promoter loops are confined to specific domains? Are these dynamic components/are they
architectural loops mediated by CTCF?

22.8.3 Other/Miscellaneous:

(a) How do we relate the different chromosomal components (i.e. LADs, TADs, polycomb domain, replica-
tion origins, histone modifications, gene expression)?

(b) Evolutionary basis of genomic architecture: was there an evolutional pressure and when did the folding
principles emerge?

(c) In chromosomal changes do localizations or changes in expression happen first?

Did You Know?
This question has (partially) been addressed! In investigating cells that go through multiple rounds
of differentiation, it has been observed that some regions will localize to the lamina in the first
differentiation but won’t become repressed until the second differentiation!

Body Guard Hypothesis
The body guard hypothesis was proposed in 1975 by Hsu TC. It suggests that inactive DNA is localized
to the periphery of the nucleus so that it can ’guard’ the important, active regions of DNA from foreign
dangers like viruses or free radicals. Attempts to test the hypothesis by introducing artificial DNA damage
have produced circumstantial results, and the question remains open. Single Cell Experiments

It is known that cells retain their original organization after mitosis, as shown by chromosome staining
experiments. However, recent experiments have shown that there may be a large difference in organization
between the parent and daughter cells. Certain global properties, like chromosome territories, are conserved,

361

6.047/6.878 Lecture 30: Chromatin Interactions

but organization at a finer detail may greatly differ. Single cell experimentation is an emerging technique
that may be able to address this open question.

FAQ

Q: Has anyone tried increasing expression of a gene in the middle of a LAD? What happened?

A: It’s unclear if there is a specific example of this, however several related studies have been
conducted. Researchers have tried to ’tether’ a region of DNA to the nuclear lamina to see if
it spontaneously becomes deactivated. However, the results were inconclusive as in half of the
cases the region would become inactive and in the other half it wouldn’t! So far these types
of manipulations haven’t yielded much, but it was found that if a protein-devoid segment of
DNA was digested and mixed with highly purified lamina proteins, the bound fragments reveal
a very similar pattern as the LADs. This tells us that lamina directly binds to DNA. However,
this does seem to vary between species.

22.9 Further Reading

22.10 Available Tools and Techniques

22.11 What Have We Learned?

362

CHAPTER

TWENTYTHREE

INTRODUCTION TO STEADY STATE METABOLIC MODELING

Guest Lecture by James Galagan
Scribed by Meriem Sefta (2011)
Jake Shapiro, Andrew Shum, and Ashutosh Singhal (1910)
Molly Ford Dacus and Anand Oza (1909)
Christopher Garay (1908)

Figures
23.1 The process leading to and including the citric acid cycle. 363

23.2 Adding constraints to extreme pathways. 366

23.3 Maximizing two functions with linear programming. 367

23.4 Removing a reaction is the same as removing a gene from the stoichiometric matrix. . . . 368

23.5 Constraining the feasible solution space may create a new optimal flux. 369

23.6 Model of Coljin et. al [3] . 374

23.7 Basic flow in predicting state of a metabolic system under varing drug treatments 375

23.8 Applying expression data set allows constraining of cone shape. 375

23.9 Results of nutrient source prediction experiment. 376

23.1 Introduction

Metabolic modeling allows us to use mathematical models to represent complex biological systems. This
lecture discusses the role of modeling the steady state of biological systems in understanding the metabolic
capabilities of organisms. We also briefly discuss how well steady state models are able to replicate in-vitro
experiments.

363

6.047/6.878 Lecture 19: Introduction to Steady State Metabolic Modeling

23.1.1 What is Metabolism?

According to Matthews and van Holde, metabolism is the totality of all chemical reactions that occur in
living matter. This includes catabolic reactions, which are reactions that lead to the breakdown of molecules
into smaller components, and anabolic reactions, which are responsible for the creation of more complex
molecules (e.g. proteins, lipids, carbohydrates, and nucleic acids) from smaller components. These reactions
are responsible for the release of energy from chemical bonds and the storage of this energy. Metabolic
reactions are also responsible for the transduction and transmission of information (for example, via the
generation of cGMP as a secondary messenger or mRNA as a substrate for protein translation).

23.1.2 Why Model Metabolism?

An important application of metabolic modeling is in the prediction of drug effects. An important subject
of modeling is the organism Mycobacterium tuberculosis [15]. The disruption of the mycolic acid synthesis
pathways of this organism can help control TB infection. Computational modeling gives us a platform
for identifying the best drug targets in this system. Gene knockout studies in Escherichia coli have allowed
scientists to determine which genes and gene combinations affect the growth of this important model organism
[6]. Both agreements and disagreements between models and experimental data can help us assess our
knowledge of biological systems and help us improve our predictions about metabolic capabilities. In the
next lecture, we will learn the importance of incorporating expression data into metabolic models. In
addition, a variety of infectious disease processes involve metabolic changes at the microbial level.

23.2 Model Building

An overarching goal of metabolic modeling is the ability to take a schematic representation of a pathway and
change that it into a mathematical formula modeling the pathway. For example, converting the following
pathway into a mathematical model would be incredible useful.

23.2.1 Chemical Reactions

In metabolic models, we are concerned with modeling chemical reactions that are catalyzed by enzymes.
Enzymes work by acting on a transition state of the enzyme-substrate complex that lowers the activation
energy of a chemical reaction. The diagram on slide 5 of page 1 of the lecture slides demonstrates this
phenomenon. A typical rate equation (which describes the conversion of the substrates S of the enzyme
reaction into its products P) can be described by a Michaelis-Menten rate law:

V
Vmax

= [S]
Km+[S]

In this equation, V is the rate of the equation as a function of substrate concentration [S]. It is clear that
the parameters Km and Vmax are necessary to characterize the equation.

The inclusion of multiple substrates, products, and regulatory relationships quickly increases the number
of parameters necessary to characterize such equations. The figures on slides 1, 2, and 3 of page 2 of
the lecture notes demonstrate the complexity of biochemical pathways. Kinetic modeling quickly becomes

364

6.047/6.878 Lecture 19: Introduction to Steady State Metabolic Modeling

Figure 23.1: The process leading to and including the citric acid cycle.

infeasible: the necessary parameters are difficult to measure, and also vary across organisms [10]. Thus,
we are interested in a modeling method that would allow us to use a small number of precisely determined
parameters. To this end, we recall the basic machinery of stoichiometry from general chemistry. Consider
the chemical equation A+2B → 3C, which says that one unit of reactant A combines with 2 units of reactant
B to form 3 units of reactant C. The rate of formation of the compound X is given by the time derivative of
[X]. Note that C forms three times as fast as A. Therefore, due to the stoichiometry of the reaction, we see
that the reaction rate (or reaction flux) is given by

d[A]flux = dt = 1
2
d[B]
dt = 1

3
d[C]
dt

This will be useful in the subsequent sections. We must now state the simplifying assumptions that make
our model tractable.

23.2.2 Steady-State Assumption

The steady state assumption assumes that there is no accumulation of any metabolite in the system. This
allows us to represent reactions entirely in terms of their chemistry (i.e. the stoichiometric relationships
between the components of the enzymatic reaction). Note that this does not imply the absence of flux

365

© Pearson. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Matthews, C. K., et al. "Biochemistry." (2000).

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 19: Introduction to Steady State Metabolic Modeling

through any given reaction. Rather, steady-state actually implies two assumptions that are critical to
simplify metabolic modeling. The first is that the internal metabolite concentrations are constant, and the
second is that fluxes, ie input and output fluxes, are also constant.

An analogy is a series of waterfalls that contribute water to pools. As the water falls from one pool
to another, the water levels do not change even though water continues to flow (see page 2 slide 5). This
framework prevents us from being hindered by the overly complicated transient kinetics that can result from
perturbations of the system. Since we are usually interested in long-term metabolic capabilities (functions
on a scale longer than milliseconds or seconds), the steady state dynamics may give us all the information
that we need.

The steady-state assumption makes the ability to generalize across species and reuse conserved pathways
in models much more feasible. Reaction stochiometries are often conserved across species, since they involve
only conservation of mass. The biology of enzyme catalysis, and the parameters that characterize it, are not
similarly conserved. These include species-dependent parameters such as the activation energy of a reaction,
substrate affinity of an enzyme, and the rate constants for various reactions. However, none of these are
required for steady-state modeling.

It is also of interest to note that, since time constants for metabolic reactions are usually in the order
of milliseconds, most measurement technologies used today are not able to capture these extremely fast
dynamics. This is the case of metabolomics mass spectrometry based measurements for example. In this
method, the amounts of all the internal metabolites in a system are measured at a given point in time, but
measurements can be taken at best every hour. In the majority of circumstances, all that is ever measured
is steady state.

23.2.3 Reconstructing Metabolic Pathways

There are several databases that can provide the information necessary to reconstruct metabolic pathways
in silico. These databases allow reaction stoichiometry to be accessed using Enzyme Commission numbers.
Reaction stochiometries are the same in all the organisms that utilize a given enzyme. Among the databases
of interest are ExPASy [5], MetaCyc [16], and KEGG [14]. These databases often contain pathways organized
by function that can be downloaded in SBML format, making pathway reconstruction very easy for well-
characterized pathways.

23.3 Metabolic Flux Analysis

Metabolic flux analysis (MFA) is a way of computing the distribution of reaction fluxes that is possible
in a given metabolic network at steady state. We can place constraints on certain fluxes in order to limit
the space described by the distribution of possible fluxes. In this section, we will develop a mathematical
formulation for MFA. Once again, this analysis is independent of the particular biology of the system; rather,
it will only depend on the (universal) stoichiometries of the reactions in question.

23.3.1 Mathematical Representation

Consider a system with m metabolites and n reactions. Let xi be the concentration of substrate i, so that the
rate of change of the substrate concentration is given by the time derivative of xi . Let x be the column vector

366

6.047/6.878 Lecture 19: Introduction to Steady State Metabolic Modeling

(with m components) with elements xi . For simplicity, we consider a system with m = 4 metabolites A, B,
C, and D. This system will consist of many reactions between these metabolites, resulting in a complicated
balance between these compounds.

Once again, consider the simple reaction A + 2B → 3C. We can represent this reaction in vector form
as (-1 -2 3 0). Note that the first two metabolites (A and B) have negative signs, since they are consumed
in the reaction. Moreover, the elements of the vector are determined by the stoichiometry of the reaction,
as in Section 2.1. We repeat this procedure for each reaction in the system. These vectors become the
columns of the stoichiometric matrix S. If the system has m metabolites and n reactions, S will be a m
n matrix. Therefore, if we define v to be the n-component column vector of fluxes in each reaction, the
vector Sv describes the rate of change of the concentration of each metabolite. Mathematically, this can be
represented as the fundamental equation of metabolic flux analysis:

dx = Svdt

The matrix S is an extraordinarily powerful data structure that can represent a variety of possible
scenarios in biological systems. For example, if two columns c and d of S have the property that c = d, the
columns represent a reversible reaction. Moreover, if a column has the property that only one component is
nonzero, it represents in exchange reaction, in which there is a flux into (or from) a supposedly infinite sink
(or source), depending on the sign of the nonzero component.

We now impose the steady state assumption, which says that the left size of the above equation is
identically zero. Therefore, we need to find vectors v that satisfy the criterion Sv = 0. Solutions to this
equation will determine feasible fluxes for this system.

23.3.2 Null Space of S

The feasible flux space of the reactions in the model system is defined by the null space of S, as seen above.
Recall from elementary linear algebra that the null space of a matrix is a vector space; that is, given two
vectors y and z in the nullspace, the vector ay+ bz (for real numbers a, b) is also in the null space. Since the
null space is a vector space, there exists a basis bi, a set of vectors that is linearly independent and spans
the null space. The basis has the property that for any flux v in the null space of S, there exist real numbers
αi such that

v = Σiαibi

How do we find a basis for the null space of a matrix? A useful tool is the singular value decomposition
(SVD) [4]. The singular value decomposition of a matrix S is defined as a representation S = UEV ∗, where
U is a unitary matrix of size m, V is a unitary matrix of size n, and E is a mxn diagonal matrix, with the
(necessarily positive) singular values of S in descending order. (Recall that a unitary matrix is a matrix with
orthonormal columns and rows, i.e. U ∗U = UU∗ = I the identity matrix). It can be shown that any matrix
has an SVD. Note that the SVD can be rearranged into the equation Sv = σu, where u and v are columns of
the matrices U and V and is a singular value. Therefore, if σ = 0, v belongs to the null space of S. Indeed,
the columns of V that correspond to the zero singular values form an orthonormal basis for the null space
of S. In this manner, the SVD allows us to completely characterize the possible fluxes for the system.

367

6.047/6.878 Lecture 19: Introduction to Steady State Metabolic Modeling

23.3.3 Constraining the Flux Space

The first constraint mentioned above is that all steady-state flux vectors must be in the null space. Also
negative fluxes are not thermodynamically possible. Therefore a fundamental constraint is that all fluxes
must be positive. (Within this framework we represent reversible reactions as separate reactions in the
stoichiometric matrix S having two unidirectional fluxes.)

These two key constraints form a system that can be solved by convex analysis. The solution region
can be described by a unique set of Extreme Pathways. In this region, steady state flux vectors v can be
described as a positive linear combination of these extreme pathways. The Extreme Pathways, represented
in slide 25 as vectors bi, circumscribe a convex flux cone. Each dimension is a rate for some reaction. In slide
25, the z-dimension represents the rate of reaction for v3 . We can recognize that at any point in time, the
organism is living at a point in the flux cone, i.e. is demonstrating one particular flux distribution. Every
point in the flux cone can be described by a possible steady state flux vector, while points outside the cone
cannot.

One problem is that the flux cone goes out to infinity, while infinite fluxes are not physically possible.
Therefore an additional constraint is capping the flux cone by determining the maximum fluxes of any of
our reactions (these values correspond to our Vmax parameters). Since many metabolic reactions are interior
to the cell, there is no need to set a cap for every flux. These caps can be determined experimentally by
measuring maximal fluxes, or calculated using mathematical tools such as diffusivity rules.

We can also add input and output fluxes that represent transport into and out of our cells (Vin and Vout).
These are often much easier to measure than internal fluxes and can thus serve to help us to generate a
more biologically relevant flux space. An example of an algorithm for solving this problem is the simplex
algorithm [1]. Slides 24-27 demonstrate how constraints on the fluxes change the geometry of the flux cone.
In reality, we are dealing with problems in higher dimensional spaces.

Figure 23.2: Adding constraints to extreme pathways.

23.3.4 Linear Programming

Linear programming is a generic solution that is capable of solving optimization problems given linear
constraints. These can be represented in a few different forms.

Canonical Form :

368

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 19: Introduction to Steady State Metabolic Modeling

• Maximize: cTx

• Subject to: Ax ≤ b

Standard Form :

• Maximize Σci ∗ xi
• Subject to aijXi ≤ biforalli, j
• Non-negativity constraint: Xi ≥ 0

A concise and clear introduction to Linear Programming is available here: http://www.purplemath.

com/modules/linprog.htm The constraints described throughout section 3 give us the linear programming
problem described in lecture. Linear programming can be considered a first approximation and is a classic
problem in optimization. In order to try and narrow down our feasible flux, we assume that there exists a
fitness function which is a linear combination of any number of the fluxes in the system. Linear program-
ming (or linear optimization) involves maximizing or minimizing a linear function over a convex polyhedron
specified by linear and non-negativity constraints.

Figure 23.3: Maximizing two functions with linear programming.

We solve this problem by identifying the flux distribution that maximizes an objective function:

The key point in linear programming is that our solutions lie at the boundaries of the permissible flux space
and can be on points, edges, or both. By definition however, an optimal solution (if one exists) will lie at
a point of the permissible flux space. This concept is demonstrated on slide 30. In that slide, A is the
stoichiometric matrix, x is the vector of fluxes, and b is a vector of maximal permissible fluxes.

Linear programs, when solved by hand, are generally done by the Simplex method. The simplex method
sets up the problem in a matrix and performs a series of pivots, based on the basic variables of the problem
statement. In worst case, however, this can run in exponential time. Luckily, if a computer is available,
two other algorithms are available. The ellipsoid algorithm and Interior Point methods are both capable
of solving any linear program in polynomial time. It is interesting to note, that many seemingly difficult
problems can be modeled as linear programs and solved efficiently (or as efficiently as a generic solution can
solve a specific problem).

In microbes such as E. coli, this objective function is often a combination of fluxes that contributes
to biomass, as seen in slide 31. However, this function need not be completely biologically meaningful.

369

http://www.purplemath.com/modules/linprog.htm
http://www.purplemath.com/modules/linprog.htm

6.047/6.878 Lecture 19: Introduction to Steady State Metabolic Modeling

For example, we might simulate the maximization of mycolates in M. tuberculosis, even though this isnt
happening biologically. It would give us meaningful predictions about what perturbations could be performed
in vitro that would perturb mycolate synthesis even in the absence of the maximization of the production
of those metabolites.Flux balance analysis (FBA) was pioneered by Palssons group at UCSD and has since
been applied to E. coli, M. tuberculosis, and the human red blood cell [?].

23.4 Applications

23.4.1 In Silico Detection Analysis

With the availability of such a powerful tool like FBA, more questions naturally arise. For example, are we
able to predict gene knockout phenotype based on their simulated effects on metabolism? Also, why would
we try to do this, even though other methods, like protein interaction map connective, exist? Such analysis
is actually necessary, since other methods do not take into direct consideration the metabolic flux or other
specific metabolic conditions.

Figure 23.4: Removing a reaction is the same as removing a gene from the stoichiometric matrix.

Knocking out a gene in an experiment is simply modeled by removing one of the columns (reactions)
from the stochiometric matrix. (A question during class clarified that a single gene can knock out multiple
columns/reactions.) Thereby, these knockout mutations will further constrain the feasible solution space by
removing fluxes and their related extreme pathways. If the original optimal flux was outside is outside the
new space, then new optimal flux is created. Thus the FBA analysis will produce different solutions. The
solution is a maximal growth rate, which may be confirmed or disproven experimentally. The growth rate at
the new solution provides a measure of the knockout phenotype. If these gene knockouts are in fact lethal,
then the optimal solution will be a growth rate of zero.

Studies by Edwards, Palsson (1900) explore knockout phenotype prediction use to predict metabolic
changes in response to knocking out enzymes in E. coli, a prokaryote [?]. In other words, an in silico
metabolic model of E.coli was constructed to simulate mutations affecting the glycolysis, pentose phosphate,
TCA, and electron transport pathways (436 metabolites and 719 reactions included). For each specific
condition, the optimal growth of mutants was compared to non-mutants. The in vivo and in silico results
were then compared, with 86% agreement. The errors in the model indicate an underdeveloped model (lack
of knowledge). The authors discuss 7 errors not modeled by FBA, including mutants inhibiting stable RNA
synthesis and producing toxic intermediates.

370

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 19: Introduction to Steady State Metabolic Modeling

Figure 23.5: Constraining the feasible solution space may create a new optimal flux.

23.4.2 Quantitative Flux In Silico Model Predictions

Can models quantitatively predict fluxes, growth rate? We demonstrate the ability of FBA to give quan-
titative predictions about growth rate and reaction fluxes given different envi- ronmental conditions. More
specifically, prediction refers to externally measurable fluxes as a function of controlled uptake rates and
environmental conditions. Since FBA maximizes an objective function, resulting in a specific value for this
function, we should in theory be able to extract quantitative information from the model.

An early example by Edwards, Ibarra, and Palsson (1901), predicted the growth rate of E. coli in culture
given a range of fixed uptake rates of oxygen and two carbon sources (acetate and succinate), which they
could control in a batch reactor [6]. They assumed that E. coli cells adjust their metabolism to maximize
growth (using a growth objective function) under given environmental conditions and used FBA to model
the metabolic pathways in the bacterium. The input to this particular model is acetate and oxygen, which
is labeled as VIN .

The controlled uptake rates fixed the values of the oxygen and acetate/succinate input fluxes into the
network, but the other fluxes were calculated to maximize the value of the growth objective.

The growth rate is still treated as the solution to the FBA analysis. In sum, optimal growth rate is
predicted as a function of uptake constraints on oxygen versus acetate and oxygen versus succinate. The
basic model is a predictive line and may be confirmed in a bioreactor experimentally by measuring the uptake
and growth from batch reactors (note: experimental uptake was not constrained, only measured).

This model by Palsson was the first good proof of principle in silico model. The authors quantitative
growth rate predictions under the different conditions matched very closely to the experimentally observed
growth rates, implying that E. coli do have a metabolic network that is designed to maximize growth. It
had good true positive and true negative rates. The agreement between the predictions and experimental
results is very impressive for a model that does not include any kinetic information, only stoichiometry. Prof.
Galagan cautioned, however, that it is often difficult to know what good agreement is, because we dont know
the significance of the size of the residuals. The organism was grown on a number of different nutrients.
Therefore, the investigators were able to predict condition specific growth. Keep in mind this worked, since
only certain genes are necessary for some nutrients, like fbp for gluconeogenesis. Therefore, knocking out
fbp will only be lethal when there is no glucose in the environment, a specific condition that resulted in a
growth solution when analyzed by FBA.

371

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 19: Introduction to Steady State Metabolic Modeling

23.4.3 Quasi Steady State Modeling (QSSM)

We’re now able describe how to use FBA to predict time-dependent changes in growth rates and metabolite
concentrations using quasi steady state modeling. The previous example used FBA to make quantitative
growth predictions under specific environmental conditions (point predictions). Now, after growth and
uptake fluxes, we move on to another assumption and type of model.

Can we use a steady state model of metabolism to predict the time-dependent changes in the cell or
environments? We do have to make a number of quasi steady state assumptions (QSSA):

1. The metabolism adjusts to the environmental/cellular changes more rapidly than the changes them-
selves

2. The cellular and environmental concentrations are dynamic, but metabolism operates on the condition
that the concentration is static at each time point (steady state model).

Is it possible to use QSSM to predict metabolic dynamics over time? For example, if there is less acetate
being taken in on a per cell basis as the culture grows, then the growth rate must slow. But now, QSSA
assumptions are applied. That is, in effect, at any given point in time, the organism is in steady state.

What values does one get as a solution to the FBA problem? There are fluxes the growth rate. We are
predicting rate and fluxes (solution) where VIN/OUT included. Up to now we assumed that the input and
output are infinite sinks and sources. To model substrate/growth dynamics, the analysis is performed a bit
differently from prior quantitative flux analysis. We first divide time into slices δt. At each time point t,
we use FBA to predict cellular substrate uptake (Su) and growth (g) during interval δt. The QSSA means
these predictions are constant over δt. Then we integrate to get the biomass (B) and substrate concentration
(Sc) at the next time point t + δt. Therefore, the new VIN is calculated each time based on points δt
in-between time. Thus we can predict the growth rate and glucose and acetate uptake (nutrients available
in the environment). The four step analysis is:

1. The concentration at time t is given by the substrate concentration from the last step plus any additional
substrate provided to the cell culture by an inflow, such as in a fed batch.

2. The substrate concentration is scaled for time and biomass (X) to determine the substrate availability
to the cells. This can exceed the maximum uptake rate of the cells or be less than that number.

3. Use the flux balance model to evaluate the actual substrate uptake rate, which may be more or less
than the substrate available as determined by step 2.

4. The concentration for the next time step is then calculated by integrating the standard differential
equations:

dB
dt = gB → B = Boe

gt

dSc =dt −SuB → Sc = Sc X
o (egtg − 1)

The additional work by Varma et al. (1994) specifies the glucose uptake rate a priori [17]. The model
simulations work to predict time-dependent changes in growth, oxygen uptake, and acetate secretion. This

372

6.047/6.878 Lecture 19: Introduction to Steady State Metabolic Modeling

converse model plots uptake rates versus growth, while still achieving comparable results in vivo and in
silico. The researchers used quasi steady state modeling to predict the time-dependent profiles of cell growth
and metabolite concentrations in batch cultures of E. coli that had either a limited initial supply of glucose
(left) or a slow continuous glucose supply (right diagram). A great fit is evident.

The diagrams above show the results of the model predictions (solid lines) and compare it to the experi-
mental results (individual points). Thus, in E. coli, quasi steady state predictions are impressively accurate
even with a model that does not account for any changes in enzyme expression levels over time. However,
this model would not be adequate to describe behavior that is known to involve gene regulation. For exam-
ple, if the cells had been grown on half-glucose/half-lactose medium, the model would not have been able
to predict the switch in consumption from one carbon source to another. (This does occur experimentally
when E. coli activates alternate carbon utilization pathways only in the absence of glucose.)

23.4.4 Regulation via Boolean Logic

There is a number of levels of regulation through which metabolic flux is controlled at the metabolite,
transcriptional, translational, post-translational levels. FBA associated errors may be explained by incorpo-
ration of gene regulatory information into the models. One way to do this is Boolean logic. The following
table describes if genes for associated enzymes are on or off in presence of certain nutrients (an example of
incorporating E. coli preferences mentioned above):

ON ON
no glucose(0) acetate present(1)

ON OFF
glucose present(1) acetate present(1)

Therefore, one may think that the next step to take is to incorporate this fact into the models. For
example, if we have glucose in the environment, the acetate processing related genes are off and therefore
absent from the S matrix which now becomes dynamic as a result of incorporation of regulation into our
model. In the end, our model is not quantitative. The basic regulation then describes that if one nutrient-
processing enzyme is on, the other is off. Basically it is a bunch of Boolean logic, based on presence of
enzymes, metabolites, genes, etc. These Boolean style assumptions are then used at every small change in
time dt to evaluate the growth rate, the fluxes, and such variables. Then, given the predicted fluxes, the
VIN ,the VOUT , and the system states, one can use logic to turn genes off and on, effectively a δS per δt.
We can start putting together all of the above analyses and come up with a general approach in metabolic
modeling. We can tell that if glycolysis is on, then gluconeogenesis must be off.

The first attempt to include regulation in an FBA model was published by Covert, Schilling, and Palsson
in 1901 [7]. The researchers incorporated a set of known transcriptional regulatory events into their analysis
of a metabolic regulatory network by approximating gene regulation as a Boolean process. A reaction was
said to occur or not depending on the presence of both the enzyme and the substrate(s): if either the enzyme
that catalyzes the reaction (E) is not expressed or a substrate (A) is not available, the reaction flux will be
zero:

rxn = IF (A) AND (E)

Similar Boolean logic determined whether enzymes were expressed or not, depending on the currently ex-
pressed genes and the current environmental conditions. For example, transcription of the enzyme (E) occurs
only if the appropriate gene (G) is available for transcription and no repressor (B) is present:

373

6.047/6.878 Lecture 19: Introduction to Steady State Metabolic Modeling

trans = IF (G) AND NOT (B)

The authors used these principles to design a Boolean network that inputs the current state of all
relevant genes (on or off) and the current state of all metabolites (present or not present), and outputs a
binary vector containing the new state of each of these genes and metabolites. The rules of the Boolean
network were constructed based on experimentally determined cellular regulatory events. Treating reactions
and enzyme/metabolite concentrations as binary variables does not allow for quantitative analysis, but this
method can predict qualitative shifts in metabolic fluxes when merged with FBA. Whenever an enzyme is
absent, the corresponding column is removed from the FBA reaction matrix, as was described above for
knockout phenotype prediction. This leads to an iterative process:

1. Given the initial states of all genes and metabolites, calculate the new states using the Boolean network;

2. perform FBA with appropriate columns deleted from the matrix, based on the states of the enzymes,
to determine the new metabolite concentrations;

3. repeat the Boolean network calculation with the new metabolite concentrations; etc. The above model
is not quantitative, but rather a pure simulation of turning genes on and off at any particular time
instant.

On a few metabolic reactions, there are rules about allowing organism to shift carbon sources (C1, C2).

An application of this method from the study by Covert et al.[7] was to simulate diauxic shift, a shift from
metabolizing a preferred carbon source to another carbon source when the preferred source is not available.
The modeled process includes two gene products, a regulatory protein RPc1, which senses (is activated by)
Carbon 1, and a transport protein Tc2, which transports Carbon 2. If RPc1 is activated by Carbon 1, Tc2
will not be transcribed, since the cell preferentially uses Carbon 1 as a carbon source. If Carbon 1 is not
available, the cell will switch to metabolic pathways based on Carbon 2 and will turn on expression of Tc2.

The Booleans can represent this information:

RPc1 = IF(Carbon1) Tc2 = IF NOT(RPc1)

Covert et al. found that this approach gave predictions about metabolism that matched results from
experimentally induced diauxic shift. This diauxic shift is well modeled by the in silico analysis see above
figure. In segment A, C1 is used up as a nutrient and there is growth. In segment B, there is no growth as
C1 has run out and C2 processing enzymes are not yet made, since genes have not been turned on (or are
in the process), thus the delay of constant amount of biomass. In segment C, enzymes for C2 turned on and
the biomass increases as growth continues with a new nutrient source. Therefore, if there is no C1, C2 is
used up. As C1 runs out, the organism shifts metabolic activity via genetic regulation and begins to take
up C2. Regulation predicts diauxie, the use of C1 before C2. Without regulation, the system would grow
on both C1 and C2 together to max biomass.

So far we have discussed using this combined FBA-Boolean network approach to model regulation at the
transcriptional/translational level, and it will also work for other types of regulation. The main limitation
is for slow forms of regulation, since this method assumes that regulatory steps are completed within a
single time interval (because the Boolean calculation is done at each FBA time step and does not take into
account previous states of the system). This is fine for any forms of regulation that act at least as fast
as transcription/translation. For example, phosphorylation of enzymes (an enzyme activation process) is
very fast and can be modeled by including the presence of a phosphorylase enzyme in the Boolean network.

374

6.047/6.878 Lecture 19: Introduction to Steady State Metabolic Modeling

However, regulation that occurs over longer time scales, such as sequestration of mRNA, is not taken into
account by this model. This approach also has a fundamental problem in that it does not allow actual
experimental measurements of gene expression levels to be inputted at relevant time points.

We do not need our simulations to artificially predict whether certain genes are on or off. Microar-
ray expression data allows us to determine which genes are being expressed, and this information can be
incorporated into our models.

23.4.5 Coupling Gene Expression with Metabolism

In practice, we do not need to artificially model gene levels, we can measure them. As discussed previousky,
it is possible to measure the expressions levels of all the mRNAs in a given sample. Since mRNA expression
data correlates with protein expression data, it would be extremely useful to incorporate it into the FBA.
Usually, data from microarray experiments is clustered, and unknown genes are hypothesised to have function
similar to the function of those known genes with which they cluster. This analysis can be faulty, however,
as genes with similar actions may not always cluster together. Incorporating microarray expression data
into FBA could allow an alternate method of interpretation of the data. Here arises a question, what is the
relationship between gene level and flux through a reaction?

Say the reaction A→ B is catalyzed by an enzyme. If a lot of A present, increased expression of the gene
for the enzyme causes increased reaction rate. Otherwise, increasing gene expression level will not increase
reaction rate. However, the enzyme concentration can be treated as a constraint on the maximum possible
flux, given that the substrate also has a reasonable physiological limit.

The next step, then, is to relate the mRNA expression level to the enzyme concentration. This is more
difficult, since cells have a number of regulatory mechanisms to control protein concentrations independently
of mRNA concentrations. For example, translated proteins may require an additional activation step (e.g.
phosphorylation), each mRNA molecule may be translated into a variable number of proteins before it is
degraded (e.g. by antisense RNAs), the rate of translation from mRNA into protein may be slower than the
time intervals considered in each step of FBA, and the protein degradation rate may also be slow. Despite
these complications, the mRNA expression levels from microarray experiments are usually taken as upper
bounds on the possible enzyme concentrations at each measured time point. Given the above relationship
between enzyme concentration and flux, this means that the mRNA expression levels are also upper bounds
on the maximum possible fluxes through the reactions catalyzed by their encoded proteins. The validity of
this assumption is still being debated, but it has already performed well in FBA analyses and is consistent
with recent evidence that cells do control metabolic enzyme levels primarily by adjusting mRNA levels. (In
1907, Professor Galagan discussed a study by Zaslaver et al. (1904) that found that genes required in an
amino acid biosynthesis pathway are transcribed sequentially as needed [2]). This is a particularly useful
assumption for including microarray expression data in FBA, since FBA makes use of maximum flux values
to constrain the flux balance cone.

Colijn et al. address the question of algorithmic integration of expression data and metabolic networks [3].
They apply FBA to model the maximum flux through each reaction in a metabolic network. For example, if
microarray data is available from an organism growing on glucose and from an organism growing on acetate,
significant regulatory differences will likely be observed between the two datasets. Vmax tells us what the
maximum we can reach. Microarray detects the level of transcripts, and it gives an upper boundary of Vmax.

In addition to predicting metabolic pathways under different environmental conditions, FBA and microar-
ray experiments can be combined to predict the state of a metabolic system under varying drug treatments.
For example, several TB drugs target mycolic acid biosynthesis. Mycolic acid is a major cell wall constituent.
In a 1904 paper by Boshoff et al., researchers tested 75 drugs, drug combinations, and growth conditions to

375

6.047/6.878 Lecture 19: Introduction to Steady State Metabolic Modeling

Figure 23.6: Model of Coljin et. al [3]

see what effect different treatments had on mycolic acid synthesis [9]. In 1905, Raman et al. published an
FBA model of mycolic acid biosynthesis, consisting of 197 metabolites and 219 reactions [13].

The basic flow of the prediction was to take a control expression value and a treatment expression value
for a particular set of genes, then feed this information into the FBA and measure the final effect on the
treatment on the production of mycolic acid. To examine predicted inhibitors and enhancers, they examined
significance, which examines whether the effect is due to noise, and specificity, which examines whether
the effect is due to mycolic acid or overall supression/enhancement of metabolism. The results were fairly
encouraging. Several known mycolic acid inhibitors were identified by the FBA. Interesting results were
also found among drugs not specifically known to inhibit mycolic acid synthesis. 4 novel inhibitors and 2
novel enhancers of mycolic acid synthesis were predicted. One particular drug, Triclosan, appears to be an
enhancer according to the FBA model, whereas it is currently known as an inhibitor. Further study of this
particular drug would be interesting. Experimental testing and validation are currently in progress.

Clustering may also be ineffective in identifying function of various treatments. Predicted inhibitors, and
predicted enhancers of mycolic acid synthesis are not clustered together. In addition, no labeled training
set is required for FBA-based algorithmic classification, whereas it is necessary for supervised clustering
algorithms.

23.4.6 Predicting Nutrient Source

Now, we get the idea of predicting the nutrient source that an organism may be using in an environment,
by looking at expression data and looking for associated nutrient processing gene expression. This is easier,
since we cant go into the environment and measure all chemical levels, but we can get expression data rather
easily. That is, we try to predict a nutrient source through predictions of metabolic state from expression
data, based on the assumption that organisms are likely to adjust metabolic state to available nutrients.
The nutrients may then be ranked by how well they match the metabolic states.

The other way around could work too. Can I predict a nutrient given a state? Such predictions could
be useful for determining the nutrient requirements of an organism with an unknown natural environment,
or for determining how an organism changes its environment. (TB, for example, is able to live within the
environment of a macrophage phagolysosome, presumably by altering the environmental conditions in the

376

Courtesy of the authors. License: CC BY.
Source: Colijn, Caroline, et al. "Interpreting Expression Data with Metabolic Flux Models: Predicting Mycobacterium
Tuberculosis Mycolic acid Production." PLoS Computational Biology 5, no. 8 (2009): e1000489.

http://dx.doi.org/10.1371/journal.pcbi.1000489
http://dx.doi.org/10.1371/journal.pcbi.1000489

6.047/6.878 Lecture 19: Introduction to Steady State Metabolic Modeling

Figure 23.7: Basic flow in predicting state of a metabolic system under varing drug treatments

phagolysosome and preventing its maturation.)

We can use FBA to define a space of possible metabolic states and choose one. The basic steps are to:

• Start with max flux cone (representing best growth with all nutrients available in environment). Find
optimal flux for each nutrient.

• Apply expression data set (still not knowing nutrient). This will allow you to constrain the cone shape
and figure out the nutrient, which is represented as one with the closest distance to optimal solution.

Figure 23.8: Applying expression data set allows constraining of cone shape.

In Figure 8, you may see that the first cone has a number of optimals, so the real nutrient is unknown.
However, after expression data is applied, the cone is reshaped. It has only one optimal, which is still in
feasible space and thereby must be that nutrient you are looking for.

As before, the measured expression levels provide constraints on the reaction fluxes, altering the shape

377

Courtesy of the authors. License: CC BY.
Source: Colijn, Caroline, et al. "Interpreting Expression Data with Metabolic Flux Models: Predicting
Mycobacterium Tuberculosis Mycolic Acid Production." PLoS Computational Biology 5, no. 8 (2009): e1000489.

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://dx.doi.org/10.1371/journal.pcbi.1000489
http://dx.doi.org/10.1371/journal.pcbi.1000489
http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 19: Introduction to Steady State Metabolic Modeling

of the flux-balance cone (now the expression-constrained flux balance cone). FBA can be used to determine
the optimal set of fluxes that maximize growth within these expression constraints, and this set of fluxes
can be compared to experimentally-determined optimal growth patterns under each environmental condition
of interest. The difference between the calculated state of the organism and the optimal state under each
condition is a measure of how sub-optimal the current metabolic state of the organism would be if it were
in fact growing under that condition.

Figure 23.9: Results of nutrient source prediction experiment.

Expression data from growth and metabolism may then be applied to predict the carbon source being
used. For example, consider E. coli nutrient product. We can simulate this system for glucose versus acetate.
The color indicates the distance from the constrained flux cone to the optimal flux solution for that nutrient
combo (same procedure described above). Then, multiple nutrients may be ranked, prioritized according
to expression data. Unpublished data from Desmond Lun and Aaron Brandes provide an example of this
approach.

They used FBA to predict which nutrient source E. coli cultures were growing on, based on gene expression
data. They compared the known optimal fluxes (the optimal point in flux space) for each nutrient condition
to the allowed optimal flux values within the expression-constrained flux-balance cone. Those nutrient
conditions with optimal fluxes that remained within (or closest to) the expression-constrained cone were the
most likely possibilities for the actual environment of the culture.

Results of the experiment are shown in Figure 9, where each square in the results matrices is colored
based on the distance between the optimal fluxes for that nutrient condition and the calculated optimal
fluxes based on the expression data. Red values indicate large distances from the expression-constrained
flux cone and blue values indicate short distances from the cone. In the glucose-acetate experiments, for
example, the results of the experiment on the left indicate that low acetate conditions are the most likely
(and glucose was the nutrient in the culture) and the results of the experiment on the right indicate that
low glucose/medium acetate conditions are the most likely (and acetate was the nutrient in the culture).
When 6 possible nutrients were considered, the model always predicted the correct one, and when 18 possible
nutrients were considered, the correct one was always one of the top 4 ranking predictions. These results
suggest that it is possible to use expression data and FBA modeling to predict environmental conditions
from information about the metabolic state of an organism.

This is important because TB uses fatty acids in macrophages in immune systems. We do not know
which ones exactly are utilized. We can figure out what the TB sees in its environment as a food source and
proliferation factor by analyzing what related nutrient processing genes are turned on at growth phases and
such. Thereby we can figure out the nutrients it needs to grow, allowing for a potential way to kill it off by
not supplying such nutrients or knocking out those particular genes.

It is easier to get expression data to see flux activity than see whats being used up in the environment by

378

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 19: Introduction to Steady State Metabolic Modeling

analyzing the chemistry on such a tiny level. Also, we might not be able to grow some bacteria in lab, but
we can solve the problem by getting the expression data from the bacteria growing in a natural environment
and then seeing what it is using to grow. Then, we can add it to the laboratory medium to grow the bacteria
successfully.

23.5 Current Research Directions

23.6 Further Reading

• Becker, S. A. and B. O. Palsson (1908). Context-Specific Metabolic Networks Are Consistent with
Experiments. PLoS Computational Biology 4(5): e1000082.

– If gene expression lower than some threshold, turn the gene off in the model.

• Shlomi, T., M. N. Cabili, et al. (1908). Network-based prediction of human tissue-specific metabolism.
Nat Biotech 26(9): 1003-1010.

– Nested optimization problem.

– First, standard FBA

– Second, maximize the number of enzymes whose predicted flux activity is consistent with their
measured expression level

23.7 Tools and Techniques

• Kegg

• BioCyc

• Pathway Explorer (pathwayexplorer.genome.tugraz.at)

• Palssons group at UCSD (http://gcrg.ucsd.edu/)

• www.systems-biology.org

• Biomodels database (www.ebi.ac.uk/biomodels/)

• JWS Model Database (jjj.biochem.sun.ac.za/database/index.html)

23.8 What Have We Learned?

Bibliography

[1]

[2] Zaslaver A, Mayo AE, Rosenberg R, Bashkin P, Sberro H, Tsalyuk M, Surette MG, and Alon U. Just-
in-time transcription program in metabolic pathways. Nat. Gen, 36:486–491, 2004.

379

http://gcrg.ucsd.edu/
www.ebi.ac.uk/biomodels/
jjj.biochem.sun.ac.za/database/index.html
www.systems-biology.org

6.047/6.878 Lecture 19: Introduction to Steady State Metabolic Modeling

[3] Caroline Coljin. Interpreting expression data with metabolic flux models: Predicting mycobacterium
tuberculosis mycolic acid production. PLoS Computational Biology, 5(8), Aug 2009.

[4] Price N. D., Reed J. L., Papin J.A, Famili I., and Palsson B.O. Analysis of metabolic capabilities using
singular value decomposition of extreme pathway matrices. Biophys J., 84(2):794–804, Feb 2003.

[5] Gasteiger E., Gattiker A., Hoogland C. andIvanyi I., Appel R.D., , and Bairoch A. Expasy: The
proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res, 31(13):3784–3788.

[6] J.S. Edwards, R. U. Ibarra, and B.O. Palsson. In silico predictions of e coli metabolic capabilities are
consis ent with experimental data. Nat Biotechnology, 19:125–130, 2001.

[7] Covert M et al. Regulation of gene expression in flux balance models of metabolism. Journal of
Theoretical Biology, 213:73–88, Nov 2001.

[8] J. Forster, I. Famili, B.O. Palsson, and J. Nielsen. Large-scale evaluation of in silico gene deletions in
saccharomyces cerevisiae. OMICS, 7(2):193–202, 2003. PMID: 14506848.

[9] Boshoff H.I., Myers T.G., Copp B.R., McNeil M.R., Wilson M.A., and Bary C.E. The transcriptional
response of mycobacterium tuberculosis to inhibitors of metabolism: novel insights into drug mechanisms
of action. J Biol Chem, 279:40174–40184, Sep 2004.

[10] Holmberg. On the practical identifiability of microbial-growth models incorporating michaelis-menten
type nonlinearities. Mathematical Biosciences, 62(1):23–43, 1982.

[11] Edwards J.S. and Palsson B.O. volume 97, pages 5528–5533. Proceedings of the National Academy of
Sciences of the United States of America, May 2000. PMC25862.

[12] Edwards J.S., Covert M., , and Palsson B. Metabolic modeling of microbes: the flux balance approach.
Environmental Microbiology, 4(3):133–140, 2002.

[13] Raman Karthik, Preethi Rajagopalan, and Nagasuma Chandra. Flux balance analysis of mycolic acid
pathway: Targets for anti-tubercular drugs. PLoS Computational Biology, 1, Oct 2005.

[14] Kanehisa M., Goto S., Kawashima S., and Nakaya. From genomics to chemical genomics: new devel-
opments in kegg. Nucleic Acids Res., 34, 2006.

[15] Jamshidi N. and Palsson B. Investigating the metabolic capabilities of mycobacterium tuberculosis
h37rv using the in silico strain inj661 and proposing alternative drug targets. BMC Systems Biology,
26, 2007.

[16] Caspi R., Foerster H., Fulcher C.A., Kaipa P., Krummenacker M., Latendresse M., Paley S., Rhee S.Y.,
Shearer A.G., Tissier C., Walk T.C. ZhangP., and Karp P. The metacyc database of metabolic pathways
and enzymes and the biocyc collection of pathway/genome databases. Nucleic Acids Res, 36(Suppl),
2008.

[17] A. Varma and B. O. Palsson. Stoichiometric flux balance models quantitatively predict growth and
metabolic by-product secretion in wild-type escherichia coli w3110. Applied and Environmental Micro-
biology, 60:3724–3731, Oct 1994.

380

CHAPTER

TWENTYFOUR

THE ENCODE PROJECT: SYSTEMATIC EXPERIMENTATION AND
INTEGRATIVE GENOMICS

Figures
24.1 Snapshot of ENCODE project experiment matrix. 380

24.2 Overview of Chip-seq [3] . 381

24.3 ENCODE uniform Processing Pipeline . 382

24.4 Shifting forward and reverse strand signals, Cross Correlation plot 382

24.5 IDR to assess reproducibility of CHIP-seq datasets. Scatter plots display signal scores of
peaks that overlap in each replicate pair. (A,B) results for high quality replicate. (C)
Estimated IDR for varying rank thresholds. [1] . 383

24.1 Introduction

The human genome was sequenced in 2003, an important step in understanding the blueprint of life.
However, before this information can be fully utilized, the location, identity, and function of all protein-
encoding and non-protein-encoding genes must be determined. Moreover, the human genome has many
other functional elements, ranging from promotors, regulatory sequences, and other factors that determine
chromatin structure. These must also be determined to fully understand the human genome.

The ENCODE (Encyclopedia of DNA Elements) project aims to solve these problems by delineating
all functional elements of the human genome To accomplish this goal, a consortium was formed to guide
the project. The consortium aimed to advance and develop technologies for annotating the human genome
with higher accuracy, completeness, and cost-effectiveness,

381

.

6.047/6.878 Lecture 28: Systematic experimentation and integrative genomics

along with more standardization.They also aimed to develop a series of computational techniques to parse
and analyze the data obtained.

To accomplish this goal, a pilot project was launched. The ENCODE pilot project aimed to study 1% of
the human genome in depth, roughly from 2003 to 2007. From 2007 to 2012, the ENCODE project ramped
up to annotate the entire genome. Finally, from 2012 onwards, the ENCODE project aims further increases
in all dimensions: deeper sequencing, more assays, more transcription factors, etc.

This chapter will describe some of the experimental and computational techniques used in the ENCODE
project.

24.2 Experimental Techniques

The ENCODE project used a wide range of experimental techniques, ranging from RNA-seq, CAGE-seq,
Exon Arrays, MAINE-seq, Chromatin ChIP-seq, DNase-seq, and many more.

Figure 24.1: Snapshot of ENCODE project experiment matrix.

One of the most important techniques used was ChIP-seq (chromatin immunoprecipitation followed
by sequencing). The first step in a ChIP experiment is to target DNA fragments associated with a specific
protein. This is done by using an anti-body that targets the specific protein and is used to immunoprecipitate
the DNA-protein complex. The final step is to assay the DNA. This will determine the sequences bound to
the proteins.

ChIP-seq has several advantages over previous techniques (e.g. ChIP-chip). For example, ChIP-seq has
single nucleotide resolution and its alignability increases with read length. However, ChIP-seq has several
disadvantages. Sequencing errors tend to increase substantially near the end of reads. Also, with low number
of reads, sensitivity and specificity tend to decrease when detecting enriched regions. Both of these problems
arise when processing the data and many of the computational techniques seek to rectify this.

382

© ENCODE Project. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 28: Systematic experimentation and integrative genomics

Figure 24.2: Overview of Chip-seq [3]

24.3 Computational Techniques

This section will focus on techniques on processing raw data from the ENCODE project. Before ENCODE
data can be analyzed (e.g. for motif discovery, co-association analysis, signal aggregation over elements, etc),
the raw data must be processed.

Even before the data is processed, some quality control is applied. Quality control is needed for several
reasons. Even without anti-bodies, reads are not uniformly-scattered. The biological reasons include non-
uniform fragmentation of the genome, open chromatin regions fragmenting easier, and repetitive sequences
over-collapsed in assembled genomes. The ENCODE project corrected for these biases in several ways.
Portions of the DNA were removed before the ChIP step, removing large portions of unwanted data. Control
experiments were also conducted without the use of anti-bodies. Finally, fragment input DNA sequence reads
were used as a background.

Because of inherent noise in the ChIP-seq process, some reads will be of lower quality. Using a read
quality metric, reads below a threshold were thrown out.

Shorter reads (and to a lesser extent, longer reads) can map to exactly one location (uniquely mapping),
multiple locations (repetitive mapping), or no locations at all (unmappable) in the genome. There are many
potential ways to deal with repetitive mapping, ranging from probabilistically spreading the read to use an
EM approach. However, since the ENCODE project aims to be as correct as possible, it does not assign
repetitive reads to any location.

383

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Park, Peter J. "ChIP–seq: Advantages and Challenges of a
Maturing Technology." Nature Reviews Genetics 10, no. 10 (2009): 669-80.

http://dx.doi.org/10.1038/nrg2641
http://dx.doi.org/10.1038/nrg2641

6.047/6.878 Lecture 28: Systematic experimentation and integrative genomics

Figure 24.3: ENCODE uniform Processing Pipeline

If a sample does not contain sufficient DNA and/or if it is over-sequenced, you will simply be repeatedly
sequencing PCR duplicates of a restricted pool of distinct DNA fragments. This is known a low-complexity
library and is not desirable. To solve this problem, a histogram with the number of duplicates is created
and samples with a low non-redundant fraction (NRF) are thrown out.

ChIP-seq randomly sequences from one end of each fragment, so to determine which reads came from
which segment, typically strand cross-correlation analysis is used [Fig. 04]. To accomplish this, the forward
and and reverse strand signals are calculated. Then, they are sequentially shifted towards each other. At
every step, the correlation is calculated. At the fragment length offset f , the correlation peaks. f is the
length at which ChIP DNA is fragmented. Using further analysis, we can determine that we should have
a high absolute cross-correlation at fragment length, and high fragment length cross-correlation relative to
read-length cross-correlation. The RSC (Relative Strand Correlation) should be greater than 1.

Figure 24.4: Shifting forward and reverse strand signals, Cross Correlation plot

CCfragment
RSC =

−min(CC)
(24.1)

CCreadlength −min(CC)

Once quality control is applied, the data is further processed to determine actual areas of enrichment. To
accomplish this, the ENCODE project used a modified version of peak calling. There are many existing peak

384

© ENCODE Project. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 28: Systematic experimentation and integrative genomics

calling algorithms, but the ENCODE project used MACS and PeakSeq, as they are deterministic. However,
it is not possible to set a uniform p-value or false discovery rate (FDR) constant. The FDR and p-value
depends on ChIP and input sequencing depth, the binding ubiquity of the factor, and is highly unstable.
Moreover, different tools require different values.

The ENCODE project uses replicates (of the same experiment) and combines the data to find more
meaningful results. Simple solutions have major issues: taking the union of the peaks keeps garbage from
both, the intersection is too stringent and throws away good peaks, and taking the sum of the data does
not exploit the independence of the datasets. Instead, the ENCODE project uses the independent discovery
rate (IDR). The key idea is that true peaks will be highly ranked in both replicates. Thus, to find significant
peaks, the peaks are considered in rank order, until ranks are no longer correlated.

Figure 24.5: IDR to assess reproducibility of CHIP-seq datasets. Scatter plots display signal scores of peaks
that overlap in each replicate pair. (A,B) results for high quality replicate. (C) Estimated IDR for varying
rank thresholds. [1]

The cutoff could be different for the two replicates and actual peaks included may differ between replicates.
It is modeled as a Gaussian mixture model, which can be fit via an EM-like algorithm. Using IDR leads
to higher consistence between peak callers. This is because FDR only relies on enrichment over input, IDR
exploits replicates. Also, using sampling methods, if there is only one replicate, the IDR pipeline can still
be used with pseudo-replicates.

24.4 Current Research Directions

The ENCODE project is still ongoing. Using saturation techniques, we believe we only have discovered a
maximum 50% of elements. This number is likely to be lower due to inaccessible cell types and other factors.
Also, several cell types are extremely rare and difficult to access, so sequencing data from these cell types is
another challenge.

In computational frontiers, the ENCODE project has produced an enormous amount of raw data. Similar
to how the full sequence of the human genome unleashed a series of computational projects, the ENCODE
data can be used for a variety of computational projects.

385

Courtesy of Cold Spring Harbor Laboratory Press. License: CC BY-NC.
Source: Landt, Stephen G., et al. "ChIP-seq Guidelines and Practices of the
ENCODE and ModENCODE Consortia." Genome Research 22, no. 9 (2012): 1813-31.

http://dx.doi.org/10.1101/gr.136184.111
http://dx.doi.org/10.1101/gr.136184.111

6.047/6.878 Lecture 28: Systematic experimentation and integrative genomics

24.5 Further Reading

The Nature site with ENCODE papers is available at http://www.nature.com/encode/.

The official ENCODE portal is http://encodeproject.org/ENCODE/.

To browse ENCODE data, visit http://encodeproject.org/cgi-bin/hgHubConnect.

Data processing tools for ENCODE data are available at http://encodeproject.org/ENCODE/analysis.
html.

24.6 Tools and Techniques

ENCODE data mining, http://genome.ucsc.edu/cgi-bin/hgTables?db=hg18&hgta_group=regulation&
hgta_track=wgEncodeHudsonalphaChipSeq

ENCODE data visualization, http://genome.ucsc.edu/cgi-bin/hgTracks?hgS_doOtherUser=submit&
hgS_otherUserName=Kate&hgS_otherUserSessionName=encodePortalSession

Software and resources for rnalyzing ENCODE data, http://genome.ucsc.edu/ENCODE/analysisTools.
html

Software tools used to create the ENCODE resource, http://genome.ucsc.edu/ENCODE/encodeTools.
html

24.7 What Have We Learned?

This chapter provides an overview the ENCODE project which aims to annotate the entire human genome. It
collects DNA sequences using various experimental techniques such as CHIP-seq, RNA-seq, and CAGE-seq.
After the data has been obtained it needs to be processed before attempting analysis. The data goes through
a number of steps; quality control, peak calling, IDR processing, and blacklist filtering. Once the accuracy of
the data has been ensured other analysis can be done in the form of motif discovery, co-association analysis,
and signal aggregation over elements.

Bibliography

[1] S G Landt, G K Marinov, A Kundaje, P Kheradpour, F Pauli, S Batzoglou, B E Bernstein, P Bickel,
J B Brown, P Cayting, Y Chen, G DeSalvo, C Epstein, K I Fisher-Aylor, G Euskirchen, M Gerstein,
J Gertz, A J Hartemink, M M Hoffman, V R Iyer, Y L Jung, S Karmakar, M Kellis, P V Kharchenko,
Q Li, T Liu, X S Liu, L Ma, A Milosavljevic, R M Myers, P J Park, M J Pazin, M D Perry, D Raha,
T E Reddy, J Rozowsky, N Shoresh, A Sidow, M Slattery, J A Stamatoyannopoulos, M Y Tolstorukov,

386

http://www.nature.com/encode/
http://encodeproject.org/ENCODE/
http://encodeproject.org/cgi-bin/hgHubConnect
http://encodeproject.org/ENCODE/analysis.html
http://encodeproject.org/ENCODE/analysis.html
http://genome.ucsc.edu/cgi-bin/hgTables?db=hg18&hgta_group=regulation&hgta_track=wgEncodeHudsonalphaChipSeq
http://genome.ucsc.edu/cgi-bin/hgTables?db=hg18&hgta_group=regulation&hgta_track=wgEncodeHudsonalphaChipSeq
http://genome.ucsc.edu/cgi-bin/hgTracks?hgS_doOtherUser=submit&hgS_otherUserName=Kate&hgS_otherUserSessionName=encodePortalSession
http://genome.ucsc.edu/cgi-bin/hgTracks?hgS_doOtherUser=submit&hgS_otherUserName=Kate&hgS_otherUserSessionName=encodePortalSession
http://genome.ucsc.edu/ENCODE/analysisTools.html
http://genome.ucsc.edu/ENCODE/analysisTools.html
http://genome.ucsc.edu/ENCODE/encodeTools.html
http://genome.ucsc.edu/ENCODE/encodeTools.html

6.047/6.878 Lecture 28: Systematic experimentation and integrative genomics

K P White, S Xi, P J Farnham, J D Lieb, B J Wold, and M Snyder. ChIP-seq guidelines and practices
of the ENCODE and modENCODE consortia. Genome Research, 22(9):1813–1831, 2012.

[2] Philippe Lefrançois, Ghia M Euskirchen, Raymond K Auerbach, Joel Rozowsky, Theodore Gibson,
Christopher M Yellman, Mark Gerstein, and Michael Snyder. Efficient yeast ChIP-Seq using multiplex
short-read DNA sequencing. BMC Genomics, 10(1):37, 2009.

[3] P J Park. ChIP-seq: advantages and challenges of a maturing technology. Nature reviews. Genetics,
10(10):669–680, October 2009.

387

6.047/6.878 Lecture 28: Systematic experimentation and integrative genomics

388

CHAPTER

TWENTYFIVE

PHARMACOGENOMICS

25.1 Introduction

25.2 Current Research Directions

25.3 Further Reading

25.4 Tools and Techniques

25.5 What Have We Learned?

Bibliography

389

6.047/6.878 Lecture 31: Pharmacogenomics

390

CHAPTER

TWENTYSIX

SYNTHETIC BIOLOGY

Figures
26.1 The layers of abstraction in robotics compared with those in biology (credit to Ron Weiss). 390

26.2 The repressilator genetic regulator network. 390

26.3 Fluorescence of a single cell with the repressilator circuit over a period of 10 hours. 390

26.4 Cost of synthesizing a base pair versus US dollar . 391

26.5 An example of a BioCompiler program and the process of actualizing it (credit to Ron Weiss)392

26.6 An example of combining BioBrick Pieces taken from http://2006.igem.org/wiki/index.

php/Standard_Assembly . 393

26.1 Introduction

A cell is like robot in that it needs to be able to sense it surroundings and internal state, perform computations
and make judgments, and complete a task or function. The emerging discipline of synthetic biology aims to
make control of biological entities such as cells and proteins similar to designing a robot. Synthetic biology
combines technology, science, and engineering to construct biological devices and systems for useful purposes
including solutions to world problems in health, energy, environment and, security.

Synthetic biology involves every level of biology, from DNA to tissues. Synthetic biologist aims to create
layers of biological abstraction like those in digital computers in order to create biological circuits and
programs efficiently. One of the major goals in synthetic biology is development of a standard and well-
defined set of tools for building biological systems that allows the level of abstraction available to electrical
engineers building complex circuits to be available to synthetic biologists.

Synthetic biology is a relatively new field. The size and complexity of synthetic genetic circuits has so
far been small, on the order of six to eleven promoters. Synthetic genetic circuits remain small in total size

391

http://2006.igem.org/wiki/index.php/Standard_Assembly
http://2006.igem.org/wiki/index.php/Standard_Assembly

6.047/6.878 Lecture 32: Synthetic Biology

Figure 26.1: The layers of abstraction in robotics compared with those in biology (credit to Ron Weiss).

(103 - 105 base pairs) compared to size of the typical genome in a mammal or other animal (105 - 107 base
pairs) as well.

One of the first milestones in synthetic biology occurred in 2000 with the repressilator. The repressilator
[2] is a synthetic genetic regulatory network which acts like an electrical oscillator system with fixed time
periods. A green fluorescent protein was expressed within E. coli and the fluorescence was measured over
time. Three genes in a feedback loop were set up so that each gene repressed the next gene in the loop and
was repressed by the previous gene.

Figure 26.2: The repressilator genetic regulator network.

Figure 26.3: Fluorescence of a single cell with the repressilator circuit over a period of 10 hours.

The repressilator managed to produce periodic fluctuations in fluorescence. It served as one of the
first triumphs in synthetic biology. Other achievements in the past decade include programmed bacterial
population control, programmed pattern formation, artificial cell-cell communication in yeast, logic gate
creation by chemical complementation with transcription factors, and the complete synthesis, cloning, and
assembly of a bacterial genome.

392

Courtesy of EMBO and Nature Publishing Group. Used with permission.
Source: Andrianantoandro, Ernesto, et al. "Synthetic Biology: New Engineering
Rules for an Emerging Discipline." Molecular Systems Biology 2, no. 1 (2006).

Courtesy of Timreid on wikipedia; in the public domain.

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Elowitz, Michael B., and Stanislas Leibler. "A Synthetic Oscillatory
Network of Transcriptional Regulators." Nature 403, no. 6767 (2000): 335-8.

http://dx.doi.org/10.1038/msb4100073
http://dx.doi.org/10.1038/msb4100073
https://en.wikipedia.org/wiki/Repressilator#/media/File:Repressilator_GRN.png
http://dx.doi.org/10.1038/35002125
http://dx.doi.org/10.1038/35002125

6.047/6.878 Lecture 32: Synthetic Biology

26.2 Current Research Directions

Encoding functionality in DNA is one way synthetic biologists program cells. As the price of sequencing and
synthesis of DNA continues to decrease, coding DNA strands has become more feasible. In fact, the number
of base pairs that can be synthesized per US$ has increased exponentially, akin to Moore’s Law.

Figure 26.4: Cost of synthesizing a base pair versus US dollar

This has made the process of designing, building, and testing biological circuits much faster and cheaper.
One of the major research areas in synthetic biology is the creation of fast, automated synthesis of DNA
molecules and the creation of cells with the desired DNA sequence. The goal of creating a such a system
is speeding up the design and debugging of making a biological system so that synthetic biological systems
can be prototyped and tested in a quick, iterative process.

Synthetic biology also aims to develop abstract biological components that have standard and well-defined
behavior like a part an electrical engineer might order from a catalogue. To accomplish this, the Registry of
Standard Biological Parts (http://partsregistry.org) [4] was created in 2003 and currently contains over
7000 available parts for users. The research portion of creating such a registry includes the classification and
description of biological parts. The goal is to find parts that have desirable characteristics such as:

Orthogonality Regulators should not interfere with each other. They should be independent.

Composability Regulators can be fused to give composite function.

Connectivity Regulators can be chained together to allow cascades and feedback.

Homogeneity Regulators should obey very similar physics. This allows for predictability and efficiency.

Synthetic biology is still developing, and research can still be done by people with little background
in the field. The International Genetically Modified Machine (iGEM) Foundation (http://igem.org) [3]
created the iGEM competition where undergraduate and high school students compete to design and build
biological systems that operate within living cells. The student teams are given a kit of biological parts at
the beginning of the summer and work at their own institutions to create biological system. Some interesting
projects include:

393

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Carr, Peter A. and George M. Church. "Genome Engineering."
Nature Biotechnology 27, no. 12 (2009): 1151-62.

http://partsregistry.org
http://igem.org
http://dx.doi.org/10.1038/nbt.1590

6.047/6.878 Lecture 32: Synthetic Biology

Arsenic Biodetector The aim was to develop a bacterial biosensor that responds to a range of arsenic
concentrations and produces a change in pH that can be calibrated in relation to arsenic concentration.
The team’s goal was to help many under-developed countries, in particular Bangladesh, to detect
arsenic contamination in water. The proposed device was intended be more economical, portable and
easier to use in comparison with other detectors.

BactoBlood The UC Berkeley team worked to develop a cost-effective red blood cell substitute constructed
from engineered E. coli bacteria. The system is designed to safely transport oxygen in the bloodstream
without inducing sepsis, and to be stored for prolonged periods in a freeze-dried state.

E. Chromi The Cambridge team project strived to facilitate biosensor design and construction. They
designed and characterised two types of parts - Sensitivity Tuners and Colour Generators – E. coli
engineered to produce different pigments in response to different concentrations of an inducer. The
availability of these parts revolutionized the path of future biosensor design.

26.3 Further Reading

26.4 Tools and Techniques

Synthetic biology combines many fields, and the techniques used are not particular to synthetic biology.
Much like the process of solving other engineering problems, the process of creating a useful biological
system has designing, building, testing, and improving phases. Once a design or statement of the desired
properties of a biological system are created, the problem becomes finding the proper biological components
to build such a system.

BioCompiler [1] is a tool developed to allow the programming of biological circuits using a high-level
programming language. One can write programs in a language similar to LISP and compile their program
into a biological circuit. BioCompiler uses a process similar to that of a compiler for a programming language.
It uses a human-written program as a high-level description of the genetic circuit, then generates a formal
description of the program. From there, it looks up abstract genetic regulatory network pieces that can be
combined to create the genetic circuit and goes through its library of DNA parts to find appropriate sequences
to match the functionality of the abstract genetic regulatory network pieces. Assembly instructions can then
be generated for creating cells with the appropriate genetic regulatory network.

Figure 26.5: An example of a BioCompiler program and the process of actualizing it (credit to Ron Weiss)

394

Flow chart removed due to copyright restrictions.

6.047/6.878 Lecture 32: Synthetic Biology

BioBrick standard biologic parts (biobricks.org)are another tool used in synthetic biology. Similar to
the parts in the Registry of Standard Biological Parts, BioBrick standard biological parts are DNA sequences
of defined structure and function. Each BioBrick part is a DNA sequence held together in a circular plasmid.
At either end of the BioBrick contains a known and well-defined sequence with restriction enzymes that can
cut open the plasmid at known positions. This allows for the creation of larger BioBrick parts by chaining
together smaller ones. Some competitors in the iGEM competition used BioBrick systems to develop an E.
coli line that produced scents such as banana or mint.

Figure 26.6: An example of combining BioBrick Pieces taken from http://2006.igem.org/wiki/index.

php/Standard_Assembly

26.5 What Have We Learned?

Synthetic biology is an emerging disciplines that aims to create useful biological systems to solve problems
in energy, medicine, environment, and many more fields. Synthetic biologists attempt to use abstraction to
enable them to build more complex systems from simpler ones in a similar way to how a software engineer
or an electrical engineer would make a computer program or a complex circuit. The Registry of Standard
Biological Parts and BioBrick standard biological parts aim to characterize and standardize biological pieces
just as one would a transistor or logic gate to enable abstraction. Tools such as BioCompiler allow people to
describe a genetic circuit using a high-level language and actually build a genetic circuit with the described
functionality. Synthetic biology is still new, and research can be done by those unfamiliar with the field, as
demonstrated by the iGEM competition.

Bibliography

[1] J. Beal and J. Bachrach. Cells are plausible targets for high-level spatial languages, 2008.

[2] M. Elowitz and S. Leibler. A synthetic oscillatory network of transcriptional regulators. Nature, 403:335–
338, 2000.

[3] iGEM. igem: Synthetic biology based on standard parts, December 2012.

[4] Registry of Standard Biological Parts. Registry of standard biological parts, December 2012.

395

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://2006.igem.org/wiki/index.php/Standard_Assembly
http://2006.igem.org/wiki/index.php/Standard_Assembly
biobricks.org
http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 32: Synthetic Biology

396

Part IV

Phylogenomics and Population Genomics

397

CHAPTER

TWENTYSEVEN

MOLECULAR EVOLUTION AND PHYLOGENETICS

Scribed by Andrew Cooper, Stephanie Chang, and Stephen Serene (2012)
Akashnil Dutta (2011)
Albert Wang and Mashaal Sohail (2010)
Guo-Liang Chew and Sara Baldwin (2009)

Figures
27.1 Evolutionary History of Life . 398

27.2 Defining tree terminology. A tree of branching nodes is depicted with leaves at the top
and the root on the bottom. Time continues upward, toward the leaves. 398

27.3 Three types of trees. 399

27.4 The two steps of distance based phylogenetic reconstruction. 402

27.5 Markov chain accounting for back mutations . 403

27.6 The y axis denotes probability of observing the bases - A(red), others(green). x axis denotes
time. 403

27.7 Fraction of altered bases (x axis) versus the Jukes Cantor distance(y axis). Black line
denotes the curve, green is the trend line for small values of f while the red line denotes
the asymptotic boundary. 405

27.8 Distance models of varying levels of complexity(parameters). 406

27.9 Mapping from a tree to a distance matrix and vice versa 407

27.10Ultrametric distances. 408

27.11Additive distances. 408

27.12UPGMA / Hierarchical Clustering . 409

27.13UPGMA fails to find the correct tree in this case . 410

27.14An overview of the character based methods . 411

27.15Parsimony scoring: union and intersection . 412

27.16Parsimony traceback to find ancestral neucleotides . 413

27.17Parsimony scoring by dynamic programming . 413

27.18A tree to be scored using the peeling algorithm. n=4 . 415

27.19The recurrence . 415

27.20An unit step using Nearest Neighbor Interchange scheme 418

399

6.047/6.878 Lecture 20:Molecular Evolution and Phylogenetics

27.1 Introduction

Phylogenetics is the study of relationships among a set of objects having a common origin, based on the
knowledge of the individual traits of the objects. Such objects may be species, genes, or languages, and their
corresponding traits may be morphological characteristics, sequences, words etc. In all these examples the
objects under study change gradually with time and diverge from common origins to present day objects.

In Biology, phylogenetics is particularly relevant because all biological species happen to be descendants
of a single common ancestor which existed approximately 3.5 to 3.8 billion years ago. Throughout the
passage of time, genetic variation, isolation and selection have created the great variety of species that
we observe today. Not just speciation however, but extinction has also played a key role in shaping the
biosphere as we see today. Studying the ancestry between different species is fundamentally important to
biology because they shed much light in understanding different biological functions, genetic mechanisms as
well as the process of evolution itself.

Figure 27.1: Evolutionary History of Life

27.2 Basics of Phylogeny

27.2.1 Trees

A tree is a mathematical representation of relationships between objects. A general tree is built from nodes
and edges. Each node represents an object, and each edge represents a relationship between two nodes.
In the case of phylogenetic trees, we represent evolution using trees. In this case, each node represents a
divergence event between two ancestral lineages, the leaves denote the set of present objects and the root
represents the common ancestor.

Figure 27.2: Defining tree terminology. A tree of branching nodes is depicted with leaves at the top and the
root on the bottom. Time continues upward, toward the leaves.

400

6.047/6.878 Lecture 20:Molecular Evolution and Phylogenetics

However, sometimes more information is reflected in the branch lengths, such as time elapsed or the
amount of dissimilarity. According to these differences, biological phylogenetic trees may be classified into
three categories:

Cladogram: gives no meaning to branch lengths; only the sequence and topology of the branching matters.

Phylogram: Branch lengths are directly related to the amount of genetic change. The longer the branch
of a tree, the greater the amount of phylogenetic change that has taken place. The leaves in this tree
may not necessarily end on the same vertical line, due to different rates of mutation.

Chronogram (ultrametric tree): Branch lengths are directly related to time. The longer the branches
of a tree, the greater the amount of time that has passed. The leaves in this tree necessarily end on
the same vertical line (i.e. they are the same distance from the root), since they are all in the present
unless extinct species were included in the tree. Although there is a correlation between branch lengths
and genetic distance on a chronogram, they are not necessarily exactly proportional because evolution
rates / mutation rates are not constant. Some species evolve and mutate faster than others, and some
historical time periods foster faster rates of evolution than others.

Figure 27.3: Three types of trees.

27.2.2 Traits

A trait is any characteristic that an object or species possesses. In humans, an example of a trait may be
bipedalism (the ability to walk upright) or the opposable thumb. Another human trait may be a specific
DNA sequence that humans possess. The first examples of physical traits are called morphological traits,
while the latter DNA traits are called sequence traits. Each has its advantages and disadvantages to study.
All methods for tree-reconstruction rely on studying the occurrence of different traits in the given objects. In
traditional phylogenetics the morphological data of different species were used for this purpose. In modern
methods, genetic sequence data is used instead. Each has its advantages and disadvantages.

Morphological Traits: Arise from empirical evaluation of physical traits. This can be advantageous be-
cause physical characteristics are very easy to quantify and understand for everyone, scientists and

401

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 20:Molecular Evolution and Phylogenetics

children alike. The disadvantages to this approach are that we can only evaluate a small set of traits,
such as hair, nails, hoofs, teeth, etc. Further, these traits only allow us to build species. Finally, it is
much easier to be ”tricked” by convergent evolution. Species that diverged millions of years ago may
converge again on the few traits that are observable to scientists, giving a false representation of how
closely related the species are.

Sequence Traits: Are discovered by studying the genomes of different species. This approach can be
advantageous because it creates much more data and allows scientists to create gene trees in addition
to species trees. The primary difficulty with this approach is that DNA is only built from 4 bases, so
back mutations are frequent. In this approach, scientists must reconcile the signals of a large number
of ill-behaved traits as opposed to that of a small number of well-behaved traits in the traditional
approach. The rest of the chapter will focus principally on tree building from gene sequences.

Since this approach deals with comparing between pairs of genes, it is useful to understand the concept
of homology: A pair of genes are called paralogues if they diverged from a duplication event, and ortho-
logues if they diverged from a speciation event.

FAQ

Q: Would it be possible to use extinct species’ DNA sequences?

A: Current technologies only allow for usage of extant sequences. However, there have been a few
successes in using extinct species’ DNA. DNA from frozen mammoths have been collected and
are being sequences but due to DNA breaking down over time and contamination from the
environment, it is very hard to extract correct sequences.

27.2.3 Methods for Tree Reconstruction

Once we have found genetic data for a set of species, we are interested in learning how those species relate
to one another. Since we can, for the most part, only obtain DNA from living creatures, we must infer the
existence of ancestors of each species, and ultimately infer the existence of a common ancestor. This is a
challenging problem, because very limited data is available. The following sections will explore the modern
methods for inferring ancestry from sequence data. They can be classified into two approaches, distance
based methods and character based methods.

Distance based approaches take two steps to solve the problem, i.e. to quantify the amount of mutation
that separates each pair of sequences (which may or may not be proportional to the time since they
have been separated) and to fit the most likely tree according to the pair-wise distance matrix. The
second step is usually a direct algorithm, based on some assumtions, but may be more complex.

Charecter based approaches instead try to find the tree that best explains the observed sequences. As
opposed to direct reconstruction, these methods rely on tree proposal and scoring techniques to perform
a heuristic search over the space of trees.

402

6.047/6.878 Lecture 20:Molecular Evolution and Phylogenetics

Did You Know?
Occam’s Razor, as discussed in previous chapters, does not always provide the most accurate
hypothesis. In many cases during tree reconstruction, the simplest explanation is not the most
probable. For example, a set of possible ancestries may be possible, given some observed data. In
this case, the simplest ancestry may not be correct if a trait arose independently in two seperate
lineages. This issue will be considered in a later section.

403

6.047/6.878 Lecture 20:Molecular Evolution and Phylogenetics

27.3 Distance Based Methods

Figure 27.4: The two steps of distance based phylogenetic reconstruction.

The distance based models sequester the sequence data into pairwise distances. This step loses some infor-
mation, but sets up the platform for direct tree reconstruction. The two steps of this method are hereby
discussed in detail.

27.3.1 From alignment to distances

In order to understand how a distance-based model works, it is important to think about what distance
means when comparing two sequences. There are three main interpretations.

Nucleotide Divergence is the idea of measuring distance between two sequences based on the number of
places where nucleotides are not consistent. This assumes that evolution happens at a uniform rate
across the genome, and that a given nucleotide is just as likely to evolve into any of the other three
nucleotides. Although it has shortcomings, this is often a great way to think about it.

Transitions and Transversions This is similar to nucleotide divergence, but it recognizes that A-G and
T-C substitutions are most frequent. Therefore, it keeps two parameters, the probability of a transition
and the probability of a transversion.

Synonymous and non-synonymous substitutions This method keeps tracks of substitutions that af-
fect the coded amino-acid by assuming that substitutions that do not change the coded protein will
not be selected against, and will thus have a higher probability of occurring than those substitutions
which do change the coded amino acid.

The naive way to interpret the separation between two sequences may be simply the number of mis-
matches, as described by nucleotide divergence above. While this does provide us a distance metric (i.e.
d(a, b) + d(b, c) ≥ d(a, c)) this does not quite satisfy our requirements, beecause we want additive dis-
tances, i.e. those that satisfy d(a, b) + d(b, c) = d(a, c) for a path a→ b→ c of evolving sequence, because
the amount of mutations accumulated along a path in the tree should be the sum of that of its individual
components. However, the naive mismatch fraction do not always have this property, because this quantity
is bounded by 1, while the sum of individual components can easily exceed 1.

The key to resolving this paradox is back-mutations. When a large number of mutations accumulate on
a sequence, not all the mutations introduce new mismatches, some of them may occur on already mutated
base pair, resulting in the mismatch score remaining the same or even decreasing. For small mismatch-
scores however, this effect is statistically insignificant, because there are vastly more identical pairs than

404

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 20:Molecular Evolution and Phylogenetics

mismatching pairs. However, for sequences separated by longer evolutionary distance, we must correct for
this effect. The Jukes-Cantor model is one such simple markov model that takes this into account.

Jukes-Cantor distances

To illustrate this concept, consider a nucleotide in state ’A’ at time zero. At each time step, it has a
probability 0.7 of retaining its previous state and probability 0.1 of transitioning to each of the other three
states. The probability P (B|t) of observing state (base) B at time t essentially follows the recursion

P (B|t+ 1) = 0.7P (B|t) + 0.1
b

∑
P (b

=B

|t) = 0.1 + 0.6P (B|t)
6

.

Figure 27.5: Markov chain accounting for back mutations

If we plot P (B|t) versus t, we observe that the distribution starts off as concentrated at the state ’A’ and
gradually spreads over to the rest of the states, eventually going towards an equilibrium of equal probabilities.
This progression makes sense, intuitively. Over millions of years, species can evolve so dramatically that
they no longer resemble their ancestors. At that extreme, a given base location in the ancestor is just as
likely to have evolved to any of the four possible bases in that location over time.

time:- 0 1 2 3 4
A 1 0.7 0.52 0.412 0.3472
C 0 0.1 0.16 0.196 0.2196
G 0 0.1 0.16 0.196 0.2196
T 0 0.1 0.16 0.196 0.2196

Figure 27.6: The y axis denotes probability of observing the bases - A(red), others(green). x axis denotes
time.

405

6.047/6.878 Lecture 20:Molecular Evolution and Phylogenetics

The essence of the Jukes Cantor model is to backtrack t, the amount of time elapsed from the fraction
of altered bases. Conceptually, this is just inverting the x and y axis of the green curve. To model this
quantitatively, we consider the following matrix S(t) which denotes the respective probabilities P (x|y,∆t)
of observing base x given a starting state of base y in time ∆t.

P (A|A,∆t) P (A|G,∆t) · · · P (A|T,∆t) P (G|A,∆t)
S(∆t) =

· · · · · ·


 · · · · · ·

P (T |A,∆t) · · · · · · P (T |T∆T)


We can assume this is a stationary markov model, implying this matrix is multiplicativ


e, i.e.

S(t1 + t2) = S(t1)S(t2)

For a very short time ε, we can assume that there is no second order effect, i.e. there isn’t enough time for
two mutations to occur at the same nucleotide. So the probabilities of cross transitions are all proportional
to ε. Further, in Jukes Cantor model, we assume that all the transition rates are same from each nucleotide
to another nucleotide. Hence, for a short time ε

1− 3αε αε αε αε αε 1− 3αε αε αε
S(ε) =  αε αε 1− 3αε αε


αε αε αε 1− 3αε



At time t, the matrix is given by 
r(t) s(t) s(t) s(t) s(t) r(t) s(t) s(t)

S(t) =  s(t) s(t) r(t) s(t)


s(t) s(t) s(t) r(t)


From the equation S(t+ ε) = S(t)S(ε) we obtain



r(t+ ε) = r(t)(1− 3αε) + 3αεs(t) and s(t+ ε) = s(t)(1− αε) + αεr(t))

Which rearrange as the coupled system of differential equations

r′(t) = 3α(−r(t) + s(t)) and s′(t) = α(r(t)− s(t))

With the initial conditions r(0) = 1 and s(0) = 0. The solutions can be obtained as

1
r(t) =

4
(1 + 3e−4αt) and s(t) =

1
(1− e−4αt)

4

Now, in a given alignment, if we have the fraction f of the sites where the bases differ, we have:

3
f = 3s(t) =

4
(1− e−4αt)

implying

t ∝ − log

(
1− 4f

3

)
To agree asymptotically with f , we set the evolutionary distance d to be

3
d = −

4
log

(
1− 4f

3

)

406

6.047/6.878 Lecture 20:Molecular Evolution and Phylogenetics

Note that distance is approximately proportional to f for small values of f and asymptotically approaches
infinity when f → 0.75. Intuitively this happens because after a very long period of time, we would expect
the sequence to be completely random and that would imply about three-fourth of the bases mismatching
with original. But the uncertainty values of the Jukes-Cantor distance also becomes very large when f
approaches 0.75.

Figure 27.7: Fraction of altered bases (x axis) versus the Jukes Cantor distance(y axis).
Black line denotes the curve, green is the trend line for small values of f while the red line denotes the
asymptotic boundary.

407

6.047/6.878 Lecture 20:Molecular Evolution and Phylogenetics

Other Models

The Jukes Cantor model is the simplest model that gives us theoretically consistent additive distance model.
However, it is a one-parameter model that assumes that the mutations from each base to a different base
has the same chance. But, changes between AG or between TC are more likely than changes across them.
The first type of substitution is called transitions while the second type is called transversions. The Kimura
model has two parameters which take this into account. There are also many other modifications of this
distance model that takes into account the different rates of transitions and transversions etc. that are
depicted below.

Figure 27.8: Distance models of varying levels of complexity(parameters).

FAQ

Q: Can we use different parameters for different parts of the tree? To account for different mutation
rates?

A: Its possible, it is a current area of research.

408

6.047/6.878 Lecture 20:Molecular Evolution and Phylogenetics

27.3.2 Distances to Trees

If we have a weighted phylogenetic tree, we can find the total weight (length) of the shortest path between a
pair of leaves by summing up the individual branch lengths in the path. Considering all such pairs of leaves,
we have a distance matrix representing the data. In distance based methods, the problem is to reconstruct
the tree given this distance matrix.

Figure 27.9: Mapping from a tree to a distance matrix and vice versa

FAQ

Q: In Figure 27.9 The m and r sequence divergence metrics can have some overlap so distance be-
tween mouse and rat is not simply m+r. Wouldn’t that only be the case if there was no overlap?

A: If you model evolution correctly, then you would get evolutionary distance. It’s an inequality
rather than an equality and we agree that you can’t exactly infer that the given distance is
the precise distance. Therefore, the sequences’ distance between mouse and rat is probably
less than m + r because of overlap, convergent evolution, and transversions.

However, note that there is not a one-to-one correspondence between a distance matrix and a weighted
tree. Each tree does correspond to one distance matrix, but the opposite is not always true. A distance
matrix has to satisfy additional properties in order to correspond to some weighted tree. In fact, there are
two models that assume special constraints on the distance matrix:

Ultrametric: For all triplets (a, b, c) of leaves, two pairs among them have equal distance, and the third
distance is smaller; i.e. the triplet can be labelled i, j, k such that

dij ≤ dik = djk

Conceptually this is because the two leaves that are more closely related (say i, j) have diverged from
the thrid (k) at exactly the same time. and the time separation from the third should be equal, whereas
the separation between themselves should be smaller.

409

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 20:Molecular Evolution and Phylogenetics

Figure 27.10: Ultrametric distances.

Additive: Additive distance matrices satisfy the property that all quartet of leaves can be labelled i, j, k, l
such that

dij + dkl ≤ dik + djl = dil + djk

This is in fact true for all positive-weight trees. For any 4 leaves in a tree, there can be exactly one
topology, i.e.

Figure 27.11: Additive distances.

Then the above condition is term by term equivalent to

(a+ b) + (c+ d) ≤ (a+m+ c) + (b+m+ d) = (a+m+ d) + (b+m+ c)

. This equality corresponds to all pairwise distances that are possible from traversing this tree.

These types of redundant equalities must occur while mapping a tree to a distance matrix, because a tree
of n nodes has n − 1 parameters, one for each branch length, while a distance matrix has n2 parameters.
Hence, a tree is essentially a lower dimensional projection of a higher dimensional space. A corollary of this
observation is that not all distance matrices have a corresponding tree, but all trees map to unique distance
matrices.

However, real datasets do not exactly satisfy either ultrameric or additive constraints. This can be due
to noise (when our parameters for our evolutionary models are not precise), stochasticity and randomness
(due to small samples), fluctuations, different rates of mutations, gene conversions and horizontal transfer.
Because of this, we need tree-building algorithms that are able to handle noisy distance matrices.

Next, two algorithms that directly rely on these assumptions for tree reconstruction will be discussed.

410

6.047/6.878 Lecture 20:Molecular Evolution and Phylogenetics

UPGMA - Unweighted Pair Group Method with Arithmetic Mean

This is exactly same as the method of Hierarchical
clustering discussed in Lecture 13, Gene Expres-
sion Clustering. It forms clusters step by step, from
closely related nodes to ones that are further sepa-
rated. A branching node is formed for each succes-
sive level. The algorithm can be described properly
by the following steps:

Initialization:

1. Define one leaf i per sequence xi.

2. Place each leaf i at height 0.

3. Define Clusters Ci each having one leaf i.

Iteration:

1. Find the pairwise distances dij between
each pairs of clusters Ci, Cj by taking the
arithmetic mean of the distances between
their member sequences.

2. Find two clusters Ci, Cj such that dij is
minimized.

Figure 27.12: UPGMA / Hierarchical Clustering3. Let Ck = Ci ∪ Cj .
4. Define node k as parent of nodes i, j and

place it at height dij/2 above i, j.

5. Delete Ci, Cj .

Termination: When two clusters Ci, Cj remain,
place the root at height dij/2 as parent of the
nodes i, j

Ultrametrification of non-ultrametric trees

If a tree does not satisfy ultrametric conditions, we can attempt to find a set of alterations to an nxn
symmetric distance matrix that will make it ultrametric. This can be accomplished by constructing a
completely connected graph with weights given by the original distance matrix, finding a minimum spanning
tree (MST) of this graph, and then building a new distance matrix with elements D(i,j) given by the largest
weight on the unique path in the MST from i to j. A spanning tree of the fully connected graph simply
identifies a subset of edges that connects all nodes without creating any cycles, and a minimum spanning
tree is a spanning tree that minimizes the total sum of edge weights. An MST can be found using ie Prims
algorithm, and then used to correct a non-ultrametric tree.

Weaknesses of UPGMA

Although this method is guaranteed to find the correct tree if the distance matrix obeys the ultrameric
property, it turns out to be a inaccurate algorithm in practice. Apart from lack of robustness, it suffers from
the molecular clock assumption that the mutation rate over time is constant for all species. However, this is
not true as certain species such as rat and mice evolve much faster than others. Such differences in mutation

411

6.047/6.878 Lecture 20:Molecular Evolution and Phylogenetics

rate can lead to long branch attraction; nodes sharing a lower mutation rate but found in distinct lineages
may be merged, leaving those nodes with higher mutation rates (long branches) to appear together in the
tree. The following figure illustrates an example where UPGMA fails:

Figure 27.13: UPGMA fails to find the correct tree in this case

Neighbor Joining

The neighbor joining method is guaranteed to produce the correct tree if the distance matrix satisfies the
additive property. It may also produce a good tree when there is some noise in the data. The algorithm is
described below:

Finding the neighboring leaves: Let

1
Dij = dij − (ri + rj) where ra = i,

n

∑
d a

− ak,
2

k

∈ { j}

Here n is the number of nodes in the tree; hence, ri is the average distance of a node to the other nodes.
It can be proved that the above modification ensures that Dij is minimal only if i, j are neighbors. (A
proof can be found in page 189 of Durbin’s book).

Initialization: Define T to be the set of leaf nodes, one per sequence. Let L = T

Iteration:

1. Pick i, j such that Dij is minimized.

2. Define a new node k, and set dkm = 1 (dim + djmdij)2 ∀m ∈ L
3. Add k to T , with edges of lengths dik = 1 (dij + rirj)2

4. Remove i, j from L

5. Add k to L

Termination: When L consists of two nodes i, j, and the edge between them of length dij , add the root
node as parent of i and j.

Summary of Distance Methods Pros and Cons

The methods described above have been shown to capture many interesting features of phylogenetic
relationships, and are typically very fast in the algorithmic sense. However, some information is certainly

412

6.047/6.878 Lecture 20:Molecular Evolution and Phylogenetics

lost in the distance matrix, and typically only a single tree is proposed. Serious errors, such as long branch
attraction, can be made when basic assumptions about mutation rate etc. are violated. Finally, distance
methods make no inference about the history of a particular site, and thus do not make suggestions about
the ancestral state of a sequence.

27.4 Character-Based Methods

Figure 27.14: An overview of the character based methods

In character-based methods, the goal is to first create a valid algorithm for scoring the probability that a
given tree would produce the observed sequences at its leaves, then to search through the space of possible
trees for a tree that maximizes that probability. Good algorithms for tree scoring, and while searching
the space of trees is theoretically NP-Hard (Due to the large number of possible trees), tractable heuristic
search methods can in many cases find good trees. We’ll first discuss tree scoring algorithms, then search
techniques.

413

6.047/6.878 Lecture 20:Molecular Evolution and Phylogenetics

27.4.1 Scoring

There are two main algorithms for tree scoring. The first approach, which we will call parsimony reconstruc-
tion, is based on Occam’s razor, and scores a topology based on the minimum number of mutations it implies,
given the (known) sequences at the leaves. This method is simple, intuitive, and fast. The second approach
is a maximum likelihood method which scores trees by explicitly modeling the probability of observing the
sequences at the leaves given a tree topology.

Parsimony

Conceptually, this method is simple. It simply assigns a value of for each base pair at each ancestral node
such that the number of substitutions is minimized. The score is then just the sum over all base pairs of
that minimal number of mutations at each base pair. (Recall that the eventual goal is to find a tree that
minimizes that score.)

To reconstruct the ancestral sequences at internal nodes on the tree, the algorithm first scans up from
the (known) leaf sequences, assigning a set of bases at each internal node based on its children. Next, it
iterates down the tree, picking bases out of the allowed sets at each node, this time based on the node’s
parents. The following illustrates this algorithm in detail (note that there are 2N − 1 total nodes, indexed
from the root, such that the known leaf nodes have indices N − 1 through 2N − 1):

Figure 27.15: Parsimony scoring: union and intersection

414

6.047/6.878 Lecture 20:Molecular Evolution and Phylogenetics

Figure 27.16: Parsimony traceback to find ancestral neucleotides

Figure 27.17: Parsimony scoring by dynamic programming

As we mentioned before, this method is simple and fast. However, this simplicity can distort the scores it
assigns. For one thing, the algorithm presented here assumes that a given base pair undergoes a substitution
along at most one branch from a given node, which may lead it to ignore highly probably internal sequences
that violate this assumption. Furthermore, this method does not explicitly model the time represented along
each edge, and thus cannot account for the increased chance of a substitution along edges that represent a
long temporal duration, or the possibility of different mutation rates across the tree. Maximum likelihood
methods largely resolve these shortcomings, and are thus more commonly used for tree scoring.

415

6.047/6.878 Lecture 20:Molecular Evolution and Phylogenetics

Maximum Likelihood - Peeling Algorithm

As with the general Maximum likelihood methods, this algorithm scores a tree according to the (log) joint
probability of observing the data and the given tree, i.e. P (D,T). The peeling algorithm again considers
individual base pairs and assumes that all sites evolve independently. As in the parsimony method, this
algorithm considers all base pairs independently: it calculates the probability of observing the given charac-
ters at each base pair in the leaf nodes, given the tree, a set of branch lengths, and the maximum likelihood
assignment of the internal sequence, then simply multiplies this probabilities over all base pairs to get the
total probability of observing the tree. Note that the explicit modeling of branch lengths is a difference from
the previous approach.

416

6.047/6.878 Lecture 20:Molecular Evolution and Phylogenetics

Figure 27.18: A tree to be scored using the peeling algorithm. n=4

Here each node has a character xi and ti is the corresponding branch length from its parent. Note that
we already know the values x1, x2 · · ·xn, so they are constants, but xn+1, · · ·x2n 1 are unknown characters−
at ancestral nodes which are variables to which we will assign maximum likelihood values. (Also note that we
have adopted a leaves-to-root indexing scheme for the nodes, the opposite of the scheme we used before.) We
want to compute P (x1x2 · · ·xn|T). For this we sum over all possible combinations of values at the ancestral
nodes. this is called marginalization. In this particular example

P (x1x2x3x4|T) =
∑
x5

∑
x6

∑
P (x1x2 x7 T)

x7

· · · |

There are 4n−1 terms in here, but we can use the following factorization trick:

=
∑∑∑

P (x1|x5, t1)P (x2|x5, t2)P (x3|x6, t3)P (x4|x6, t4)P (x5|x7, t5)P (x6|x7, t6)P (x7)
x5 x6 x7

Here we assume that each branch evolves independently. And the probability P (b|c, t) denotes the
probability of base c mutating to base b given time t, which is essentially obtained from the Jukes Cantor
model or some more advanced model discussed earlier. Next we can move the factors that are independent
of the summation variable outside the summation. That gives:

=
∑[

P (x7)

(∑
P (x5|x7, t5)P (x1|x5, t1)P (x2|x5, t2)

)(∑
P (x6|x7, t6)P (x3

x7 x5 x6

|x6, t3)P (x4|x6, t4)

)]

Let Ti be the subtree below i. In this case, our 2n−1×4 dynamic program-
ming array computes L[i, b], the probability P (Ti|xi = b) of observing Ti, if
node i contains base b. Then we want to compute the probability of observing
T = T2n 1, which is− ∑

P (x2n 1 = b)L[2n ,]
b

− 1 b−

Note that for each ancestral node i and its childer j, k, we have

L[i, b] =

(∑
P (c|b, tj)L[j, c] P c]

c

)(∑
(c

c

|b, tk)L[k,

)

Subject to the initial conditions for the leaf nodes, i.e. for i ≤ n:

L[i, b] = 1 if xi = b and 0 otherwise
Figure 27.19: The recur-
rence417

6.047/6.878 Lecture 20:Molecular Evolution and Phylogenetics

418

6.047/6.878 Lecture 20:Molecular Evolution and Phylogenetics

Note that we still do not have the values P (x2n−1 = b). It is usually assigned
equally or from some prior distribution, but it does not affect the results greatly.
The final step is of course to multiply all the probabilities for individual sites
to obtain the probability of observing the set of entire sequences. In addition,
once we have assigned the maximum likelihood values for each internal node given the tree structure and the
set of branch lengths, we can multiply the resulting score by some prior probabilities of the tree structure
and the set of branch lengths, which are often generated using explicit modeling of evolutionary processes,
such as the Yule process or birth-death models like the Moran process. The result of this final multiplication
is called the a posteriori probability, using the language of Bayesian inference. The overall complexity of
this algorithm is O(nmk2) where n is the number of leaves (taxa), m is the sequence length, and k is the
number of characters.

There are addvantages and disadvantages of this algorithm. Such as

Advantages:

1. Inherently statistical and evolutionary model-based.

2. Usually the most consistent of the methods available.

3. Used for both character and rate analyses

4. Can be used to infer the sequences of the extinct ancestors.

5. Account for branch-length effects in unbalanced trees.

6. Nucleotide or amino acid sequences, other types of data.

Disadvantages:

1. Not as simple and intuitive as many other methods.

2. Computationally intense Limited by, number of taxa and sequence length).

3. Like parsimony, can be fooled by high levels of homoplasy.

4. Violations of model assumptions can lead to incorrect trees.

27.4.2 Search

A comprehensive search over the space of all trees would be extremely costly. The number of full rooted
trees with n+ 1 leaves is the n-th catalan number

1
Cn =

n+ 1

(
2n

n

)
≈ 4n

n3/2
√
π

Moreover, we must compute the maximum likelihood set of branch lengths for each of these trees. Thus, it is
an NP-Hard problem to maximize the score absolutely for all trees. Fortunately, heuristic search algorithms
can generally identify good solutions in the tree space. The general framework for such search algorithms is
as follows:

Inititalization: Take some tree as the base of iteration (randomly or according to some other prior, or
from the distance based direct algorithms).

Proposal: Propose a new tree by randomly modifying the current tree slightly.

Score: Score the new proposal according to the methods described above.

419

6.047/6.878 Lecture 20:Molecular Evolution and Phylogenetics

Select: Randomly select the new tree or the old tree (corresponding probabilities according to the
score(likelihood) ratio.

Iterate: Repeat to proposal step unless some termination criteria is met (some threshold score or number
of steps reached.

the basic idea here is the heuristic assumption that the scores of closely related trees are similar, so that
good solutions may be obtained by successive local optimization, which is expected to converge towards a
overall good solution.

Tree Proposal

One method for modifying trees is the Nearest Neighbor Exchange (NNI), illustrated below.

Figure 27.20: An unit step using Nearest Neighbor Interchange scheme

Another common method, not described here, is Tree Bisection and Join (TBJ). The important criteria
for such proposal rules is that:

(a) The tree space should be connected, i.e. any pair of trees should be obtainable from each other by
successive proposals.

(b) An individual new proposal should be sufficiently close to the original. So that it is more likely to be
a good solution by virtue of the proximity to an already discovered good solution. If individual steps
are too big, the algorithm may move away from an already discovered solution (also depends on the
selection step). In particular, note that the measure of similarity by which the measure these step sizes
is precisely the difference in the likelihood scores assigned to the two trees.

Selection

Choosing whether or not to adopt a given proposal, like the process of generating the proposal itself, is
inherently heuristic and varies. A general rules of thumb is:

1. If the new one has a better score, always accept it.

2. If it has a worse score, there should be some probability of selecting it, otherwise the algorithm will
soon fixate in a local minima, ignoring better alternatives a little far away.

3. There should not be too much probability of selecting an worse new proposal, otherwise, it risks
rejecting a known good solution.

It is the trade-off between the steps 2 and 3 that determines a good selection rule. Metropolis Hastings
is a Markov Chain Monte Carlo Method (MCMC) that defines specific rules for exploring the state space
in a way that makes it a sample from the posterior distribution. These algorithms work somewhat well in
practice, but there is no guarantee for finding the appropriate tree. So a method known as bootstrapping
is used, which is basically running the algorithm over and over using subsets of the base pairs in the leaf
sequences,. then favoring global trees that match the topologies generated by using only these subsequences.

420

6.047/6.878 Lecture 20:Molecular Evolution and Phylogenetics

27.5 Possible Theoretical and Practical Issues with Discussed Ap-
proach

A special point must be made about distances. Since distances are typically calculated between aligned gene
sequences, most current tree reconstruction methods rely on heavily conserved genes, as non-conserved genes
would not give information on species without those genes. This causes the ignoring of otherwise useful data.
Therefore, there are some algorithms that try to take into account less conserved genes in reconstructing
trees but these algorithms tend to take a long time due to the NP-Hard nature of reconstructing trees.

Additionally, aligned sequences are still not explicit in regards to the events that created them. That is,
combinations of speciation, duplication, loss, and horizontal gene transfer (hgt) events are easy to mix up
because only current DNA sequences are available. (see [11] for a commentary on such theoretical issues)
A duplication followed by a loss would be very hard to detect. Additionally, a duplication followed by
a speciation could look like an HGT event. Even the probabilities of events happening is still contested,
especially horizontal gene transfer events.

Another issue is that often multiple marker sequences are concatenated and the concatenated sequence is
used to calculate distance and create trees. However, this approach assumes that all the concatenated genes
had the same history and there is debate over if this is a valid approach given that events such as hgt and
duplications as described above could have occurred differently for different genes. [8] is an article showing
how different phylogenetic relationships were found depending on if the tree was created using multiple genes
concatenated together or if it was created using each of the individual genes. Conversely, additional [4] claims
that while hgt is prevalent, orthologs used for phylogenetic reconstruction are consistent with a single tree
of life. These two issues indicate that there is clearly debate in the field on a non arbitrary way to define
species and to infer phylogenetic relationships to recreate the tree of life.

27.6 Towards final project

27.6.1 Project Ideas

1. Creating better distance models such as taking into account duplicate genes or loss of genes. It may also
be possible to analyze sequences for peptide coding regions and calculate distances based on peptide
chains too.

2. Creating a faster/more accurate search algorithm for turning distances into trees.

3. Analyze sequences to calculate probabilities of speciation, duplication, loss, and horizontal gene transfer
events.

4. Extending an algorithm that looks for HGTs to look for extinct species. A possible use for HGTs is
that if a program were to infer HGTs between different times, it could mean that there was a speciation
where one branch is now extinct (or not yet discovered) and that branch had caused an HGT to the
other extant branch.

27.6.2 Project Datasets

1. 1000 Genomes Project http://www.1000genomes.org/

2. Microbes Online http://microbesonline.org/

421

http://www.1000genomes.org/
http://microbesonline.org/

6.047/6.878 Lecture 20:Molecular Evolution and Phylogenetics

27.7 What Have We Learned?

In this chapter, we have learnt different methods and approaches for reconstructing Phylogenetic trees from
sequence data. In the next chapter, its application in gene trees and species trees and the relationship
between those two will be discussed, as well as modelling phylogenies among populations within a species
and between closely related species.

Bibliography

[1] 1000 genomes project.

[2] et al Ciccarelli, Francesca. Toward automatic reconstruction of a highly resolved tree of life. Science,
311, 2006.

[3] Tal Dagan and William Martin. The tree of one percent. Genome Biology, Nov 2006.

[4] Ochman Howard Daubin Vincent, Moran Nancy A. Phylogenetics and the cohesion of bacterial genomes.
Science, 301, 2003.

[5] A.J. Enright, S. Van Dongen, and C. A. Ouzounis. An efficient algorithm for large-scale detection of
protein familes. Nucleic Acids Research, 30(7):1575–1584, Apr 2002.

[6] Stephanie Guindon and Olivier Gascuel. A simple, fast, and accurate algorithm to estimate large
phylogenies by maximum likelihood. Systems Biology, 52(5):696–704, 2003.

[7] Sanderson MJ. r8s: Inferring absolute rates of molecular evolution and divergence times in the absence
of a molecular clock. Bioinformatics, 19(2):301–302, Jan 2003.

[8] R. Thane Papke, Olga Zhaxybayeva, Edward J Fiel, Katrin Sommerfeld, Denise Muise, and W. Ford
Doolittle. Searching for species in haloarchaea. PNAS, 104(35):14092–14097, 2007.

[9] Pere Puigbo, Yuri I Wolf, and Eugene V Koonin. Search for a ’tree of life’ in the thicket of the
phylogenetic forest. Journal of Biology, 8(59), July 2009.

[10] Sagi Snir, Yuri I Wolf, and Eugene V Koonin. Universal pacemaker of genome evolution. PLoS compu-
tational biology, 8(11), 2012.

[11] Douglas L Theobald. A formal test of the theory of universal common ancestry. Nature, 465:219–222,
2010.

422

CHAPTER

TWENTYEIGHT

PHYLOGENOMICS II

Guest Lecture by
Matt Rasmussen
2012: Updated by Orit Giguzinsky and Ethan Sherbondy

Figures
28.1 Species Tree . 422

28.2 Gene Tree . 423

28.3 Gene Tree Inside a Species Tree . 423

28.4 Gene Family Evolution: Gene Trees and Species Trees . 424

28.5 Mapping Diagram . 424

28.6 Nesting Diagram . 424

28.7 Maximum Parsimony Reconciliation (MPR) . 425

28.8 Maximum Parsimony Reconciliation Recursive Algorithm 425

28.9 Reconciliation Example 1, simple mapping case . 426

28.10Reconciliation Example 2, parsimonious reconciliation for complex case 426

28.11Reconciliation Example 3, non parsimonious reconciliation for complex case 427

28.12Reconciliation Example 4, invalid Reconciliation . 427

28.13Species Tree Reconstruction . 428

28.14Using species trees to improve gene tree reconstruction. 429

28.15We can develop a model for what kind of branch lengths we can expect. We can use
conserved gene order to tell orthologs and build trees. 429

28.16Branch length can be modeled as two different rate components: gene specific and species
specific. 430

28.17The Wright-Fisher model . 431

28.18Many iterations of Wright-Fisher yielding a lineage tree 431

28.19The coalescent model. 432

28.20Geometric probability distribution for coalescent events in k lineages. 433

28.21Multispecies Coalescent Model. 434

28.22MPR reconciliation of genes and species tree. 435

28.23Inaccuracies in gene tree. 435

423

6.047/6.878 Lecture 21: Phylogenomics II

28.24Recombination. 437

28.1 Introduction

In the previous chapter, we covered techniques for reasoning about evolution in terms of trees of descent. The
algorithms we covered for tree-building, UPGMA and neighbor-joining, assumed that we were comparing
fully aligned sections of sequences.

In this section, we present additional models for using phylogenetic trees in different contexts. Here we
clarify the differences between species and gene trees. We then cover a framework called reconciliation which
lets us effectively combine the two by mapping gene trees onto species trees. This mapping gives us a means
of inferring gene duplication and loss events.

We will also present a phylogenetic perspective for reasoning about population genetics. Since population
genetics deals with relatively recent mutation events, we offer the Wright-Fisher model as a tool for repre-
senting changes in whole populations. Unfortunately, when dealing with real-world data, we usually are only
able to sequence genes from the current living descendants of a group. As a remedy to this shortcoming, we
cover the Coalescent model, which you can think of as a time-reversed Wright-Fisher analog.

By using coalescence, we gain a new means for estimating divergence times and population sizes across
multiple species. At the end of the chapter, we touch briefly on the challenges of using trees to model
recombination events and summarize recent work in the field along with frontiers open for exploration.

28.2 Inferring Orthologs/Paralogs, Gene Duplication and Loss

There are two commonly used trees, Species tree and Gene tree. This section explains how these trees can
be used and how to fit a gene tree inside a species tree (reconciliation).

28.2.1 Species Tree

Species trees that show how different species evolved from one another. These trees are created using
morphological characters, fossil evidence, etc. The leaves of each tree are labeled as species and the rest of
the tree shows how these species are related. An example of a species tree is shown in Figure 28.1. Note:
in lecture it is mentioned that a species can be thought of as a ”bag of genes”, that is to say the group of
common genes among members of a species.

424

6.047/6.878 Lecture 21: Phylogenomics II

Figure 28.1: Species Tree

28.2.2 Gene Tree

Gene trees are trees that look at specific genes in different species. The leaves of gene trees are labeled
with gene sequences or gene ids associated with specific sequences. Figure 28.2 shows an example of a gene
tree that has 4 genes (leaves). The sequences associated with each gene are presented on the right side of
Figure 28.2.

Figure 28.2: Gene Tree

28.2.3 Gene Family Evolution

Gene trees evolve inside a species tree. An example of a gene tree contained in a species tree is shown in
Figure 28.3 below.

Figure 28.3: Gene Tree Inside a Species Tree

The next sub section explains how we can fit gene trees inside a species trees using Reconciliation.

425

6.047/6.878 Lecture 21: Phylogenomics II

28.2.4 Reconciliation

Reconciliation is an algorithm that helps compare gene trees to genome trees by fitting a gene tree fits inside
a species tree. This is done by by mapping the vertices in the gene tree to vertices in the species tree. This
sub section will focus on Reconciliation, related definitions, algorithms (Maximum Parsimony Reconciliation
and SPIDIR) and examples.

Definitions

Two genes are orthologs if their most recent common ancestor (MRCA) is a speciation (splitting into
different species).
Paralogs are genes whose MRCA is a duplication.
Figure 28.4 below illustrates how these types of genes can be represented in a gene tree. The tree below has
4 speciation nodes, one duplication and one loss.

Figure 28.4: Gene Family Evolution: Gene Trees and Species Trees

A mapping diagram is a diagram that shows the node mapping from the gene tree to the species tree.
Figure 28.5 shows an example of a mapping diagram.

Figure 28.5: Mapping Diagram

A nesting diagram shows how the gene tree can be nested inside the species tree. For every mapping
diagram there is a nesting diagram. Figure 28.6 shows an example of a possible nesting diagram for the
mapping diagram in Figure 28.5.

Figure 28.6: Nesting Diagram

426

6.047/6.878 Lecture 21: Phylogenomics II

Maximum Parsimony Reconciliation (MPR) Algorithm

MPR is an algorithm that fits a gene tree into a species tree while minimizing the number of duplications
and deletions.

Figure 28.7: Maximum Parsimony Reconciliation (MPR)

Given a gene tree and a species tree, the algorithm finds the reconciliation that minimizes the number of
duplications and deletions. Figure 28.7 above shows an example of a possible mapping from a gene tree to a
species tree. Figure 28.8 presents the pseudocode for the MPR algorithm. The base case involves matching
the leaves of the gene tree to the leaves of the species tree; the algorithm then progresses up the vertices of
the gene tree, drawing a relationship between the MRCA of all leaves within a given vertex’s sub-tree and
the corresponding MRCA vertex in the species tree. In the pseudocode, I(G) represents the species tree and
L(G) represents the gene tree.

Figure 28.8: Maximum Parsimony Reconciliation Recursive Algorithm

We map the arrows low as possible, since lower mapping usually results in fewer events. However, we cannot
map too low. Mapping too low means that we’re violating the constraint that the MRCA of a given node is
at least as high as the MRCA of its children. We map as low as we can without violating the descendent-
ancestor relationships. The algorithm goes recursively from bottom up, starting from the leaves. Since we
sample genes from known species to build the gene tree, there’s a direct mapping between the leaves of the
gene tree and the leaves of the species tree. To map the ancestors, for each node (going recursively up the
tree) we look at the right child and left child and take the least common ancestor (LCA) of the species that
they map to. If a node maps to its right or left child, we know there is a duplication. An expected branch
that does not exist indicates a loss.

427

6.047/6.878 Lecture 21: Phylogenomics II

Reconciliation Examples

Figure 28.9: Reconciliation Example 1, simple mapping case

In Figure 28.9, the nodes can be mapped straight across, since there are no duplications or losses.

Figure 28.10: Reconciliation Example 2, parsimonious reconciliation for complex case

In Figure 28.10, we see a parsimonious (minimum number of losses and duplications) reconciliation for a
case in which nodes from the gene tree cannot be mapped straight across. This is a result of the swapped
locations of h1 and d1 in the gene tree; the least common ancestor for d1, m1, and r1 is now the root vertex
of the species tree.

428

6.047/6.878 Lecture 21: Phylogenomics II

Figure 28.11: Reconciliation Example 3, non parsimonious reconciliation for complex case

Figure 28.11 shows a non-parsimonious reconciliation . The parsimonious mapping for the same trees is
shown in Figure 28.9.

Figure 28.12: Reconciliation Example 4, invalid Reconciliation

Figure 28.12 shows an invalid reconciliation. This reconciliation is invalid since it does not respect descendent-
ancestor relationships. In order for this reconciliation to be possible, the descendent would have to travel
back in time and be created before its ancestor. Clearly, such a scenario would be impossible. A valid
reconciliation must satisfy the following: If a < b in G, then R[a] ≤ R[b] in S.

28.2.5 Interpreting Reconciliation Examples

Gene trees, when reconciled with species trees, offer significant insight into evolutionary events (namely
duplications and losses). Duplications describe the same gene being found at a separate loci - m2 or r2,
in this situation - and is a major mechanism for creating new genes and functions. These evolutionary
consequences fall into three categories: nonfunctionalization, neofunctionalization and subfunctionalization.
Nonfunctionalization is quite common and causes one of the copies, unsurprisingly, to simply not function.
Neofunctionalization is when one of the copies develops an entirely new function. Subfunctionalization is
when the copies retain different parts (dividing up the labor, in a way), and together, perform the same
function.

429

6.047/6.878 Lecture 21: Phylogenomics II

In Figure 4, we see that a duplication event occurred before the divergence of mice and rats as species.
This is why we see similar genes at both m1 and m2, which represent two separate loci. d2 and h2 are not
included in the graph because at the gene being considered is not present at those loci (since no duplication
event occurred), whereas it is at both m2 and r2.

If the duplication event were to have occurred one level higher in Figure 4, without seeing a corresponding
h2 in the gene tree, this would imply a loss within the h branch of the species tree.

28.3 Reconstruction

In the previous section we learned how to compare and combine gene trees and species trees. In this section,
we will use this information to reconstruct gene trees and species trees.

28.3.1 Species Tree Reconstruction

In the past, it was really hard to identify a marker gene that would give insight into the differentiation
for a specific species. As sequencing improved, we started having lots of sequencing data on various genes.
Based on different sets of loci, people built different trees, which were highly dependent on the set of loci
chosen. Possible reasons why trees differ include noise (from statistical estimate errors and noise), hidden
duplications and losses, and allele sorting in a population.

Species Tree Reconstruction Problem

Figure 28.13: Species Tree Reconstruction

Given lots of different gene trees that disagree, our goal is to make them into one species tree (as shown
in Figure 28.13. There are lots of different algorithms that reconstruct species trees. These algorithms
include Supermatrix methods (Rokas 2003, Ciccareli 2006), Supertree methods (Creevey & McInerney 2005),
Minimizing Deep Coalescence (Maddison & Knowles 2006) and Modeling coalescence (Liu & Pearl 2007).

One way to do this, which is mostly effective for noisy data, is to pull more data together in order to
increase accuracy. This is done by concatenating gene alignments into a super-matrix.

Another method involves building a tree for each one and using a consensus method to summarize these

430

6.047/6.878 Lecture 21: Phylogenomics II

trees. Then we identify analogous branches across the a lot of trees and build a species tree that has the
branches that occur most frequently.

There is another way to reconstruct a species tree, which is effective in case the gene trees disagree
because of duplications and losses. The goal is to find the species tree that applies the fewest duplications.
We build all the gene trees and then propose a species tree. Next, we use reconciliation to determine the
number of events each gene tree combined with the proposed species tree implies. Then, we propose other
species trees and move branches around. Wrong species trees tend to have lots of events that did not happen.
The correct tree should have the fewest number of events.

28.3.2 Improving Gene Tree Reconstruction and Learning Across Gene Trees

We can use methods similar to those described above to build better gene trees. This can be done by using
information from a species tree to study a gene tree of interest. For example, species trees can be used to
determine when losses and duplications occurred. The idea is that we can use the fact that species trees are
often built from the entire genome, to obtain more information about related gene trees. We can use both
the branch length and the number of events to do this.

Figure 28.14: Using species trees to improve gene tree reconstruction.

If we know the species tree, we can develop a model for what kind of branch lengths we can expect. We
can use conserved gene order to tell orthologs and build trees.

Figure 28.15: We can develop a model for what kind of branch lengths we can expect. We can use conserved
gene order to tell orthologs and build trees.

431

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 21: Phylogenomics II

When a gene is fast evolving in one species, it is fast evolving in all species. We can model a branch
length as two different rate components. One is gene specific (present across all species) and the other is
species specific, which is customized to a specific species.

Figure 28.16: Branch length can be modeled as two different rate components: gene specific and species
specific.

This method greatly improves reconstruction accuracy.

28.4 Modeling Population and Allele Frequencies

With the advent of next-gen sequencing, it is becoming economical to sequence the genomes of many indi-
viduals within a population. In order to make sense of how alleles spread through a population, it’s helpful
to have a model to compare data against. The Wright-Fisher reproduction model has filled this role for
the past 70 years.

28.4.1 The Wright-Fisher Model

Like HMMs, Wright-Fisher is a Markov process: at each step, the system randomly progresses, and the
current state of the system depends only on the previous state. In this case, state transitions represent
reproduction. By modeling the transmission of chromosomes to offspring, we can study genetic drift.

The model makes a number of simplifying assumptions:

1. Population size, N, is constant at each generation.

2. Only members of the same generation reproduce (no overlap).

3. Reproduction occurs at random.

4. The gene being modeled only has 2 alleles.

5. Genes undergo neutral selection.

Note that Wright-Fisher is not an appropriate choice if you’re trying to model the change in frequency
of a gene that is positively or negatively selected for. If we use Wright-Fisher to model the chromosomes of
diploid individuals, the population size of the model becomes 2N.

432

6.047/6.878 Lecture 21: Phylogenomics II

Figure 28.17: The Wright-Fisher model

In English, here’s how Wright-Fisher works:

At every generation, for each child, we randomly select from the parents (with replaccement). The allele
of the child becomes that of the randomly selected parent.

We repeat this process for many generation, with the children serving as the new parents, ignoring the
ordering of chromosomes.

It really is that simple. To determine the probability of k copies of an allele existing in the child generation
when it had a frequency of p in the parent generation, we can use this formula:

(
2N
)
pkq2N−k (28.1)

k

Here, q = (1− p). It is the frequency of non-p alleles in the parent generation.

© Sinauer Associates, Inc. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Figure 28.18: Many iterations of Wright-Fisher yielding a lineage tree

Now we can begin to explore such questions as: how probable is it and how many generations is it

433

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 21: Phylogenomics II

expected to take for a given allele to become fixed, meaning the allele is present in every member of the
population?

The expected time (in generations) for fixation, given the assumptions made by Wright-Fisher, is pro-
portionate to 4NE , where NE is the effective population size.

Again, it’s important to keep in mind the limitations of this model and ask if it actually makes sense for
the system you’re trying to represent. Consider how you could tweak the proposed model to account for a
selection coefficient ranging between -1 (lethal negative selection) and 1 (strong positive selection).

28.4.2 The Coalescent Model

The problem with the Wright-Fisher model is that it assumes you know the allele frequencies of the ancentral
generation. When dealing with the genomes of present species, these quantities are unknown. The Coalescent
Model solves this conundrum by thinking retrospectively. That is to say: we start with the alleles of the
current generation, and work our way backwards in time. The basic Coalescence Model makes the same
assumptions as Wright-Fisher. At each generation, we ask: what is the probability of the two identical
alleles coalescing, or sharing a parent, in the previous generation.

We can pose the probability of a coalescence event occuring in the previous generation as the probability
of coalescence not occuring in any of the t − 1 generations prior to the last one, times the probability of it
occuring in the previous (the t-th) generation. This is equivalent to the expression:

1
Pc(t) =

(
1−

2Ne

)t−1(
1

(28.2)
2Ne

)

Where Ne is the effective population size.

Figure 28.19: The coalescent model.

By approximating this geometric distribution as an exponential one: Pc(t) = 1
2Ne

e−(t−1
2Ne

), we can deter-
mine the expected number of generations back until coalescence, which turns out to be 2Ne, with a standard
deviation of 2Ne.

434

6.047/6.878 Lecture 21: Phylogenomics II

To ask about the coalescence of multiple lineages at a given generation, we must, as in Wright-Fisher,
use a binomial distribution. The probability of k lineages coalescing for the first time at generation t is:

1
P (Tk = t)

(
1−

(
k

=
2

)
2N

)t−1(
k

2

)
1

(28.3)
2N

And again, this can be approximated with an exponential distribution for sufficiently large k. The
individual at which two lineages converge is referred to as the Most Recent Common Ancestor. By
continually moving backwards until all ancestors coalesce, we end up with a new kind of tree! And by
comparing the tree resulting from coalescence with a gene tree we’ve constructed, discrepancies between the
two may signal that certain assumptions of the Coalescent Model have been violated. Namely, selection may
be occuring.

Figure 28.20: Geometric probability distribution for coalescent events in k lineages.

435

6.047/6.878 Lecture 21: Phylogenomics II

28.4.3 The Multispecies Coalescent Model

Figure 28.21: Multispecies Coalescent Model.

We can take this idea once step further and track coalescence events across multiple species. Here, each
genome of an individual species is treated as a lineage.

Note that there is a lag time between the separation of two populations and the time at which two gene
lineages coalesce into a common ancestor. Also note how the rate of coalescence slows down as N gets bigger
and for short branches.

In the image above, deep coalescence is depicted in light blue for three lineages. The species and gene
trees here are incongruent since C and D are sisters in gene tree but not the species tree.

There is a 2
3 chance that incongruence will occur because once we get to the light blue section, Wright-

Fisher is memoryless and there is only 1 chance that it will be congruent. The effect of incongruence is3
called Incomplete Lineage Sorting. By measuring the frequency at which ILS occurs, we gain insight
into unusually large populations or unsually short branch lengths within the species tree.

You can build a maximum parsimony species tree based on the notion of minimizing the number of ILS
events rather than minimizing implied duplication/loss events as covered previously. It is even possible to
combine these two methods to, ideally, create a phylogeny that is more accurate than either of them would
be individually.

28.5 SPIDIR

28.5.1 Background

As presented in the supplementary information for SPIDIR, a gene family is the set of genes that are
descendents of a single gene in the most recent common ancestor (MRCA) of all species under consideration.
Furthermore, genetic sequences undergo evolution at multiple scales, namely at the level of base pairs, and
at the level of genes. In the context of this lecture, two genes are orthologs if their MRCA is a speciation
event; two genes are paralogs if their MRCA is a duplication event.

436

Courtesy of Elsevier, Incorporate. Used with permission.
Source: Degnan, James H., and Noah A. Rosenberg. "Gene Tree Discordance, Phylogenetic
Inference and the Multispecies Coalescent." Trends in Ecology & Evolution 24, no. 6 (2009): 332-40.

http://www.sciencedirect.com
http://dx.doi.org/10.1016/j.tree.2009.01.009
http://dx.doi.org/10.1016/j.tree.2009.01.009

6.047/6.878 Lecture 21: Phylogenomics II

In the genomic era, the species of a modern genes is often known; ancestral genes can be inferred by
reconciling gene- and species-trees. A reconciliation maps every gene-tree node to a species-tree node. A
common technique is to perform Maximum Parsimony Reconciliation (MPR), which finds the reconciliation
R implying the fewest number of duplications or losses using the recursion over inner nodes v of a gene tree
G. MPR fist maps each leaf of the gene tree to the corresponding species leaf of the species tree. Then the
internal nodes of G are mapped recursively:

R(v) = MRCA(R(right(v)), R(left(v)))

If a speciation event and its ancestral node are mapped to the same node on the species tree. Then the
ancestral node must be an duplication event.

Using MPR, the accuracy of the gene tree is crucial. Suboptimal gene trees may lead to an excess of loss
and duplication events. For example, if just one branch is misplaced (as in ??) then reconciliation infers 3
losses and 1 duplication event. In [6], the authors show that the contemporaneous current gene tree methods
perform poorly (60% accuracy) on single genes. But if we have longer concatenated genes, then accuracy
may go up towards 100%. Furthermore, very quickly or slowly evolving genes carry less information as
compared with moderately diverging sequences (40-50% sequence identity), and perform correspondingly
worse. As corroborated by simulations, single genes lack sufficient information to reproduce the correct
species tree. Average genes are too short and contains too few phylogenetically informative characters.
While many early gene tree construction algorithms ignored species information, algorithms like SPIDIR
capitalize on the insight that the species tree can provide additional information which can be leveraged for
gene tree construction. Synteny can be used to independently test the relative accuracy of different gene tree
reconstructions. This is because syntenic blocks are regions of the genome where recently diverged organisms
have the same gene order, and contain much more information than single genes.

Figure 28.22: MPR reconciliation of genes and species tree.

Figure 28.23: Inaccuracies in gene tree.

There have been a number of recent phylogenomic algorithms including: RIO [2], which uses neighbor
joining (NJ) and bootstrapping to deal with incogruencies, Orthostrapper [7], which uses NJ and reconciles
to a vague species tree, TreeFAM [3], which uses human curation of gene trees as well as many others. A
number of algorithms take a more similar track to SPIDIR [6], including [4], a probabilistic reconciliation
algorithm [8], a Bayesian method with a clock,[9],and parsimony method using species tree , as well as more

437

6.047/6.878 Lecture 21: Phylogenomics II

recent developments: [1] a Bayesian method with relaxed clock and [5], a Bayesian method with gene and
species specific relaxed rates (an extension to SPIDIR) .

28.5.2 Method and Model

SPIDIR exemplifies an iterative algorithm for gene tree construction using the species tree. In SPIDIR, the
authors define a generative model for gene-tree evolution. This consists of a prior for gene-tree topology and
branch lengths. SPIDIR uses a birth and death process to model duplications and losses (which informs the
prior on topology) and then then learns gene-specific and species-specific substitution rates (which inform
the prior on branch lengths). SPIDIR is a Maximum a posteriori (MAP) method, and, as such, enjoys
several nice optimality criteria.

In terms of the estimation problem, the full SPIDIR model appears as follows:

argmaxL, T,RP (L, T,R|D,S,Θ) = argmaxL, T,RP (D|T, L)P (L|T,R, S,Θ)P (T,R|S,Θ)

The parameters in the above equation are: D = alignment data , L = branch length T = gene tree
topology , R = reconciliation , S = species tree (expressed in times) , Θ = (gene and species specific
parameters [estimated using EM training], λ, µ dup/loss parameters)). This model can be understood
through the three terms in the right hand expression, namely:

1. the sequence model– P (D|T, L). The authors used the common HKY model for sequence substitutions,
which unifies Kimura’s two parameter model for transitions and transversions with Felsenstein’s model
where substitution rate depends upon nucleotide equilibrium frequency.

2. the first prior term, for the rates model– P (L|T,R, S,Θ), which the authors compute numerically after
learning species and gene specific rates.

3. the second prior term, for the duplication/loss model– P (T,R|S,Θ), which the authors describe using
a birth and death process.

Having a rates model is very rates model very useful, since mutation rates are quite variable across genes.
In the lecture, we saw how rates were well described by a decomposition into gene and species specific rates.
In lecture we saw that an inverse gamma distribution appears to parametrize the gene specific substitution
rates, and we were told that a gamma distribution apparently captures species specific substitution rates.
Accounting for gene and species specific rates allows SPIDIR to build gene trees more accurately than
previous methods. A training set for learning rate parameters can be chosen from gene trees which are
congruent to the species tree. An important algorithmic concern for gene tree reconstructions is devising a
fast tree search method. In lecture, we saw how the tree search could be sped up by only computing the
full argmaxL, T,RP (L, T,R|D,S,Θ) for trees with high prior probabilites. This is accomplished through a
computational pipeline where in each iteration 100s of trees are proposed by some heuristic. The topology
prior P (T,R|D,S,Θ) can be computed quickly. This is used as a filter where only the topologies with high
prior probabilities are selected as candidates for the full likelihood computation.

The performance of SPIDIR was tested on a real dataset of 21 fungi. SPIDER recovered over 96% of the
synteny orthologs while other algorithms found less than 65%. As a result, SPIDER invoked much fewer
number of duplications and losses.

438

6.047/6.878 Lecture 21: Phylogenomics II

28.6 Ancestral Recombination Graphs

images/Recombination.jpg

Figure 28.24: Recombination.

In Figure 28.24 a, the two chromosomes at the top represent the homologous chromosomes of a par-
ent. The red chromosome represents the genetic information from the mother and the blue chromosome
represents the genetic information from the father (of the grandparent generation). Without crossing-over
(recombination), the parent will either pass on the red or the blue genetic information to the offspring. In
reality, recombination happens during meiosis so that a parent will pass on some genetic information from
both grandparents, effectively passing on a better representation of the parent genetic information.
At each generation, a recombination event can occur at any loci. The evolutionary history of recombination
can be tracked through a sequential graph of trees, such that the ith tree in the graph represents recombi-
nation at the ith locus.
Fill in this section based on: and the course notes from 2012.
More on this topic could be added in the future

28.6.1 The Sequentially Markov Coalescent

The Sequentially Markov Coalescent Model addresses the role of recombination in tree construction. With
recombination involved, a sequence may have two parents, which complicates construction. The Sequentially
Markov Coalescent Model tells us that move sequentially from left to right is a simpler and much more ef-
ficient approach to analyzing the tree; the approach essentially breaks the tree into local trees and overlays
them to describe recombination events. More can be read in the following paper:

Elaborate upon intricacies of the model itself: http://www.ncbi.nlm.nih.gov/pubmed/21270390

28.7 Conclusion

Incorporating species tree information into the gene tree building process via introducing separate gene and
species substitution rates allows for accurate parsimonious gene tree reconstructions. Previous gene tree
reconstructions probably vastly overestimated the number of duplication and loss events. Reconstructing
gene trees for large families remains a challenging problem.

439

http://www.ncbi.nlm.nih.gov/pubmed/21270390

6.047/6.878 Lecture 21: Phylogenomics II

28.8 Current Research Directions

28.9 Further Reading

• Paper on discovering Whole Genome Duplication event in yeast:
http://www.nature.com/nature/journal/v428/n6983/pdf/nature02424.pdf

28.10 Tools and Techniques

28.11 What Have We Learned?

In this chapter, we drew conclusions regarding the relationship between gene trees and species trees. We
then explored methods using gene trees to develop more accurate species trees and vice versa, involving the
mutation rates of specific to both genes and species. The Wright-Fisher Model, as well as the Coalescent
Model, helped us further interpret these mutation rates and understand the dynamics of allele frequencies
within a population.

Bibliography

[1] O. Akerborg, B. Sennblad, L. Arvestad, and J. Lagergren. Bayesian gene tree reconstruction and recon-
ciliation analysis. Proc Natl Acad Sci, 106(14):5714–5719, Apr 2009.

[2] Zmasek C.M. and Eddy S.R. Analyzing proteomes by automated phylogenomics using resampled infer-
ence of orthologs. BMC Bioinformatics, 3(14), 2002.

[3] Li H, Coghlan A, Ruan J, Coin LJ, Heriche JK, Osmotherly L, Li R, Liu T, Zhang Z, Bolund L, Wong
GK, Zheng W, DEhal P, Wang J, and Durbin R. Treefam: a curated database of phylogenetic trees of
animal gene families. Nucleic Acids Res, 34, 2006.

[4] Arvestad L., Berglund A., Lagergren J., and Sennblad B. Bayesian gene/species tree reconciliation and
orthology analysis using mcmc. Bioinformatics, 19 Suppl 1, 2003.

[5] M. D. Rasmussen and M. Kellis. A bayesian approach for fast and accurate gene tree reconstruction.
Mol Biol Evol, 28(1):273290, Jan 2011.

[6] Matthew D. Rasmussen and Manolis Kellis. Accurate gene-tree reconstruction by learning gene and
species-specific substitution rates across multiple complete genomes. Genome Res, 17(12):1932–1942,
Dec 2007.

[7] C.E.V. Storm and E.L.L. Sonnhammer. Automated ortholog inference from phylogenetic trees and
calculation of orthology reliability. Bioinformatics, 18(1):92–99, Jan 2002.

[8] Hollich V., Milchert L., Arvestad L., and Sonnhammer E. Assessment of protein distance measures and
tree-building methods for phylogenetic tree reconstruction. Mol Biol Evol, 22:2257–2264, 2005.

[9] Wapinski, I. A. Pfeffer, N. Friedman, and A. Regev. Automatic genome-wide reconstruction of phyloge-
netic gene trees. Bioinformatics, 23(13):i549–i558, 2007.

440

http://www.nature.com/nature/journal/v428/n6983/pdf/nature02424.pdf

CHAPTER

TWENTYNINE

POPULATION HISTORY

Guest Lecture by David Reich
Scribed by Deena Wang (2013) Brian Cass (2010)
Layla Barkal and Matt Edwards (2009)

Figures

29.1 Similarity between two subpopulations can be measured by comparing allele frequencies
in a scatterplot. The plots show the relative dissimilarity of European American and
American Indian populations along with greater similarity of European American and
Chinese populations. 441

29.2 Populations can be projected onto the principal components of other populations: South
Asians projected onto Chinese and European principal components produces a linear effect
(the India Cline), while Europeans projected onto South Asian and Chinese principal
components does not. 443

29.3 An admixture graph that fits Indian history . 444

29.4 Projection onto two dimensions of a principle component analysis of different human pop-
ulations. 446

29.5 Data and models for ancestral gene flow. 447

29.6 Ancient Europeans projected onto the two dimensional PCP of all modern European pop-
ulations. The modern Western Europeans, represented primarily by the bottom left cline,
cannot be described as a mixture of only EEF and WHG populations. However, with the
addition of an ANE component, the variations can be explained. 448

29.7 European genetic composition over time shows two massive migrations: first, the migration
of the EEF population, almost completely replacing the native WHG population; and
second, the migration of the ANE Yamnaya population, replacing about 75% of the native
population at that point. 450

29.8 Height selection in European populations from 8000 years ago to the present. 450

441

6.047/6.878 Lecture 22: Population History

29.1 Introduction

Humans share 99.9% of the same genetic information, and are 99% similar to chimpanzees. Although humans
have less genetic diversity than many other species [?], polymorphisms in populations can nonetheless lead
to differences in disease risk. Learning about the 0.1% difference between humans can be used to understand
population history, trace lineages, predict disease, and analyze natural selection trends.

In this lecture, Dr. David Reich of Harvard Medical School describes three historic examples of gene
flow between human populations: gene flow between Africans and Europeans due to the slave trade, Indian
intermixing due to migration, and interbreeding between Neanderthals, Denisovans and modern humans of
Western Eurasian decent.

29.2 Quick Survey of Human Genetic Variation

In the human genome, there is generally a polymorphism every 1000 bases, though there are regions of the
genome where this rate can quadruple. These Single Nucleotide Polymorphisms (SNPs) are one manifestation
of genetic variation. When SNPs occur, they segregate according to recombination rates, advantages or
disadvantages of the mutation, and the population structure that exists and continues during the lifespan
of the SNP. Following a genetic mixing event, for example, one initially sees entire chromosomes, or close
to entire chromosomes, coming from each constituent. As generations pass, recombination splits the SNP
haplotype blocks into smaller pices. The rate of change of the length of these blocks, then, is dependent on
the rate of recombination and the stability of the recombination product. Therefore, the length of conserved
haplotypes can be used to infer the age of a mutation or its selection. An important consideration, however,
is that the rate of recombination is not uniform across the genome; rather, there are recombination hot spots
that can skew the measure of haplotype age or selectivity. This makes the haplotype blocks longer than
expected under a uniform model.

Every place in the genome can be thought of as a tree when compared across individuals. Depending
on where are you look within the genome, one tree will be different than another tree you may get from a
specific set of SNPs. The trick is to use the data that we have available on SNPs to infer the underlying
trees, and then the overarching phylogenetic relationships. For example, the Y chromosome undergoes little
to no recombination and thus can produce a highly accurate tree as it passed down from father to son.
Likewise, we can look at mitochondrial DNA passed down from mother to child. While these trees can have
high accuracy, other autosomal trees are confounded with recombination, and thus show lower accuracy to
predict phylogenetic relationships. Gene trees are best made by looking at areas of low recombination, as
recombination mixes trees. In general, there are about 1 to 2 recombinations per generation.

Humans show about 10,000 base-pairs of linkage, as we go back about 10,000 generations. Fruit fly
linkage equilibrium blocks, on the other hand, are only a few hundred bases. Fixation of an allele will occur
over time, proportional to the size of the population. For a population of about 10,000, it will take about
10,000 years to reach that point. When a population grows, the effect of gene drift is reduced. Curiously
enough, the variation in humans looks like what would have been formed in a population size of 10,000.

If long haplotypes are mapped to genetic trees, approximately half of the depth is on the first branch;
most morphology changes are deep in the tree because there was more time to mutate. One simple model
of mutation without natural selection is the Wright-Fisher neutral model which utilizes binomial sampling.
In this model, a SNP will either reach fixation (frequency 1) or die out (frequency 0).

In the human genome, there are 10-20 million common SNPs. This is less diversity than chimpanzees,

442

6.047/6.878 Lecture 22: Population History

implying that humans are genetically closer to one another.

With this genetic similarity in mind, comparing human sub-populations can give information about com-
mon ancestors and suggest historical events. The similarity between two sub-populations can be measured by
comparing allele frequencies in a scatter plot. If we plot the frequencies of SNPs across different populations
on a scatterplot, we see more spread between more distant populations. The plot below, for example, shows
the relative dissimilarity of European American and American Indian populations along with the greater
similarity of European American and Chinese populations. The plots indicate that there was a divergence
in the past between Chinese and Native Americans, evidence for the North American migration bottleneck
that has been hypothesized by archaeologists. The spread among different populations within Africa is quite
large. We can measure spread by the fixation index (Fst) which describes the variance.

Figure 29.1: Similarity between two subpopulations can be measured by comparing allele frequencies in a
scatterplot. The plots show the relative dissimilarity of European American and American Indian populations
along with greater similarity of European American and Chinese populations.

Several current studies have shown that unsupervised clustering of genetic data can recover self-selected
labels of ethnic identity.[3] Rosenberg's experiment used a Bayesian clustering algorithm. They took a
sample size of 1000 people (50 populations, 20 people per population), and clustered those people by their
SNP genetic data, but they did not tag any of the people with their population, so they could see how the
algorithm would cluster without knowledge of ethnicity. They tried many different numbers of clusters to find
the optimal number. With 2 clusters, East-Asians and non-East-Asians were separated. With 3 clusters,
Africans were separated from everyone else. With 4, East-Asians and Native Americans were separated.
With 5, the smaller sub-populations began to emerge.

When waves of humans left Africa, genetic diversity decreased; the small numbers of people in the groups
that left Africa allowed for serial founder events to occur. These serial founder events lead to the formation
of sub-populations with less genetic diversity. This founder effect is demonstrated by the fact that genetic
diversity decreases moving out of Africa and that West Africans have the highest diversity of any human
sub-population.

29.3 African and European Gene Flow

The Atlantic Slave Trade took place from the 16th century to the 19th century, and moved about 5 million
people from Africa to the Americas. Most African-Americans today have a mixture of 80% African and 20%
European heritage. When two parents of different ethnicities have children, their children will inherit one
chromosome from each parent, and their grandchildren will inherit chromosomes that are a mosaic of the
two ethnicities due to recombination. As time passes, the increasing number of recombination events will
decrease the length of the “African” or “European” stretches of DNA.

443

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 22: Population History

Recombination events are not spread evenly throughout the chromosomes, but happen at hotspots.
African and European DNA have different hot spots, which could be due to differences in the amino acid
composition of PRDM9, a histone H3(K4) trimethyltransferase which is essential for meiosis.

Difference in disease succeptibility can be predicted for African and European populations. With se-
quencing, this knowledge can also be applied to mixed populations. For example, Africans have a higher
risk of prostrate cancer which is directly linked to an area in chromosome 8 that maps to a cancer proto-
oncogene[?]. If a mixed individual has the African sequence in that area, he or she will have the increased
risk, but if the individual has the European sequence, he or she will not have an increased risk. The same
approach can be applied to breast cancer, colon cancer, multiple sclerosis, and other diseases.

29.4 Gene Flow on the Indian Subcontinent

Genetic evidence suggests that modern populations on the Indian subcontinent descended from two different
ancestral populations that mingled 4,000 years ago. SNP array data was collected from about 500 different
people from 73 Indian groups with different language families [?]. A principle component analysis plot
reveals that the the Dravidian/Indo-European language groups and the Austro-Asiatic language groups are
in two different clusters, which suggests they have different lineages. Within the Dravidian/Indo-European
language groups, there is a gradient of relatedness to West Eurasian groups.

The same mosaic technique used in the African/European intermixing study was used to estimate the
date of mixture. The Indian population is a mixture of a Central Asian/European group and another group
most closely related to the people of the Andaman Islands. The chunk size of the DNA belonging to each
group suggests a mixture about 100 generations old, or 2,000 to 4,000 years ago. Many groups have this
mixed heritage, but mixture stops after the creation of the caste system.

Knowledge of the heritage of genes can predict diseases. For example, a South Asian mutation in myosin
binding protein C causes a seven-fold increase in heart failure Many ethnic groups are endogamous and have
a low genetic diversity, resulting in a higher prevelance of recessive diseases.

Past surveys in India have studied such aspects as anthropometric variation, mtDNA, and the Y chromo-
some. The anthropometric study looked at significant differences in physical characteristics between groups
separated by geography and ethnicity. The results showed variation much higher than that of Europe. The
mtDNA study was a survey of maternal lineage and the results suggested that there was a single Indian
tree such that age of lineage could be inferred by the number of mutations. The data also showed that
Indian populations were separated from non-Indian populations at least 40,000 years ago. Finally, the Y
chromosome study looked at paternal lineage and showed a more recent similarity to Middle Eastern men
and dependencies on geography and caste. This data conflicts with the mtDNA results. One possible ex-
planation is that there was a more recent male migration. Either way, the genetic studies done in India
have served to show its genetic complexity. The high genetic variation, dissimilarity with other samples, and
difficulty of obtaining more samples lead to India being left out of HapMap, the 1000 Genomes Project, and
the HGDP.

In David Reich and collaborators study of India, 25 Indian groups were chosen to represent various
geographies, language roots, and ethnicities. The raw data included five samples for each of the twenty
five groups. Even though this number seems small, the number of SNPs from each sample has a lot of
information. Approximately five hundred thousand markers were genotyped per individual. Looking at the
data to emerge from the study, if Principal Components Analysis is used on data from West Eurasians and
Asians, and if the Indian populations are compared using the same components, the India Cline emerges.
This shows a gradient of similarity that might indicate a staggered divergence of Indian populations and

444

6.047/6.878 Lecture 22: Population History

European populations.

29.4.1 Almost All Mainland Indian Groups are Mixed

Further analysis of the India Cline phenomenon produces interesting results. For instance, some Pakistani
sub-populations have ancestry that also falls along the Indian Cline. Populations can be projected onto the
principal components of other populations: South Asians projected onto Chinese and European principal
components produces a linear effect (the India Cline), while Europeans projected onto South Asian and
Chinese principal components does not. One interpretation is that Indian ancestry shows more variability
than the other groups. A similar variability assessment appears when comparing African to non-African
populations. Two tree hypotheses emerge from this analysis:

1. there were serial founder events in Indias history or

2. there was gene flow between ancestral populations.

The authors developed a formal four population test to test ancestry hypotheses in the presence of
admixture or other confounding effects. The test takes a proposed tree topology and sums over all SNPs
of (Pp1 Pp2)(Pp3 Pp4), where P values are frequencies for the four populations. If the proposed tree is
correct, the correlation will be 0 and the populations in question form a clade. This method is resistant
to several problems that limit other models. A complete model can be built to fit history. The topology
information from the admixture graphs can be augmented with Fst values through a fitting procedure. This
method makes no assumptions about population split times, expansion and contractions, and duration of
gene flow, resulting in a more robust estimation procedure.

Figure 29.2: Populations can be projected onto the principal components of other populations: South Asians
projected onto Chinese and European principal components produces a linear effect (the India Cline), while
Europeans projected onto South Asian and Chinese principal components does not.

Furthermore, estimating the mixture proportions using the 4 population statistic gives error estimates
for each of the groups on the tree. Complicated history does not factor into this calculation, as long as the
topology as determined by the 4-population test is valid.

These tests and the cline analysis allowed the authors to determine the relative strength of Ancestral
North Indian and Ancestral South Indian ancestry in each representative population sample. They found

445

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 22: Population History

Figure 29.3: An admixture graph that fits Indian history

that high Ancestral North Indian ancestry is correlated with traditionally higher caste and certain language
groupings. Furthermore, Ancestral North Indian (ANI) and South Indian (ASI) ancestry is as different from
Chinese as European.

29.4.2 Population structure in India is different from Europe

Population structure in India is much less correlated with geography than in Europe. Even correcting
populations for language, geographic, and social status differences, the Fst value is 0.007, about 7 times that
of the most divergent populations in Europe. An open question is whether this could be due to missing
(largely India-specific) SNPs on the genotyping arrays. This is because the set of targeted SNPs were
identified primarily from the HapMap project, which did not include Indian sources.

Most Indian genetic variation does not arise from events outside India. Additionally, consanguineous
marriages cannot explain the signal. Many serial founder events, perhaps tied to the castes or precursor
groups, could contribute. Analyzing a single group at a time, it becomes apparent that castes and subcastes
have a lot of endogamy. The autocorrelation of allele sharing between pairs of samples within a group is
used to determine whether a founder event occurred and its relative age. There are segments of DNA from
a founder, many indicating events more than 1000 years old. In most groups there is evidence for a strong,
ancient founder event and subsequent endogamy. This stands in contrast to the population structure in most
of Europe or Africa, where more population mixing occurs (less endogamy).

These serial founder events and their resulting structure have important medical implications. The strong
founder events followed by endogamy and some mixing have lead to groups that have strong propensities for
various recessive diseases. This structure means that Indian groups have a collection of prevalent diseases,
similar to those already known in other groups, such as Ashkenazi Jews or Finns. Unique variation within
India means that linkages to disease alleles prevalent in India might not be discoverable using only non-Indian
data sources. A small number of samples are needed from each group, and more groups, to better map these
recessive diseases. These maps can then be used to better predict disease patterns in India.

446

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 22: Population History

29.4.3 Discussion

Overall, strong founder events followed by endogamy have given India more substructure than Europe. All
surveyed tribal and caste groups show a strong mixing of ANI and ASI ancestry, varying between 35% and
75% ANI identity. Estimating the time and mechanism of the ANI-ASI mixture is currently a high priority.
Additionally, future studies will determine whether and how new techniques like the 4-population test and
admixture graphs can be applied to other populations.

29.5 Gene Flow Between Archaic Human Populations

Dr. Reich worked with the Max Planck Institute as a population geneticist studying Neanderthal genetic
data. This section will discuss the background of his research as part of the Neanderthal genome project, the
draft sequence that they assembled, and the evidence that has been compiled for gene flow between modern
humans and Neanderthals.

29.5.1 Background

Neanderthals are the only other hominid with a brain as large as Homo sapiens. Neanderthal fossils from
200,000 years ago have been found in West Eurasia (Europe and Western Asia), which is far earlier than
Homo erectus. The earliest human fossils come from Ethiopia dating about 200,000 years ago. However,
there is evidence that Neanderthals and humans overlapped in time and space between 135,000 and 35,000
years ago.

The first place of contact could have occurred in The Levant, in Israel. There are human fossils from
120,000 years ago, then a gap, Neanderthal fossils about 80,000 years ago, another gap, and then human
fossils again 60,000 years ago. This is proof of an overlap in place, but not in time. In the upper paleolithic
era, there was an explosion of populations leaving Africa (the migration about 60,000 to 45,000 years ago).
In Europe after 45,000 years ago, there are sites where Neanderthals and humans exist side by side in the
fossil record. Since there is evidence that the two species co-existed, was there interbreeding? This is a
question that can be answered by examining population genomics.

See Tools and Techniques for a discussion of DNA extraction from Neanderthals.

29.5.2 Evidence of Gene Flow between Humans and Neanderthals

1. A comparison test between Neanderthal DNA and human DNA from African and non-African pop-
ulations demonstrates that non-African populations are more related to Neanderthals than African
populations. We can look at all the SNPs in the genome and see whether the human SNP from one
population matches the Neanderthal SNP. When different human populations were compared to Nean-
derthals, it was found that French, Chinese, and New Guinea SNPs matched Neanderthal SNPs much
more than Nigerian Yoruba SNPs matched Neanderthal SNPs. San Bushmen and Yoruba populations
from Africa, despite being very distinct genetically, both had the same distance from Neanderthal DNA.
This evidence suggests that human populations migrating from Africa interbred with Neanderthals.

2. A long-range haplotype study demonstrates that when the deepest branch of a haplotype tree was
in non-African populations, the regions frequently matched Neanderthal DNA. African populations

447

6.047/6.878 Lecture 22: Population History

today are the most diverse populations in the world. When humans migrated out of Africa, diversity
decreased due to the founder effect. From this history, one would expect that if you built a tree of
relations, the deepest split would be African.

To show Neanderthal heritage, Berkley researchers picked long range sections of the genome and
compared them among randomly chosen humans from various populations. The deepest branch of
the tree constructed from that haplotype is almost always from the African population. However,
occasionally non-Africans have the deepest branch. The study found that there were 12 regions where
non-Africans have the deepest branch. When this data was used to analyze the Neanderthal genome,
it was found that 10 out of 12 of these regions in non-Africans matched Neanderthals more than the
matched the human reference sequence (a compilation of sequences from various populations). This is
evidence of that haplotype actually being of Neanderthal origin.

3. Lastly, there is a bigger divergence than expected among humans. The average split between a Ne-
anderthal and a human is about 800,000 years. The typical divergence between two humans is about
500,000 years. When looking at African and non-African sequences, regions of low divergence emerged
in non-African sequences when compared with Neanderthal material. The regions found were highly
enriched for Neanderthal material (94% Neanderthal), which would increase the average divergence
between humans (as the standard Neanderthal - human divergence is about 800,000 years).

29.5.3 Gene Flow between Humans and Denisovans

In 2010, scientists discovered a 50,000 year old finger bone in southern Siberia. The DNA in this Denisovan
sample was not like any previous human DNA. Denisovan mitochondrial DNA is an out-group to both
Neanderthals and modern humans. (Mitochondrial DNA was used because it is about 1000 times more
frequent than somatic DNA. The polymorphism rate is also 10 times higher.) Denisovans are more closely
related to Neanderthals than humans.

Figure 29.4: Projection onto two dimensions of a principle component analysis of different human popula-
tions.

Using the same SNP matching technique from the Neanderthal example, it was discovered that Deniso-
van DNA matches New Guinean DNA more than Chinese DNA or European DNA. It is estimated that
Denisovans contributed about 5% of the ancestry of New Guineans today. A princple component analysis
projection (see figure) between relatedness to chimpanzees, Neanderthals, and Denisovans shows that non-
African populations are more related to Neanderthals, and New Guinean/Bougainvillians are more related
to Denisovans.

This evidence suggests a model for human migration and interbreeding. Humans migrated out of Africa

448

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 22: Population History

and interbred with Neanderthals, then spread across Asia and interbred with Denisovans in Southeast Asia.
It is less plausible that humans interbred with Denisovans in India because not all of the populations in
Southeast Asia have Denisovan ancestry.

29.5.4 Analysis of High Coverage Archaic Genomes

High-coverage archaic genomes can tell us a lot about the history of hominid populations. A high coverage
Altai Neanderthal sequence was acquired from a toe bone found in Denisova cave. From this sequence, we
can look at the time to convergence of the two copies of chromosomes to estimate the size of the population.
Neanderthal DNA contains many long stretches of homozygosity, indicating a persistant small population size
and inbreeding. For the Altai Neanderthal, one eighth of the genome was homozygous, about the expected
level of inbreeding of half-siblings. Applying the technique to non-African populations shows a bottleneck
50,000 years ago and a subsequent population expansion, which is consistent with the Out Of Africa theory.

Neanderthals and Denisovans also interbred, demonstrating the remarkable proclivity of humanoids to-
wards reproduction. Although most of the Neanderthal genome has a minimum depth of hundreds of
thousands of years from the Denisovan genome, at least 0.5% of the Denisovan genome has a much shorter
distance from Neanderthal genome, especially for immune genes.

Figure 29.5: Data and models for ancestral gene flow.

Denisovans most likely have ancestry from an unknown archaic population unrelated to Neanderthals.
An African sequence has a 23% match with Neanderthal DNA and 47% match with Denisovan DNA, which
is statistically significant. If you stratify the D-statistic by the frequency of an allele in the population, you
see an increasing slope and a sharp jump when you reach fixation which most closely matches the predictions
one would obtain from an unknown population flowing into Denisovans (see figure).

29.5.5 Discussion

The bottleneck caused by the migration from Africa is only one example of many. Most scientists usually
concentrate on the age and intensity of migration events and not necessarily the duration, but the duration
is very important because long bottlenecks create a smaller range of diversity. One way to predict the
length of a bottleneck is to determine if any new variations arose during it, which is more likely during
longer bottlenecks. The change in the range of diversity is also what helped create the different human

449

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 22: Population History

sub-populations that became geographically isolated. This is just another way that population genomics can
be useful for helping to piece together historical migrations.

Genetic differences between species (here within primates) can be used to help understand the phylo-
genetic tree from which we are all derived. We looked at the case study of comparisons with Neanderthal
DNA, learned about how ancient DNA samples are obtained, how sequences are found and interpreted, and
how that evidence shows high likelihood of interbreeding between modern humans (of Eurasian descent) and
Neanderthals. Those very small differences between one species and the next, and within species, allow us
to deduce a great deal of human history through population genetics.

29.6 European Ancestry and Migrations

29.6.1 Tracing the Origins of European Genetics

Before 2014, it was believed that modern European genetics was primarily a mixture of two ancestral
populations. The first population is what is known as the Western hunter-gathere (WHG) population, and
is considered the indigenous European population. The second population is known as the Early European
farmer (EEF) population, and represents the rapid migration of farming peoples into Europe, and the
subsequent mixing of the new farming population with the original WHG population. However, in 2012,
Patterson et al [?] used the principal component analysis in Figure 29.6 to show that European genetics
does not match up with being a mixture of only these two populations. Rather, genetic mixture analysis
showed that some Europeans could only be explained as a mix of EEF/WHG populations with a third
population whose genetics resembled Native Americans. While this does not mean that Native Americans
are ancestral to Europeans, the study concluded that the most likely hypothesis was the mixture of these
two known populations with an Ancient North Eurasian (ANE) population which migrated to both Asia
and Europe, and is no longer found in North Eurasia. This study called this mystery population the ”Ghost
of North Eurasia.”

Two years later, in 2014, however, a sample was found confirming the existence of this population.
Proclaiming that ”The ghost is Found”, Raghavan, Skoglund et al. [?] studied the newly found ”Mal’ta”
sample from Lake Baikal (currently in Southern Russia) and determined that it matched the predicted ghost
population from 2012, and could explain the two dimensional variation in modern European populations. In
particular, modern Europeans were found to be composed of 0-50% WHG, 32-93% EEF, and 1-18% ANE
populations.

29.6.2 Migration from the Steppe

Given this new population as a source of European ancestry, the natural questions are when and why did
the members of the ANE population migrate to Europe? The answer, of course, can be teased out of further
genetic data about the history of European populations. The first clue was found in mitochondrial DNA
data, in a 2013 paper by Brandt, Haak et al. [?], which found that there were two discontinuities in
European mitochondrial DNA: one between the Mesolithic and the early Neolithic ages, and one between
the mid Neolithic age and the Late Neolithic and Bronze ages. In 2014, studies of 9, and then 94 samples of
ancient European individuals showed clearly the two migration events, visualized in Figure 29.7. The first
migration, at roughly 6500 BCE, was a migration of the EEF population, which replaced the existing WHG
population at a rate of between 60 and 100%. The second migration was a migration of steppe pastoralists,
known as the Yamnaya, which replaced the existing population with a rate between 60 and 80%. In both

450

6.047/6.878 Lecture 22: Population History

Figure 29.6: Ancient Europeans projected onto the two dimensional PCP of all modern European popula-
tions. The modern Western Europeans, represented primarily by the bottom left cline, cannot be described
as a mixture of only EEF and WHG populations. However, with the addition of an ANE component, the
variations can be explained.

cases, the migrating population takes over a chunk of the genetic composition almost immediately, and then
the previous population gradually resurges over several thousand years.

29.6.3 Screening for Natural Selection

Another application of DNA data to history is in tracing natural selection events. Essentially, one can look
at the frequencies of various alleles in modern European DNA data, and find cases where it does not match
the ancestral mixing model of the population. Such cases will tend to signify alleles that have been selected
for or against since the ancestral mixing events occurred. The easiest to identify, and most well known
example of such a trait is lactase persistence. The current level of prevalence of this trait is well above any
of the levels represented by ancestral populations, suggesting that it underwent positive selection (due to
the domestication and milking of animals) since the ancestral mixing events.

Several other traits can also be detected as candidates for selection. Another straightforward example is
skin pigmentation. More interesting is the tale of height selection shown by the genetics of Northern and
Southern Europeans. In particular, the data shows that two distinct selection effects occurred. First, the
early farmers of Southern Europe underwent selection for decreasing height between 8000 and 4000 years ago.
Second, the peoples of Northern Europe (modern Scandinavians, etc.) underwent positive selection around
the same time period and through the present. While the anthropological explanations of these effects are
disputed, the effects themselves are shown clearly in the genetic data.

451

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Lazaridis, Iosif, et al. "Ancient Human Genomes Suggest Three Ancestral
Populations for Present-day Europeans." Nature 513, no. 7518 (2014): 409-13.

http://dx.doi.org/10.1038/nature13673
http://dx.doi.org/10.1038/nature13673

6.047/6.878 Lecture 22: Population History

Figure 29.7: European genetic composition over time shows two massive migrations: first, the migration of
the EEF population, almost completely replacing the native WHG population; and second, the migration of
the ANE Yamnaya population, replacing about 75% of the native population at that point.

Figure 29.8: Height selection in European populations from 8000 years ago to the present.

452

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Haak, Wolfgang, et al. "Massive Migration from the Steppe
was a Source for Indo-European Languages in Europe." Nature (2015).

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Mathieson, Iain et al. "Genome-wide Patterns of Selection
in 230 Ancient Eurasians." Nature 528, no. 7583 (2015): 499-503.

http://dx.doi.org/10.1038/nature14317
http://dx.doi.org/10.1038/nature14317
http://dx.doi.org/10.1038/nature16152
http://dx.doi.org/10.1038/nature16152

6.047/6.878 Lecture 22: Population History

29.7 Tools and Techniques

29.7.1 Techniques for Studying Population Relationships

There are several different methods for studying population relationships with genetic data. The first general
type of study utilizes both phylogeny and migration data. It fits the phylogenies to Fst values, values of
sub-population heterozygosity (pioneered by Cavalli-Sforza and Edwards in 1967 [?]). This method also
makes use of synthetic maps and Principal Components Analysis. [2] The primary downside to analyzing
population data this way is uncertainty about results. There are mathematical and edge effects in the
data processing that cannot be predicted. Also, certain groups have shown that separate, bounded mixing
populations can produce significant-seeming principal components by chance. Even if the results of the study
are correct, then, they are also uncertain.

The second method of analyzing sub-population relationships is genetic clustering. Clusters can be
formed using self-defined ancestry [1] or the STRUCTURE database. [3] This method is overused and can
over-fit the data; the composition of the database can bias the clustering results.

Technological advances and increased data collection, though, have produced data sets that are 10,000
times larger than before, meaning that most specific claims can be disproved by some subset of data. So
in effect, many models that are predicted either by phylogeny and migration or genetic clustering will be
disproved at some point, leading to large-scale confusion of results. One solution to this problem is to use a
simple model that makes a statement that is both useful and has less probability of being falsified.

29.7.2 Extracting DNA from Neanderthal Bones

Lets take a look at how you go about finding and sequencing DNA from ancient remains. First, you have to
obtain a bone sample with DNA from a Neanderthal. Human DNA and Neanderthal DNA is very similar
(we are more similar to them than we are to chimps), so when sequencing short reads with very old DNA,
it is impossible to tell if the DNA is Neanderthal or human. The cave where the bones were found is first
classified as human or non-human using trash or tools as an identifier, which helps predict the origin of the
bones. Even if you have a bone, it is still very unlikely that you have any salvageable DNA. In fact, 99%
of the sequence of Neanderthals comes from only three long bones found in one site: the Vindija cave in
Croatia (5.3 Gb, 1.3x full coverage).

Next, the DNA is sent to an ancient-DNA lab. Since they are 40,000 year old bones, there is very little
DNA left in them. So, they are first screened for DNA. If they find DNA, the next question is whether it is
primate DNA? Usually it is DNA from microbes and fungi that live in soil and digest dead organisms. Only
about 1-10% of the DNA on old bones is the primates DNA. If it is primate DNA, is it contamination from
the human (archeologist or lab tech) handling it? Only one out of 600 bp are different between humans and
Neanderthals DNA. The size of reads from a 40,000 year old bone sample is 30-40 bp. The reads are almost
always identical for a human and Neanderthal, so it is difficult to distinguish them.

In one instance, 89 DNA extracts were screened for Neanderthals DNA, but only 6 bones were actually
sequenced (requires lack of contamination and high enough amount of DNA). The process of retrieving
the DNA requires drilling beneath the bone surface (to minimize contamination) and taking samples from
within. For the three long bones, less than 1 gram of bone powder was able to be obtained. Then the DNA is
sequenced and aligned to a reference chimp genome. It is mapped to a chimp instead of a particular human
because mapping to a human might cause bias if you are looking to see how the sequence relates to specific
human sub-populations.

453

6.047/6.878 Lecture 22: Population History

Most successful finds have been in cool limestone caves, where it is dry and cold and perhaps a bit basic.
The best chance of preservation occurs in permafrost areas. Very little DNA is recoverable from the tropics.
The tropics have a great fossil record, but DNA is much harder to obtain. Since most bones dont yield
enough or good DNA, scientists have the screen samples over and over again until they eventually find a
good one.

29.7.3 Reassembling Ancient DNA

DNA extracted from Neanderthal bones have short reads, about 37 bp on average. There are lots of holes
due to mutations caused by time eroding the DNA. It is difficult to tell whether a sequence is the result of
contamination because humans and Neanderthals only differ in one out of one thousand bases. However,
we can use DNA damage characteristic of ancient DNA to distinguish old and new DNA. Old DNA has a
tendency towards C to T and G to A errors. The C to T error is by far the most common, and is seen about
2% of the time. Over time, a methyl group gets knocked off of a C, which causes it to resemble to U. When
PCR is used to amplify the DNA for sequencing, the polymerase sees a U and repairs it to a T. In order
to combat this error, scientists use a special enzyme that recognizes the U, and cuts the strand instead of
replacing it with a T. This helps to identify those sites. The G to A mutations are the result of seeing that
on the opposite strand.

The average fragment size is quite small, and the error rate is still 0.1% - 0.3%. One way to combat
the mutations is to note that on a double stranded fragment, the DNA is frayed towards the ends, where
it becomes single stranded for about 10 bp. There tend to be high rates of mutations in the first and last
10 bases, but high quality DNA elsewhere, i.e. more C to T mutations in the beginning and G to A in the
end. In chimps, the most common mutations are transitions (purine to purine, pyrimidine to pyrimidine),
and transversions are much rarer. The same goes for humans. Since the G to A and C to T mutations are
transitions, it can be determined that there are about 4x more mutations in the old Neanderthal DNA than
if it were fresh by noting the number of transitions seen compared to the number of transversions seen (by
comparing Neanderthal to human DNA). Transversions have a fairly stable rate of occurrence, so that ratio
helps determine how much error has occurred through C to T mutations.

We are now able to get human contamination of artifact DNA down to around ¡1%. When the DNA is
brought in, as soon as it is removed from the bone it is bar coded with a 7 bp tag. That tag allows you to
avoid contamination at any later point in the experiment, but not earlier. Extraction is also done in a clean
room with UV light, after having washed the bone. Mitochondrial DNA is helpful for distinguishing what
percent of the sample is contaminated with human DNA. Mitochondrial DNA is filled with characteristic
event sites because humans and Neanderthals are reciprocally monophylogenetic. The contamination can be
measured by counting the ratio of those sites. In the Neanderthal DNA, contamination was present, but it
was ¡ 0.5%.

In sequencing, the error rate is almost always higher than the polymorphism rate. Therefore, most sites
in the sequence that are different from humans are caused by sequencing errors. So we cant exactly learn
about Neanderthal biology through the sequence generated, but we can analyze particular SNPs as long as
we know where to look. The probability of a particular SNP being changed due to an error in sequencing is
only 1 to 11000, so usable data can still be obtained.300

After aligning the chimp, Neanderthal, and modern human sequences, we can measure the distance from
Neanderthals to humans and chimps. This distance is only about 12.7% from the human reference sequence.
A French sample measures about 8% distance from the reference sequence, and a Bushman about 10.3%.
What this says is that the Neanderthal DNA is within our range of variation as a species.

454

6.047/6.878 Lecture 22: Population History

29.8 Research Directions

Currently, the most exciting trend in the field is the existence of more and more data on both ancient and
modern population genetics. With more samples, we can devise more fine statistical tests, and tease more
and more information about population composition and history.

29.9 Further Reading

Bibliography

[1] Bowcock AM, Ruiz-Linares A, Tomfohrde J, Minch E, Kidd JR, and Cavalli-Sforza LL. High resolution
of human evolutionary history trees with polymorphic microsatellites. Nature, 368:455–457, 1994.

[2] Menozzi. Synthetic maps of human gene frequencies in europeans. Science, 201(4358):768–792, Sep 1978.

[3] Rosenberg N. Genetic structure of human populations. Science, 298(5602):2381–2385, 2002.

455

6.047/6.878 Lecture 22: Population History

456

CHAPTER

THIRTY

POPULATION GENETIC VARIATION

Guest Lecture by Pardis Sabeti
Scribed by Mohammad Ghassemi, Jonas Helfer, Ben Mayne (2012),
Alex McCAuley (2010), Matthew Lee (2009), Arjun K. Manrai and Clara Chan (2008)

Figures
30.1 Plot of genotype frequencies for different allele frequencies 458

30.2 Changes in allele frequency over time . 459

30.3 A comparison of the hetrozygous and homozygous derived and damaging genotypes per
individual in an African American (AA) and European American (EA) population study. 461

30.4 Two isolated populations . 461

30.5 Approximate Time Table of Effects Sabeti et al. Science 2006 464

30.6 Localized positive selection for Malaria resistance within species Sabeti et al. Science 2006 465

30.7 Localized positive selection for lactase persistence allele Sabeti et al. Science 2006 466

30.8 Mean allele frequency difference of height SNPs, matched SNPS, and genome-wide SNPS
between Northern- and Southern-European populations Turchin et al., Nature Genetics
(2012) . 466

30.9 Broken haplotype as a signal of natural selection . 467

30.10A depiction of two major bottleneck events, one in the founding population from Africa,
and other, smaller subsequent bottleneck events in the East Asian and Western European
populations. 469

30.11An illustration of two bottleneck events . 470

30.12The figure illustrate the effects of a bottleneck events on the number of rare Alleles in a
population. 471

30.13A depiction of European admixture levels in the Mexican, and African American populations.471

30.14As illustration of the magnitude and origin of migrants based on the tract length and
number of tracts in the admixed population. 472

457

6.047/6.878 Lecture 23: Population Genetic Variation

30.1 Introduction

For centuries, biologists had to rely on morphological and phenotypical properties of organisms in order to
infer the tree of life and make educated guesses about the evolutionary history of species. Only recently, the
ability to cheaply sequence entire genomes and find patterns in them has transformed evolutionary biology.
Sequencing and comparing genomes on a molecular level has become a fundamental tool that allows us to
gain insight into much older evolutionary history than before, but also to understand evolution at a much
smaller resolution of time. With these new tools, we can not only learn the relationship between distant
clades that separated billions of years ago, but also understand the present and recent past of species and
even different populations inside a species.

In this chapter we will discuss the study of Human genetic history and recent selection. The methodolog-
ical framework of this section builds largely on the concepts from previous chapters. Most specifically, the
methods for association mapping of disease and phylogenetic constructs such as tree building among species
and genes, and the history of mutations using coalescence. Having learned about these methods in the last
chapter, we now will study how their application can inform us about the relationships, and differences
between human populations. Additionally, we will look for how these differences can be exploited to look for
signals of recent natural selection and the identification of disease loci. We will also discuss in this chapter
what we currently know about the differences between human populations and describe some parameters
we can infer that quantify population differences, using only the extent genetic variation we observe. In the
study of Human Genetic history and recent selection, there are two principal topics of investigation which
are often studied. The first is the history of population sizes. The second is the history of interactions
between populations. Questions are often asked about these areas because the answers can often provide
knowledge to improve the disease mapping process. Thus far, all present research based knowledge of human
history was found by investigating functionally neutral regions of the genome, and assuming genetic drift.
The reason that neural regions are employed is because mutations are subject to positive, negative and bal-
ancing selection pressure, when they take place on a functional region. Hence investigating a neural regions
provides a selection unbiased proxy for the drift between species. In this chapter we will delve into some of
the characteristics of selection process in humans and look for patterns of human variation in terms of cross
species comparisons, comparison synonymous and non-synonymous mutations, and haplotype structure.

30.2 Population Selection Basics

30.2.1 Polymorphisms

Polymorphisms are differences in appearance amongst members of the same species. Many of them arise
from mutations in the genome. These mutations, or genetic polymorphisms, can be characterized into
different types.

Single Nucleotide Polymorphisms (SNPs)

• The mutation of only a single nucleotide base within a sequence. In most cases, these changes are
without consequence. However, there are some cases where the mutation of a single nucleotide
has a major effect.

458

6.047/6.878 Lecture 23: Population Genetic Variation

• For example, is caused by a from A to T, that causes a change from glutamic acid (GAG) to
valine (GTG) in hemoglobin.

Variable Number Tandem Repeats

• When a short sequence is repeated multiple times, DNA Polymerase can sometimes ”slip”, causing
it to make either too many or too few copies of the repeat. This is called a .

• For example, Huntingtons disease that is caused by too many repeats of the trinucleotide
CAG repeat in the HTT gene. Having more than 36 repeats can lead to gradual muscle control
loss and severe neurological degradation. Generally, the more repeats there are, the stronger the
symptoms.

Insertion/Deletion

• Through faulty copying or DNA-repair, or of one or multiple nucleotides can occur.

• If the insertion or deletion is inside an exon (the protein-coding region of a gene) and does not
consist of a multiple of three nucleotides, a will occur.

• Prime example is deletions in the CFTR gene, which codes for chloride channels in the lungs
and may cause Cystic Fibrosis where the patient cannot clear mucous in the lungs and causes
infection

Did You Know?
DNA profiling is based on short variable number tandem repeats (STR). DNA is cut with certain
restriction enzymes, resulting in fragments of variable length that can be used to identify an in-
dividual. Different countries use different (but often overlapping) loci for these profiles. In North
America, a system based on 13 loci is used.

30.2.2 Allele and Genotype Frequencies

In order to understand the evolution of a species through analysis of alleles or genotypes, we must have a
model of how the alleles are passed on from one generation to another. It is of immense importance that
the reader has a firm intuition for the Hardy-Weinberg Principle and Wright fisher model before continuing.
Hence, we will provide here a short reminder of modelling the history of mutations via the these methods.
First introduced over a hundred years ago, the Wright-Fisher Model is a mathematical model of genetic drift
in a population. Specifically, it describes the probability of obtaining k copies of a new allele p within a
population of size N, with a non-mutant frequency of q, and what its expected frequency will be in successive
generations.

Hardy-Weinberg Principle

The states that allele and genotype frequencies within a population will remain constant unless there is an
outside influence that pushes them away from that equilibrium.

The Hardy-Weinberg principle is based on the following assumptions:

• The population observed is very large

459

6.047/6.878 Lecture 23: Population Genetic Variation

• The population is isolated, i.e. there is no introduction of another subpopulation into the general
population

• All individuals have equal probability of producing offspring

• All mating in the population is at random

• No random mutations occur in the population from one generation to the next

• Allele frequency drives future genotype frequency (Prevalent allele drives Prevalent genotype)

In a Hardy-Weinberg Equilibrium, for two alleles A and a, occurring with probability p and q = 1p,
respectively, the probabilities of a randomly chosen individual having the homozygous AA or aa (pp or qq,
respectively) or heterozygous Aa or aA (2pq) genotypes can be described by the equation:

p2|2pq|q2 = 1

This equation gives a table of probabilities for each genotype, which can be compared with the observed
genotype frequencies using statistical error tests such as the chi-squared test to determine if the Hardy-
Weinberg model is applicable. Figure 30.1 shows the distribution of genotype frequencies at different allele
frequencies.

Figure 30.1: Plot of genotype frequencies for different allele frequencies

In natural populations, the assumptions made by the Hardy-Weinberg principle will rarely hold. Natural
selection occurs, small populations undergo genetic drift, populations are split or merged, etc. In Nature
a mutation will always either disappear (frequency = 0) from the population or become prevalent in a
species - this is called fixation; in general, 99% of mutations disappear. Figure 30.2 shows a simulation of a
mutations prevalence in a finite-sized population over time: both perform random walks, with one mutation
disappearing and the other becoming prevalent:

Once a mutation has disappeared, the only way for it to reappear is the introduction of a new mutation
into the population. For humans, it is believed that a given mutation under no selective pressure should
fixate to 0 or 1 (within, e.g., 5%) within a few million years. However, under selection this will happen much
faster.

Wright-Fisher Model

Under this model the time to fixation is 4N and the probability of fixation is 1/2N. In general Wright-Fisher
is used to answer questions related to fixation in one way or another. To make sure your intuitions about

460

6.047/6.878 Lecture 23: Population Genetic Variation

Figure 30.2: Changes in allele frequency over time

the method are absolutely clear considering the following questions:

FAQ

Q: Say you have a total of 5 mutations on a chromosome among a population of size 30, on average,
how many mutations will be present in the next generation if each entity produces only one
child?

A: If each parent has only one offspring, then there will be, on average, 5 mutations in the next
generation because the expectation of allele frequencies is to remain constant according to the
Hardy-Weinberg equilibrium principle in basic biology.

FAQ

Q: Is the Hardy-Weinberg Equilibrium principle’s assumption about constant allele frequency
reasonable?

A: No, the reality is far more complex as there is stochasticity in population size and selection at
each generation. A more appropriate way to envision this is to image drawing alleles from a
set of parents, with the amount of alleles in the next generation varying with the size of the
population. Hence the frequency in the next generation could very well go up or down. Note
here that if the allele frequency goes to zero it will always be at zero. The probability at each
successive generation is lower if it’s under negative selection and higher if it’s under positive
selection. Hence if it’s a beneficial mutation the fixation time will be smaller, if the mutation
is deleterious the fixation will be larger. If there are no offspring with a given mutation, then
there won’t be any decedents with that mutation either. If one produces multiple offspring
however, who in turn produce multiple offspring of their own, then there is a greater chance
that this allele frequency will rise.

461

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 23: Population Genetic Variation

FAQ

Q: Consider that the average human individual carries roughly 100 entirely unique mutations. So,
when an individual produces offspring we could expect that half (or 50) of those mutations
may appear in the child because in each sperm or egg cell, 50 of those mutations will be
present, on average. Hence the offspring of an individual are likely to inherit approximately
100 mutations, 50 from one parent, and 50 from another in addition to their own unique
mutations which come from neither parent. With this in mind, one might be interested in
understanding what the chances are of some mutations appearing in the next generation if an
individual produces, say, n children. How can one do this?

A: Hint: To compute this value, we assume that some allele originates in the founder, at some
arbitrary chromosome (1 for example). Then we ask the question, how many chromosome 1s
exist in the entire population? At the moment, the size of the human population is 7 Billion,
each carrying two copies of chromosome 1.

The

above questions and answers should make it painfully clear that the standard Hardy-Weinberg assumption
of allele frequencies remaining constant from one generation to the next is violated in many natural cases
including migration, genetic mutation, and selection. In the case of selection, this issue is addressed by
modifying the formal definition to include a S, term which measures the skew in genotypes due to selection.
See table 30.1 for a comparison of the original and selection compensated versions:

Behavior With only drift With drift and selection

n in next generation Mean: n(= 2Np), Dist: Binomial(2N, p) Mean: n(1 + s
1+ps), Dist: Binomial(2N, p 1+s

1+ps)

Time to fixation 4N 4N
1+ 3

8N |s|
(

1+ 1
2 (lnN)|s|
1+|s|)

Probability of fixation 1
2N

1−e−2s

1−e−4Ns

Table 30.1: Comparison of Wright-Fisher Model With Drift, Versus Drift and Selection

The main point to take away from Table 30.1, and this section of the chapter is that weather you have
selection or not, it is highly unlikely that a single allele will fixate in a population. If you have a very
small population, however, then the chances of an allele fixating are much better. This is often the case in
human populations, where there are often small, interbred populations which allow for mutations to fix in a
population after only a few generations, even if the mutation is deleterious in nature. This is precisely why
we tend to see recessive deleterious mandolin disorders in isolated populations.

30.2.3 Ancestral State of Polymorphisms

How can we determine for a given polymorphism which version was the and which one is the mutant? The
ancestral state can be inferred by comparing the genome to that of a closely related species (e.g. humans
and chimpanzees) with a known phylogenetic tree. Mutations can occur anywhere along the phylogenetic
tree sometimes mutations at the split fix differently in different populations (“fixed difference”), in which
case the entire populations differ in genotype. However, recent mutations will not have had enough time to
become fixed, and a polymorphism will be present in one species but fully absent in the other as simultaneous
mutations in both species are very rare. In this case, the “derived variant” is the version of the polymorphism
appearing after the split, while the ancestral variant is the version occuring in both species.

462

6.047/6.878 Lecture 23: Population Genetic Variation

Figure 30.3: A comparison of the hetrozygous and homozygous derived and damaging genotypes per indi-
vidual in an African American (AA) and European American (EA) population study.

30.2.4 Measuring Derived Allele Frequencies

The the frequency of the derived allele in the population can be easily calculated, if we assume that the
population is homogeneous. However, this assumption may not hold when there is an unseen divide between
two groups that causes them to evolve separately as shown in figure 30.4.

Figure 30.4: Two isolated populations

In this case the prevalence of the variants among subpopulations is different and the Hardy-Weinberg
principle is violated.

One way to quantify this difference is to use the (Fst) to compare subpopulations within a species.
In reality only a portion of the total heterozygosity in a species is found in a given subpopulation. Fst
estimates the reduction in heterozygosity (2pq with alleles p and q) expected when 2 different populations
are erroneously grouped together. Given a population having n alleles with frequencies pi where (1 ≤ i ≤ n),

463

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 23: Population Genetic Variation

the homozygosity G of the population is calculated as:

Σni=1p
2
i

The total heterozygosity in the population is given by 1-G.

Heterozygosity(total)Fst = −Heterozygosity(subpopulation)
Heterozygosity(total)

In the case shown in figure 30.4 there is no heterozygosity between the populations, so Fst = 1. In reality
the Fst will be small within one species. In humans, for example, it is only 0.0625. For in practise, the Fst is
computed either by clustering sub-populations randomly or using an obvious characteristic such as ethnicity
or origin.

30.3 Genetic Linkage

In the simple models we’ve seen so far, alleles are assumed to be passed on independently of each other.
While this assumption generally holds in the long term, in the short term we will generally observe a that
certain alleles are passed on together more frequently than expected. This is termed genetic linkage.

The , also known as Mendel’s second law states:

Alleles of different genes are passed on independently from parent to offspring.

When this “law” holds, there is no correlation between different polymorphisms and the probability of
a haplotype (a given set of polymorphisms) is simply the product of the probabilities of each individual
polymorphism.

In the case where the two genes lie on different chromosomes this assumption of independence generally
holds, but if the two genes lie on the same chromosome, they are more often than not passed on together.
Without genetic recombination events, in which segments of DNA on homologous chromosomes are swapped
(crossing-over), the alleles of the two genes would remain perfectly correlated. With however, the correlation
between the genes will be reduced over several generations. Over a suitably long time interval, recombination
will completely remove the linkage between two polymorphisms; at which point they are said to be in
equilibrium. When, on the other hand, the polymorphisms are correlated, we have Linkage Disequilibrium
(LD). The amount of disequilibrium is the difference between the observed haplotype frequencies and those
predicted in equilibrium.

The linkage disequilibrium can be used to measure the difference between observed and expected assort-
ments. If there are two alleles (1 and 2) and two loci (A and B) we can calculate haplotype probabilities
and find the expected allele frequencies.

• Haplotype frequencies

– P (A1) = x11

464

6.047/6.878 Lecture 23: Population Genetic Variation

– P (B1) = x12

– P (A2) = x21

– P (B2) = x22

• Allele frequencies

– P11 = x11 + x12

– P21 = x21 + x22

– P12 = x11 + x21

– P22 = x12 + x22

• D = P11 ∗ P22P12 ∗ P21

Dmax, the maximum value of D with given allele frequencies, is related to D in the following equation:

D′ = D
Dmax

D′ is the maximum linkage disequilibrium or complete skew for the given alleles and allele frequencies.
Dmax can be found by taking the smaller of the expected haplotype frequencies P (A1, B2) or P (A2, B1). If
the two loci are in complete equilibrium, then D′ = 0. If D′ = 1, there is full linkage.

The key point is that relatively recent mutations have not had time to be broken down by crossing-overs.
Normally, such a mutation will not be very common. However, if it is under positive selection, the mutation
will be much more prevalent in the population than expected. Therefore, by carefully combining a measure
of LD and derived allele frequency, we can determine if a region is under positive selection.

Decay of is driven by recombination rate and time (in generations) and has an exponential decay. For a
higher recombination rate, linkage disequilibrium will decay faster in a shorter amount of time. However, the
background recombination rate is difficult to estimate and varies depending on the location in the genome.
Comparison of genomic data across multiple species can help in determining these background rates.

30.3.1 Correlation Coefficient r2

Answers how predictive an allele at locus A is of an allele at locus B

r2 = D2

P (A1)P (A2)P (B1)P (B2)

As the value of r2 approaches 1, the more two alleles at two loci are correlated. There may be linkage
disequilibrium between two haplotypes, even if the haplotypes are not correlated at all. The correlation
coefficient is particularly interesting when studying associations of diseases with genes, where knowing the
genotype at locus A may not predict a disease whereas locus B does. There is also the possibility where
neither locus A nor locus B are predictive of the disease alone but loci A and B together are predictive.

30.4 Natural Selection

In the mid 1800s the concept of evolution was not an uncommon idea, but it wasn’t before Darwin and
Wallace proposed natural selection as the mechanism that drives evolution in nature that the theory of

465

6.047/6.878 Lecture 23: Population Genetic Variation

evolution got widespread recognition. It took 70 years (1948) until J.B.S Haldanes Malaria Hypothesis
found the first example for natural selection in humans. He showed a correlation between genetic mutations
in red blood cells and the distribution of malaria prevalence and discovered that individuals who had a
specific mutation that made them suffer from sickle cell anaemia also gave made them resistant to malaria.

Lactose tolerance (lasting into adulthood) is another example of natural selection. Such explicit examples
were hard to prove without genome sequences. With whole genome sequencing readily available, we can now
search the genome for regions with the same patterns as these known examples to identify further regions
undergoing natural selection.

30.4.1 Genomics Signals of Natural Selection

• Ka/Ks ratio of non-synonymous to synonymous changes per gene

• Low diversity and many rare alleles over a region (ex Tajima’s D with regard to sickel-cell anemia)

• High derived allele frequency (or low) over a region (ex Fay and Wu’s H)

• Differentiation between populations faster than expected from drift (Measured with Fst)

• Long haplotypes: evidence of selective sweep.

• Exponential prevalence of a feature in sequential generations

• Mutations that help a species prosper

Figure 30.5: Approximate Time Table of Effects
Sabeti et al. Science 2006

Examples of Negative (Purifying) Selection

• Across species we see negative selection of new mutations in conserved functional elements (exons,
etc.).

466

© American Association for the Advancement of Science. All rights reserved. This content is excluded
from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Sabeti, P. C., et al. "Positive Natural Selection in the Human Lineage." Science 312, no. 5780
(2006): 1614-20.

http://ocw.mit.edu/help/faq-fair-use/
http://dx.doi.org/10.1126/science.1124309

6.047/6.878 Lecture 23: Population Genetic Variation

• New alleles within one species tend to have lower allele frequencies if the allele is non-synonymous
than synonymous. Lethal alleles have very low frequencies.

Examples of Positive (Adaptive) Selection

• Similar to negative selection in that positive selection more likely in functional elements or non-
synonymous alleles.

• Across species in a conserved element, a positively selected mutation might be the same over most
mammals, but change in a specific species because a positvely selected mutation appeared after speci-
ation or caused speciation.

• Within a species positvely selected alleles likely differ in allele frequency (Fst) across populations.
Examples include malaria resistance in African populations (30.6) and lactose persistence in European
populations (30.7).

• Polygenic selection within species can arise when a trait is selected for that depends on many
genes. An example is human height where 139 SNPs are known to be related to height. Most are not
population specific mutations but alleles across all humans that are seleced for in some populations
more than others. (30.8)

Figure 30.6: Localized positive selection for Malaria resistance within species
Sabeti et al. Science 2006

Statistical Tests

• Long range correlations (iHs, Xp, EHH): If we tag genetic sequences in an individual based on
their ancestry, we end up with a broken haplotype, where the number of breaks (color changes) is
correlated with the number of recombinations and can tell us how long ago a particular ancestry was
introduced.

• SWEEP A program developed by Pardis Sabeti, Ben Fry and Patrick Varilly. SWEEP detects
evidence of natural selection by analyzing haplotype structures in the genome using the long range

467

© American Association for the Advancement of Science. All rights reserved. This content is excluded
from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Sabeti, P. C., et al. "Positive Natural Selection in the Human Lineage." Science 312, no. 5780
(2006): 1614-20.

http://ocw.mit.edu/help/faq-fair-use/
http://dx.doi.org/10.1126/science.1124309

6.047/6.878 Lecture 23: Population Genetic Variation

Figure 30.7: Localized positive selection for lactase persistence allele
Sabeti et al. Science 2006

Courtesy of Macmillan Publishers Limited. Used with permission.
 Source: Turchin, Michael C., et al. "Evidence of Widespread Selection on Standing Variation

in Europe at Height-associated SNPs." Nature Genetics 44, no. 9 (2012): 1015-9.

Figure 30.8: Mean allele frequency difference of height SNPs, matched SNPS, and genome-wide SNPS
between Northern- and Southern-European populations
Turchin et al., Nature Genetics (2012)

haplotype test (LRH). It looks for high frequency alleles with long range linkage disequilibrium that
hints to large scale proliferation of a haplotype that occurred at a rate greater than recombination
could break it from its markers .

• High Frequency Derived Alleles Look for large spikes in the frequency of derived alleles in set
positions.

• High Differentiation (Fst) Large spikes in differentiation at certain positions.

Using these tests, we can find genomic regions under selective pressure. One problem is that a single SNP
under positive selection will allow nearby SNPs to piggy-back and ride along. It is difficult to distinguish
the SNP under selection from its neighbours with only one test. Under selection, all the tests are strongly

468

© American Association for the Advancement of Science. All rights reserved. This content is excluded
from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Sabeti, P. C., et al. "Positive Natural Selection in the Human Lineage." Science 312, no. 5780
(2006): 1614-20.

http://dx.doi.org/10.1038/ng.2368
http://dx.doi.org/10.1038/ng.2368
http://ocw.mit.edu/help/faq-fair-use/
http://dx.doi.org/10.1126/science.1124309

6.047/6.878 Lecture 23: Population Genetic Variation

Figure 30.9: Broken haplotype as a signal of natural selection

correlated; however, in the absence of selection they are generally independent. Therefore, by employing a
composite statistic built from all of these tests, it is possible to isolate the individual SNP under selection.

Examples where a single SNP has been implicated in a trait:

• Chr15 Skin pigmentation in Northern Europe

• Chr2 Hair traits in Asia

• Chr10 Unknown trait in Asia

• Chr12 Unknown Trait in Africa

30.5 Human Evolution

30.5.1 A History of the Study of Population Dynamics

Not surprisingly, the scientific community has a long, and somewhat controversial history of interest in
recent population dynamics. While indeed some of this interest was applied toward more nefarious aims,
such as the scientific justifications for racism for eugenics but these are increasingly the exception and
not the rule. Early studies of population dynamic were primitive in many ways. Quantifying the differences
between human populations was originally performed using blood types, as they seemed to be phenotypically
neutral, could be tested for outside of the body, and seemed to be polymorphic in many different human
populations. Fast forward to the present, and the scientific community has realized that there are other
glycoproteins beyond the A,B and O blood groups that are far more polymorphic in the population. As
science continued to advance and sequencing became a reality, they began whole genome sequencing of the
Y-chromosome, mitochondrial and microsatellite markers around them. What’s special about those two
types of genetic data? First and foremost, they are quite short so they can be sequenced more easily than
other chromosomes. Beyond just the size, the reason that the Y and mitochondrial chromosomes were of
such interest is because they do not recombine, and can be used to easily reconstruct inheritance trees.
This is precisely what makes these chromosomes special relative to a short chunk on an autosome; we know
exactly where it comes from because we can trace paternal or maternal lineage backward in time.

469

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 23: Population Genetic Variation

This type of reconstruction does not work with other chromosomes. If one were to generate a tree using
a certain chunk of all of chromosome 1 in a certain population, for instance, they would indeed form a
phylogeny but that phylogeny would be picked from random ancestors in each of the family trees.

As sequencing continued to develop and grow more effective, the human genome project was being
proposed, and along with it there was a strong push to include some sort of diversity measure in genomic
data. Technically speaking, it was easiest to simply look at microsatellites for this diversity measure because
they can be studied on gel to see size polymorphisms instead of inspecting a sequence polymorphism. As a
reminder, a microsatellite is a region of variable length in the human genome often characterised by short
tandem repeats. One reason for microsatellites is retroviruses inserting themselves into the genome, such as
the ALU elements in the human genome. These elements sometimes become active and will retro-transpose
as insertion events and one can trace when those insertion events have happened in human lineage. Hence,
there was a push, early on to assay these parts of the genome in a variety of different populations. The
really attractive thing about microsatellites is that they are highly polymorphic and one can actually infer
their rate of mutation. Hence, we can not only say that there is a certain relationship between populations
based on these rates, but we can also say how long they have been evolving and even when certain mutations
occurred, and how long it’s been on certain branches of the phylogenetic tree.

FAQ

Q: Can’t this simply be done with SNPs

A: You can’t do it very easily with SNPs.

You can get an idea of how old they are based on their allele frequency, but they’re also going to be
influenced by selection.

After the human genome project, came the Haplotype inheritance Hapmap project which looked at
SNPs genome wide. We have discussed Haplotype inheritance in detail in prior chapters where we learned
the importance of Hapmap in designing genotyping arrays which look at SNPs that mark common haplotypes
in the population.

The effects of Bottlenecks on Human diversity Using this wealth of data across studies and a plethora
of mathematical techniques has led to the realization that humans, in fact, have a very low diversity given
our census population; which implies a small effective population size. Utilizing the Wright-Fisher model it
is possible to work back from the level of diversity and the number of mutations we see in the population
today to generate a founding population size. When this computation is performed it works out to being
around 10,000.

FAQ

Q: Why is this so much smaller than our census population size?

A: There was A population bottleneck somewhere.

470

6.047/6.878 Lecture 23: Population Genetic Variation

Figure 30.10: A depiction of two major bottleneck events, one in the founding population from Africa, and
other, smaller subsequent bottleneck events in the East Asian and Western European populations.

Most of the total variation between humans is happening within-continent. One can measure how much
diversity is explained by geography and how much is not. It turns out that most of it is not explained by
geography. In fact, most common variants are polymorphic in every population and if a common variant
is unique to a given population, there probably hasn’t been enough time for that to happen by drift itself.
Recall what an unlikely process it is to get to a high allele frequency over the course of several generations
by mere chance alone. Hence, we may interpret this as a signal of selection when it occurs. All of the
evidence in terms of comparing diversity patterns and trees back to ancestral haplotypes converges to an
Out-of-Africa hypothesis which is the overwhelming consensus in the field and is the lens through which we
review all the genetic population data. Starting from the African founder population, there have been works
which have demonstrated that it’s possible to model population growth using the wright fisher model. The
studies have shown that the growth rate we see in Asian and European populations are only consistent with
large exponential growth after the out-of-Africa event.

Table 30.2: Genetic Estimates of Recent Population Growth in Europe

This helps us understand the reasons for phonotypical differences between the races as Bottlenecks which

471

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 23: Population Genetic Variation

are followed by exponential growth can lead to an excess of rare alleles. The present theory on human
diversity states that there were secondary bottleneck events after the founding population migrated out of
Africa. These founders were, at some earlier point subject to an even smaller bottleneck event which is
now reflected in every human genome on the planet, regardless of their immediate ancestry. It is possible
to estimate how small the original bottle neck was by looking at differences between African and European
origin individuals, inferring the effects of the secondary bottleneck, and the term of exponential growth of
the European population. The other way of approaching bottleneck event estimation is to simply inspect the
allele frequency spectrum needed to build coalescent trees. In this way, one can take haplotypes across the
genome and ask what the most recent common ancestor was by observing how the coalescence varies across
the genome. For instance, one may guess that some haplotype was positively selected for only recently given
the length of the haplotype. An example of one such recent mutation in the European population is the
lactase gene. Another example for the Asian population is the ER locus.

There is a wealth of literature showing that when one draws a coalescence tree for most haplotypes it
ends up going way back before when we think speciation happened. This indicates that certain features have
been kept polymorphic for a very long time. One can, however, look at this distribution of features across
the whole genome and infer something about population history from it. If there was a recent bottle neck in
a population, it will be reflected by the ancestors being very recent whereas more ancient things will have
survived the bottleneck. One can take the distribution of coalescent times and run simulations for how the
effect of population size would have varied with time. The model for doing this type of study was outlined
by Li and Durbin. The Figure 30.11 from their study illustrates two such bottleneck events. The first is the
bottleneck which occurred in Africa long before migrations out of the continent. This was then followed by
a population specific bottleneck that resulted from migration groups out of Africa. This is reflected in the
diversity of the populations today based on their ancestry and it can be derived from looking at a pair of
chromosome from any two people in these populations.

Figure 30.11: An illustration of two bottleneck events

30.5.2 Understanding Disease

Understanding that human populations went through bottlenecks has important implications for under-
standing population specific disease. A study published by Tennessen et al. this year was looking at exome
sequences in many classes of individuals. The study intended to look at how rare variants might be con-
tributing to disease and as a consequence they were able to fit population genetics models to the data, and
ask what sort of deleterious variants were seen when sequencing exomes from a broad population panel.
Using this approach, they were then able to generate parameters which describe how long ago exponential

472

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 23: Population Genetic Variation

growth between the founder, and branching populations occured. See figure 30.12 below for an illustration
of this:

Figure 30.12: The figure illustrate the effects of a bottleneck events on the number of rare Alleles in a
population.

30.5.3 Understanding Recent Population Admixture

In addition to viewing coalescent times, one can also perform Principal Component Analysis on SNPs to
gain an understanding of more recent population admixtures. Running this on most populations shows
clustering with respect to geographical location. There are some populations, however, that experienced a
recent admixture for historical reason. The two most commonly referred to in the scientific literature are:
African Americans, who on average are 20

Figure 30.13: A depiction of European admixture levels in the Mexican, and African American populations.

There are two major things one can say about the admixture event of African Americans and Mexican
Americans. The first and more obvious is inferring the admixture level. The second, and more interesting,
is inferring when the admixture event happened based on the actual mixture level. As we have discussed in
previous chapters, the racial signifiers of the genome break down with admixture because of recombination
in each generation. If the population is contained, the percentage of those with European and West African

473

© American Association for the Advancement of Science. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Tennessen, Jacob A., et al. "Evolution and Functional Impact of Rare Coding Variation from Deep
Sequencing of Human Exomes." Science 337, no. 6090 (2012): 64-69.

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
Source: Kidd, Jeffrey M., et al. "Population Genetic Inference from Personal Genome Data: Impact of Ancestry and
Admixtureon Human Genomic Variation." The American Journal of Human Genetics 91, no. 4 (2012): 660-71.

http://ocw.mit.edu/help/faq-fair-use/
http://dx.doi.org/10.1126/science.1219240
http://dx.doi.org/10.1126/science.1219240
http://dx.doi.org/10.1016/j.ajhg.2012.08.025
http://dx.doi.org/10.1016/j.ajhg.2012.08.025
http://www.sciencedirect.com

6.047/6.878 Lecture 23: Population Genetic Variation

origin should stay the same in each generation, but the segments will get shorter, due to the mixing. Hence,
the length of the haplotype blocks can be used to date back to when the mixing originally happened. (When
it originally happened we would expect large chunks, with some gambits being entirely of African origin,
for instance.) Using this approach, one can look at the distribution of recent ancestry traps and then fit a
model to when these migrants entered an ancestral population as shown below:

Figure 30.14: As illustration of the magnitude and origin of migrants based on the tract length and number
of tracts in the admixed population.

30.6 Current Research

30.6.1 HapMap project

The International Project aims to catalog the genomes of humans from various countries and regions and find
similarities and differences to help researchers find genes that will benefit the advance in disease treatment
and administration of health related technologies.

30.6.2 1000 genomes project

The 1000 Genomes Project is an international consortium of researchers aiming to establish a detailed
catalogue of human genetic variation. Its aim was to sequence the genomes of more than a thousand
anonymous participants from a number of different ethnic groups. In October 2012, the sequencing of 1092
genomes was announced in a Nature paper. It is hoped that the data collected by this project will help
scientists gain more insight into human evolution, natural selection and rare disease-causing variants.

30.7 Further Reading

• Campbell Biology, 9th edition; Pearson; Chapter 23: The Evolution of Populations

474

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
Source: Kidd, Jeffrey M., et al. "Population Genetic Inference from Personal Genome Data: Impact of Ancestry and
Admixtureon Human Genomic Variation." The American Journal of Human Genetics 91, no. 4 (2012): 660-71.

http://www.sciencedirect.com
http://dx.doi.org/10.1016/j.ajhg.2012.08.025
http://dx.doi.org/10.1016/j.ajhg.2012.08.025

6.047/6.878 Lecture 23: Population Genetic Variation

• The Cell, 5th edition, Garland publishing ; Chapters 5: DNA replication, repair and recombination,
Chapter 20: Germ cells and fertilization

Bibliography

475

6.047/6.878 Lecture 23: Population Genetic Variation

476

Part V

Medical Genomics

477

CHAPTER

THIRTYONE

MEDICAL GENETICS – THE PAST TO THE PRESENT

Guest Lecture by
Mark J. Daly (PhD)
Scribed by Anna Ayuso, Abhishek Sarkar (2011), Joel Brooks (2012), Grace Yeo (2014)

Figures
31.1 Examples of diseases and quantitative traits which have genetic components 478

31.2 The drug development process . 479

31.3 A pedigree which shows the inheritance of some trait . 480

31.4 Representing a particular pattern of inheritance as an inheritance vector 481

31.5 Discovery of genes for different disease types versus time 482

31.6 Different types of genetic variation . 483

31.7 Thresholds for GWAS significance at the blue line and red lines for a study by the IBDGC
on Crohn’s disease. The blue line represents a p-value of 5e-8 and the red line represents
approximately 7.2e-8. 485

31.8 (A) Manhattan plot and (B) Q-Q plot for GWAS of Crohn’s disease 485

31.9 Evaluating Disease Network Significance . 487

31.1 Introduction

Mark J. Daly, Ph.D., is an Associate Professor at the Massachusetts General Hospital/Harvard Medical
School and an Associate Member of the Broad Institute. This lecture explains how statistical and computa-
tional methods can aid researchers in understanding, diagnosing, and treating disease. Association mapping
is the process identifying genetic variation which can explain phenotypic variation, which is particularly
important for understanding disease phenotypes (e.g., susceptibility). Historically, the method of choice for
solving this problem was linkage analysis. However, advances in genomic technology have allowed for a more
powerful method called genome-wide association.

479

6.047/6.878 Lecture 24: Medical Genetics – The Past to the Present

More recent advances in technology and genomic data have allowed for novel integrative analyses which
can make powerful predictions about diseases. Any discussion about the basis of disease must consider both
genetic and environmental effects. However, it is known that many traits, for example those in Figure 31.1,
have significant genetic components. Formally, the heritability of a phenotype is the proportion of variation
in that phenotype which can be explained by genetic variation. The traits in Figure 31.1 are all at least
50% heritable. Accurately estimating heritability involves statistical analyses on samples with highly varied
levels of shared genetic variation (e.g., twins, siblings, relatives, and unrelated). Studies on the heritability
of Type 2 diabetes, for example, have shown that given you have diabetes, the risk to the person sitting next
to you (an unrelated person) increases by 5–10%; the risk to a sibling increases by 30%; and the risk to an
identical twin increases by 85%–90%.

31.2 Goals of investigating the genetic basis of disease

Having established that there is a genetic component to disease traits, how can this research help meet
outstanding medical challenges? There are two main ways:

31.2.1 Personalized genomic medicine

Variants can be used in genetic screens to test for increased risk for the disease trait and provide individ-
ualized medical insights. A large number of companies are now providing personalized genomic services
through screening for cancer recurrence risk, genetic disorders (including prenatal screening), and common
disease. Individualized genomic medicine can help identify likelihood to benefit from specific therapeutic
interventions, or can predict adverse drug responses.

31.2.2 Informing therapeutic development

Identifying genetic variants which explain the disease trait contributes to our ability to understand the
mechanism (the biochemical pathways, etc.) by which the disease manifests. This allows us to engineer
drugs that are more effective at targeting the causal pathways in disease. This is of particular interest

Figure 31.1: Examples of diseases and quantitative traits which have genetic components

480

6.047/6.878 Lecture 24: Medical Genetics – The Past to the Present

Figure 31.2: The drug development process

because our current drug development process makes it difficult to develop drugs for certain disorders. For
example, in the last 50 years, no truly novel compounds have been developed to treat various psychiatric
disorders such as schizophrenia. The identification of genetically associated genes can help identify targets
to start drug development.

Figure 31.2 depicts the cycle of drug development. The drug development process starts with hypothe-
sizing a possible target of interest that might be related to a disease. After biochemical evaluations and drug
development, the target is tested in model organisms. If the drug is effective in model organisms, it is tested
in humans through clinical trials. However, the vast majority of drugs which make it through this process
end up being ineffective in treating the disease for which they were originally designed. This result is mainly
a consequence of faulty target selection as the basis of the disease in question. Statins are a prominent
example of highly effective drugs developed after work on understanding the genetic basis of the disease
trait they are targeted at. Dr. Michael Brown and Dr. Joseph Goldstein won the Nobel Prize in Physiology
or Medicine in 1985 for their work on the regulation of LDL cholesterol metabolism [5]. They were able
to isolate the cause of extreme familial hypercholesterolemia (FH), a Mendelian disorder, to mutations of a
single gene encoding an LDL receptor. Moreover, they were able to identify the biochemical pathway which
was affected by the mutation to create the disease condition. Statins target that pathway, making them
useful not only to individuals suffering from FH, but also as an effective treatment for high LDL cholesterol
in the general population.

31.3 Mendelian Traits

31.3.1 Mendel

Gregor Mendel identified the first evidence of inheritance in 1865 using plant hybridization. He recognized
discrete units of inheritance related to phenotypic traits, and noted that variation in these units, and therefore
variations in phenotypes, was transmissible through generations. However, Mendel ignored a discrepancy
in his data: some pairs of phenotypes were not passed on independently. This was not understood until
1913, when linkage mapping showed that genes on the same chromosome are passed along in tandem unless a
meiotic cross-over event occurs. Furthermore, the distance between genes of interest describes the probability
of a recombination event occuring between the two loci, and therefore the probability of the two genes being
inherited together (linkage).

481

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 24: Medical Genetics – The Past to the Present

Figure 31.3: A pedigree which shows the inheritance of some trait

31.3.2 Linkage Analysis

Historically, researchers have used the idea of linkage through linkage analysis to determine genetic variants
which explain phenotypic variation. The goal is to determine which variants contribute to the observed
pattern of phenotypic variation in a pedigree. Figure 31.3 shows an example pedigree in which squares are
male individuals, circles are female individuals, couples and offspring are connected, and individuals in red
have the trait of interest.

Linkage analysis relies on the biological insight that genetic variants are not independently inherited (as
proposed by Mendel). Instead, meiotic recombination happens a limited number of times (roughly once per
chromosome), so many variants cosegregate (are inherited together). This phenomenon is known as linkage
disequilibrium (LD).

As the distance between two variants increases, the probability a recombination occurs between them
increases. Thomas Hunt Morgan and Alfred Sturtevant developed this idea to produce linkage maps which
could not only determine the order of genes on a chromosome, but also their relative distances to each other.
The Morgan is the unit of genetic distance they proposed; loci separated by 1 centimorgan (cM) have 1 in
100 chance of being separated by a recombination. Unlinked loci have 50% chance of being separated by a
recombination (they are separated if an odd number of recombinations happens between them). Since we
usually do not know a priori which variants are causal, we instead use genetic markers which capture other
variants due to LD. In 1980, David Botstein proposed using single nucleotide polymorphisms (SNPs), or
mutations of a single base, as genetic markers in humans [4]. If a particular marker is in LD with the actual
causal variant, then we will observe its pattern of inheritance contributing to the phenotypic variation in the
pedigree and can narrow down our search.

The statistical foundations of linkage analysis were developed in the first part of the 20th century. Ronald
Fisher proposed a genetic model which could reconcile Mendelian inheritance with continuous phenotypes
such as height [10]. Newton Morton developed a statistical test called the LOD score (logarithm of odds)
to test the hypothesis that the observed data results from linkage [26]. The null hypothesis of the test is that
the recombination fraction (the probability a recombination occurs between two adjacent markers) θ = 1/2
(no linkage) while the alternative hypothesis is that it is some smaller quantity. The LOD score is essentially
a log-likelihood ratio which captures this statistical test:

log(likelihood of disease given linkage)
LOD =

log(likelihood of disease given no linkage)

The algorithms for linkage analysis were developed in the latter part of the 20th century. There are
two main classes of linkage analysis: parametric and nonparametric [34]. Parametric linkage analysis relies
on a model (parameters) of the inheritance, frequencies, and penetrance of a particular variant. Let F be
the set of founders (original ancestors) in the pedigree, let gi be the genotype of individual i, let Φi be

482

6.047/6.878 Lecture 24: Medical Genetics – The Past to the Present

Figure 31.4: Representing a particular pattern of inheritance as an inheritance vector

the phenotype of individual i, and let f(i) and m(i) be the father and mother of individual i. Then, the
likelihood of observing the genotypes and phenotypes in the pedigree is:

L =
∑

. . .
g1

∑
Pr(Φi gi) Pr(gf) Pr(gi gf(i), gm(i))

gn

∏
i

|
f

∏
F

|
∈ i

∏
∈/F

The time required to compute this likelihood is exponential in both the number of markers being con-
sidered and the number of individuals in the pedigree. However, Elston and Stewart gave an algorithm for
more efficiently computing it assuming no inbreeding in the pedigree [8]. Their insight was that conditioned
on parental genotypes, offspring are conditionally independent. In other words, we can treat the pedigree
as a Bayesian network to more efficiently compute the joint probability distribution. Their algorithm scales
linearly in the size of the pedigree, but exponentially in the number of markers.

There are several issues with parametric linkage analysis. First, individual markers may not be infor-
mative (give unambiguous information about inheritance). For example, homozygous parents or genotyping
error could lead to uninformative markers. To get around this, we could type more markers, but the al-
gorithm does not scale well with the number of markers. Second, coming up with model parameters for a
Mendelian disorder is straightforward. However, doing the same for non-Mendelian disorders is non-trivial.
Finally, estimates of LD between markers are not inherently supported.

Nonparametric linkage analysis does not require a genetic model. Instead, we first infer the inheritance
pattern given the genotypes and the pedigree. We then determine whether the inheritance pattern can
explain the phenotypic variation in the pedigree.

Lander and Green formulated an HMM to perform the first part of this analysis [20]. The states of
this HMM are inheritance vectors which specify the result every meiosis in the pedigree. Each individual
is represented by 2 bits (one for each parent). The value of each bit is 0 or 1 depending on which of the
grand-parental alleles is inherited. Figure 31.4 shows an example of the representation of two individuals in
an inheritance vector.

Each step of the HMM corresponds to a marker; a transition in the HMM corresponds to some bits
of the inheritance vector changing. This means the allele inherited from some meiosis changed, i.e. that a
recombination occurred. The transition probabilities in the HMM are then a function of the recombination
fraction between adjacent markers and the Hamming distance (the number of bits which differ, or the number
of recombinations) between the two states. We can use the forward-backward algorithm to compute posterior
probabilities on this HMM and infer the probability of every inheritance pattern for every marker.

This algorithm scales linearly in the number of markers, but exponentially in the size of the pedigree. The
number of states in the HMM is exponential in the length of the inheritance vector, which is linear in the size
of the pedigree. In general, the problem is known to be NP-hard (to the best of our knowledge, we cannot do
better than an algorithm which scales exponentially in the input) [28]. However, the problem is important not

483

6.047/6.878 Lecture 24: Medical Genetics – The Past to the Present

Figure 31.5: Discovery of genes for different disease types versus time

only in this context, but also in the contexts of haplotype inference or phasing (assigning alleles to homologous
chromosomes) and genotype imputation (inferring missing genotypes based on known genotypes). There have
been many optimizations to make this analysis more tractable in practice [1, 11, 12, 15–18, 21, 23].

Linkage analysis identifies a broad genomic region which correlates with the trait of interest. To narrow
down the region, we can use fine-resolution genetic maps of recombination breakpoints. We can then identify
the affected gene and causal mutation by sequencing the region and testing for altered function.

31.4 Complex Traits

Linkage analysis has proven to be highly effective in studying the genetic basis of Mendelian (single gene)
diseases. In the past three decades, thousands of genes have been identified as contributing to Mendelian
diseases. We have identified the genetic basis of disease such as sickle cell anemia, cystic fibrosis, muscular
dystrophy, and severe forms of common diseases such as diabetes and hypertension. For these diseases,
mutations are severe and obvious; the environment, behavior, and chance have little effect. Figure 31.5
shows this explosion in published associations.

However, most diseases (and many other traits of interest) are not Mendelian. These complex traits
arise from the interactions of many genes and possibly the environment and behavior. A canonical complex
trait is human height: it is highly heritable, but environmental factors can affect it. Recently, researchers
have identified hundreds of variants which are associated with height [2, 25].

Linkage analysis is not a viable approach to find these variants. The first complex trait mapping occured
in 1920 by Altenburg and Muller and involved the genetic basis of truncated wing in D. Melanogaster.
The polygenicity, or distribution of a complex trait across a large number of genes, provides a fundamental
challenge to determining which genes are associated with a phenotype. In complex traits, instead of one
gene determining a disease or trait (as in Mendelian inheritance), many genes each exert a small influence.
The effect of all of these genes, as well as environmental influences, combine to determine an individual
outcome. Furthermore, most common diseases work this way. This is due to the fact that selection agains
each individual genotypic difference is very small, because there is no one difference that is causal for the
disease. This way, complex traits ”survive” evolution, because they are not targets for selection.

484

© American Association for the Advancement of Science. All rights reserved. This content is excluded from
our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Glazier, Anne M., et al. "Finding Genes that Underlie Complex Traits." Science 298, no. 5602 (2002): 2345-9.

http://ocw.mit.edu/help/faq-fair-use/
http://dx.doi.org/10.1126/science.1076641

6.047/6.878 Lecture 24: Medical Genetics – The Past to the Present

Figure 31.6: Different types of genetic variation

31.5 Genome-wide Association Studies

In the 1990s, researchers proposed a methodology called genome-wide association to systematically cor-
relate markers with traits. These studies sample large pools of cases and controls, measure their genotypes
at on the order of one million markers, and try to correlate variation (SNPs, CNVs, indels) in their genotypes
with their variation in phenotype, tracking disease through the population, instead of pedigrees.

31.5.1 Events Enabling Genome-wide Association Studies

Genome-wide association studies (GWASs) are possible due to three advances.

First, advances in our understanding of the genome and the creation of genomic resources have allowed
us to better understand and catalogue variation in the genome. From this data, we have realized the key
biological insight that humans are one of the least genetically diverse species. On the order of tens of millions
of SNPs are shared between different human subpopulations. For any particular region of the genome, we
observe only a limited number of haplotypes (allele combinations which are inherited together). This is
due to the fact that as a species, we are relatively new, and mutations have not caught up with our rapid
growth. Because of this high redundancy, we only need to measure a fraction of all the variants in the human
genome in order to capture them all with LD. We can then adapt the algorithms for inferring inheritance
patterns in linkage analysis to impute genotypes for the markers which we did not genotype. Furthermore,
genome resources allow us to carefully choose markers to measure and to make predictions based on markers
which show statistically significant association. We now have the reference sequence of the human genome
(allowing for alignments, genotype and SNP calling) and HapMap, a comprehensive catalog of SNPs in
humans. We also have genome-wide annotations of genes and regulatory elements.

Second, advances in genotyping technology such as microarrays and high-throughput sequencing have
given us the opportunity to compare the genomes of those affected with various phenotypes to controls.
They are also the easiest and cheapest to measure using these technologies. Although there are many
types of variation in the human genome (Figure 31.6 shows some examples), SNPs are the vast majority.
Additionally, to account for the other types of variants, recently DNA microarrays have been developed to
detect copy-number variation in addition to SNPs, after which we can impute the unobserved data.

The third advance is a new expectation of collaboration between researchers. GWASs rely on large sample
sizes to increase the power (probability of a true positive) of statistical tests. The explosion in the number
of published GWASs has allowed for a new type of meta-analysis which combines the results of several

485

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 24: Medical Genetics – The Past to the Present

GWASs for the same phenotype to make more powerful associations. Meta-analysis accounts for various
technical and population-genetic biases in individual studies. Researchers who conduct GWASs are expected
to collaborate with others who have conducted GWASs on the same trait in order to show replicability of
results. By pooling together the data, we also have more confidence in the reported associations, and the
genes that are discovered may lead to the recognition of key pathways and processes.

Did You Know?
Modified from the Wellcome Trust Sanger Institute: Crohn’s disease and Ulcerative Colitis have
been focuses for complex disease genetics, and the massive collaborative efforts of the International
Inflammatory Bowel Disease Genetics Consortium (IIBDGC) strengthen the success of the research.
With approximately 40,000 DNA samples from patients with IBD and 20,000 healthy controls, the
IIBDGC have discovered 99 definite IBD loci. In all, the 71 Crohn’s disease and 47 UC loci account
for 23 % and 16% of disease heritability respectively. Key insights into disease biology have already
resulted from gene discovery (e.g. autophagy in Crohn’s disease, defective barrier function in UC and
IL23 signalling in IBD and immune-mediated disease generally). It is anticipated that of the many
novel drug targets identified by gene discovery, a few will ultimately result in improved therapeutics
for these devastating conditions. Improved diagnostics, prognostics and therapeutics are all goals,
with a view to personalized therapy (the practice of using an individual’s genetic profile as a
guide for treatment decisions) in future.

[?]

31.5.2 Quality Controls

The main problem in conducting GWASs is eliminating confounding factors, but best practices can be used
to support quality data.

First, there is genotyping error, which is common enough to require special treatment regardless of which
technology is used. This is a technical quality control, and to account for such errors, we use thresholds
on metrics like minor allele frequency and deviation from Hardy–Weinberg equilibrium and throw out
SNPs which do not meet the criteria.

Second, systematic genetic differences between human subpopulations require a genetic quality control.
There are several methods to account for this population substructure, such as genomic control [7],
testing for Mendelian inconsistencies, structured association [30], and principal component analysis [27, 29].

Third, covariates such as environmental and behavioral effects or gender may skew the data. We can
account for these by including them in our statistical model.

31.5.3 Testing for Association

After performing the quality controls, the statistical analysis involved in GWAS is fairly straightforward,
with the simplest tests being single marker regression or a chi-square test. In fact, association results
requiring arcane statistics/complex multi-marker models are often less reliable.

First, we assume the effect of each SNP is independent and additive to make the analysis tractable. For
each SNP, we perform a hypothesis test whose null hypothesis is that the observed variation in the genotype
at that SNP across the subjects does not correlate with the observed variation in the phenotype across the
subjects. Because we perform one test for each SNP, we need to deal with the multiple testing problem.
Each test has some probability of giving a false positive result, and as we increase the number of tests, the

486

6.047/6.878 Lecture 24: Medical Genetics – The Past to the Present

Figure 31.7: Thresholds for GWAS significance at the blue line and red lines for a study by the IBDGC on
Crohn’s disease. The blue line represents a p-value of 5e-8 and the red line represents approximately 7.2e-8.

probability of getting a false positive in any of them increases. Essentially, with linkage, p = 0.001 (.05/ 50
chromosomal arms) would be considered potentially significant, but GWAS involves performing O(10e6) tests
that are largely independent. Each study would have hundreds of p <0.001 purely by statistical chance,
with no real relationship to disease. There are several methods to account for multiple testing such as
Bonferroni correction and measures such as the false discovery rate [3] and the irreproducible discovery rate
[22]. Typically, genome-wide significance is set at p = 5*10e-8 (= .05/1 million tests), first proposed
by Risch and Merikangas (1996) []. In 2008, three groups [] published empirically derivaed estimates based
on dense genome-wide maps of common DNA and estimated appropriate dense-map numbers to be in the
range of 2.5 to 7.2e-8. These can be visualized in Figure 31.7. Because of these different thresholds, it’s
important to look at multiple studies to validate associations, as even with strict quality control there can
be artifiacts that can affect one every thousand or ten thousand SNPs and escape notice. Additionally, strict
genomewide significance is generally not dramatically exceeded, if it’s reached at all, in a single study.

In addition to reporting SNPs which show the strongest associations, we typically also use Manhattan
plots to show where these SNPs are located in the genome and quantile-quantile (Q-Q) plots to detect biases
which have not been properly accounted for. A Manhattan plot is a scatter plot of log-transformed p-values
against genomic position (concatenating the chromosomes). In Figure 31.8A, the points in red are those
which meet the significance threshold. They are labeled with candidate genes which are close by. A Q-Q
plot is a scatter plot of log-transformed observed p-values against log-transformed expected p-values. We
use uniform quantiles as the expected p-values: assuming there is no association, we expect p-values to be
uniformly distributed. Deviation from the diagonal suggests p-values are more significant than would be
expected. However, early and consistent deviation from the diagonal suggests too many p-values are too
significant, i.e. there is some bias which is confounding the test. In Figure 31.8B, the plot shows observed test
statistic against expected test statistic (which is equivalent). Considering all markers includes the Major
Histocompatability Complex (MHC), which is the region associated with immune response. This region
has a unique LD structure which confounds the statistical analysis, as is clear from the deviation of the black
points from the diagonal (the gray area). Throwing out the MHC removes much of this bias from the results
(the blue points).

GWAS identifies markers which correlate with the trait of interest. However, each marker captures a
neighborhood of SNPs which it is in LD with, making the problem of identifying the causal variant harder.
Typically, the candidate gene for a marker is the one which is closest to it. From here, we have to do further
study to identify the relevance of the variants which we identify. However, this remains a challenging problem
for a few reasons:

487

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 24: Medical Genetics – The Past to the Present

Figure 31.8: (A) Manhattan plot and (B) Q-Q plot for GWAS of Crohn’s disease

• Regions of interest identified by association often implicate multiple genes

• Some of these associations are nowhere near any protein coding segments and do no thave an obviously
functional allele as their origin

• Linking these regions to underlying biological pathways is difficult

31.5.4 Interpretation: How can GWAS inform the biology of disease?

Our primary goal is to use these found associations to understand the biology of disease in an actionable
manner, as this will help guide therapies in order to treat these diseases. Most associations do not identify
specific genes and causal mutations, but rather are just pointers to small regions with causal influences on
disease. In order to develop and act on a therapeutic hypothesis, we must go much further, and answer these
questions:

• Which gene is connected to disease?

• What biological process is thereby implicated?

• What is the cellular context in which that process acts and is relevant to disease?

• What are the specific functional alleles which perturb the process and promote or protect from dis-
ease?

This can be approached in one of two manners: the bottom-up approach, or the top-down approach.

31.5.5 Bottom-up

The bottom-up approach is used to investigate a particular gene that has a known association with a disease,
and investigate it’s biological importance within a cell. Kuballa et al.[19] were able to use this bottom-up
approach to learn that a particular risk variant associated with Crohn’s Disease leads to impairment of

488

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 24: Medical Genetics – The Past to the Present

Figure 31.9: Evaluating Disease Network Significance

autophagy of certain pathogens. Furthermore, the authors were able to create a mouse model of the same
risk variant found in humans. Identifying biological implications of risk variants at the cellular level and
creating these models is invaluable as the models can be directly used to test new potential treatment
compounds.

31.5.6 Top-down

In contrast, the top-down approach involves looking at all known associations, utilizing the complete set of
GWAS results, and trying to link them to shared biological processes/pathways implicated in disease patho-
genesis. This approach is based on the idea that many of the associated genes with a disease share relevant
biological pathways. This is commonly done by taking existing networks like protein-protein interaction
networks, and layering the associated genes on top of them. However, these resulting disease networks may
not be significant due to bias in both the discovery of associations and the experimental bias of the data that
the associations are being integrated with. This significance can be estimated by permuting the labels for
the nodes in the network many times, and then computing how rare the level of connectivity is for the given
disease network. This process is illustrated in Figure 31.9. As genes connected in the network should be
co-expressed, it has been shown that these disease networks can be further validated from gene-expression
profiling[14].

31.5.7 Comparison with Linkage Analysis

It is important to note GWAS captures more variants than linkage analysis. Linkage analysis identifies
rare variants which have negative effects, and linkage studies are used when pedigrees of related individuals
with phenotypic information is available. They can identify rare alleles that are present in smaller numbers
of families, usually due to a founder mutatios and have been used to identify mutations such as BRCA1,
associated with breast cancer. Alternatively, association studies are used for this purpose and also to find
more common genetic changes that confer smaller influences in susceptibility, such as rare variants which
have protective effects. Linkage analysis cannot identify these variants because they are anti-correlated with
disease status. Furthermore, linkage analysis relies on the assumption that a single variant explains the
disease, an assumption that does not hold for complex traits such as disease. Instead, we need to consider
many markers in order to explain the genetic basis of these traits.

489

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 24: Medical Genetics – The Past to the Present

31.5.8 Challenges of Non-coding Variants

While genomic medicine promises novel discoveries in disease mechanisms, target genes, therapeutics, and
personalized medicine, several challenges remain, including that 90+% of hits are non-coding.

To fix this, the non-coding genome has been annotated through ENCODE/Roadmap and enhancers
have been linked to regulators and target genes. Once each GWAS locus is expanded using SNP linkage
desiquilibrium (LD) it can be used to recognize relevant cell types, driver transcription factors, and target
genes. These leads to a linking of traits to their relevant cell and tissue types.

31.5.9 Conclusions

We have learned several lessons from GWAS. First, fewer than one-third of reported associations are coding or
obviously functional variants. Second, only some fraction of associated non-coding variants are significantly
associated to expression level of a nearby gene. Third, many are associated to regions with no nearby coding
gene. Finally, the majority of reported variants are associated to multiple autoimmune or inflammatory
diseases. These revelations indicate that there are still many mysteries lurking in the genome waiting to be
discovered.

31.6 Current Research Directions

One current challenge in medical genetics is that of translation. In particular, we are concerned if GWAS
can inform the development of new therapeutics. GWAS studies have been successful in identifying disease-
associated loci. However, they provide little information about the causal alleles, pathways, complexes or
cell types that are involved. Nevertheless, many known druggable targets are associated with GWAS hits.
We therefore expect that GWAS has great potential in guiding therapeutic development.

A new tool in our search for greater insight into genetic perturbations is next generation sequencing
(NGS). NGS has made sequencing an individual’s genome a much less costly and time-consuming task.
NGS has several uses in the context of medical genetics, including exome/genome sequencing of rare and
severe diseases, as well as exome/genome sequencing for the completion of allelic architecture at GWAS locis.
However, NGS has in turn brought about new challenges in computation and interpretation.

One application of NGS to the study of human disease is in the identification and characterization of loss
of function (LoF) variants. LoF variants disrupt the reading frame of protein-coding genes, and are therefore
expected to be of scientific and clinical interest. However, the identification of these variants is complicated
by errors in automated variant-calling and gene annotation. Many putative LoF variants are therefore likely
to be false positives. In 2012, MacArthur et al. set out to describe a stringent set of LoF variants. Their
results suggest that the typical human genomes contain about 100 LoF variants. They also presented a
method to prioritize candidate genes as a function of their functional and evolutionary characteristics [24].

The MacArthur lab is also involved in an ongoing effort by the Exome Aggregation Consortium to
assemble a catalog of human protein-coding variation for data mining. Currently, the catalog includes
sequencing data from over 60,000 individuals. Such data allows for the identification of genes that are
significantly lacking in functional coding variation. This is important because genes under exceptional
constraint are expected to be deleterious. Based on this principle, Samocha et al. were able to identify 1000
genes involved in autism spectrum disorders that were significantly lacking in functional coding variation.

490

6.047/6.878 Lecture 24: Medical Genetics – The Past to the Present

This was done using a statistical framework that described a model of de novo mutation [32]. Similarly,
De Rubeis et al. were able to identify 107 genes under exceptional evolutionary constraint that occurred
in 5% of autistic subjects. Many of these genes were found to encode proteins involved in transcription
and splicing, chromatin remodelling and synaptic function, thus advancing our understanding of the disease
mechanism of these variants.

NGS can also be used to study rare and severe diseases, such as in the case of the DGAT1 mutation.
In a study by Haas et al., exome sequencing was used to identify a rare splice site mutation in the DGAT1
gene. This had resulted in congenital diarrheal disorders in the children of a family of Ashkenazi Jewish
descent [13]. In this case, sequencing not only had therapeutical applications for the surviving child but also
provided insight into an ongoing DGAT1 inhibition clinical trial.

While NGS allows us to study highly penetrant variants that result in severe Mendelian diseases, there are
also genetic studies that deliver hypotheses for intervention. One example of this is the discovery of SCN9A.
The complete loss-of-function of SCN9A, also known as NaV1.7, results in congenital indifference to pain.
This has resulted in the development of novel analgesics with efficacy exceeding that of morphine, as in the
case of µ-SLPTX-Ssm6a, a selective NaV1.7 inhibitor [35]. Another example is the loss-of-function variant
of PCSK9, which lowers LDL and protects against coronary artery disease. This has led to the development
of PCSK9 inhibitor REGN727, which has been shown to be safe and effective in phase 1 clinical trails [6].

NGS is also important for fine-mapping loci identified in GWAS studies. For example, GWAS studies
from 2010 looking at Crohn’s disease implicated a region on chromosome 15 containing multiple genes. After
fine-mapping, the International Inflammatory Bowel Disease Genetics Consortium (IIBDGC) was able to
refine the association to a SMAD3 noncoding functional elements. Another example is a study by Farh et
al. that looked at candidate causal variants for 21 autoimmune diseases. They showed that 90% of causal
variants are non-coding, but only 10-20% alter transcription factor binding motifs, implying that current
gene regulatory models cannot explain the mechanism of these variants [9]. Finally, a study by Rivas et al.
that analyzed a deep resequencing of GWAS loci associated with inflammatory bowel disease found not only
new risk factors but also protective variants. For example, a protective splice variant in CARD9 that causes
premature truncation of protein was shown to strongly protect against the development of Crohn’s disease
[31].

31.7 Further Reading

31.8 Tools and Techniques

• HapMap, a thorough catalog of human SNPs.

• PLINK, an open-source C/C++ GWAS tool set that can analyze large data sets with hundreds of
thousands of markers genotyped for thousands of individuals to examine potential pathways.

• GRASS (Gene set Ridge regression in Association Studies), summarizes the genetic structure for each
gene as eigenSNPs and uses group ridge regression to select representative eigenSNPs for each gene,
assessing their association with disease risk and reducing the high dimensionality of GWAS data.

• GWAMA (Genome-Wide Association Meta-Analysis), performs meta-analysis of GWAS of dichoto-
mous phenotypes or quantitative traits.

491

6.047/6.878 Lecture 24: Medical Genetics – The Past to the Present

31.9 What Have We Learned?

In the past several decades, we have made huge advances in developing techniques to investigate the genetic
basis of disease. Historically, we have used linkage analysis to find causal variants for Mendelian disease
with great success. More recently, we have used genome-wide association studies to begin investigating more
complex traits with some success. However, more work is needed in developing methods to interpret these
GWAS and identifying causal variants and their role in disease mechanism. Improving our understanding of
the genetic basis of disease will us develop more effective diagnoses and treatments.

Bibliography

[1] G.R. Abeçasis, S.S. Cherny, W.O. Cookson, and L.R. Cardon. Merlin—rapid analysis of dense genetic
maps using sparse gene flow trees. Nature Genetics, 30(1):97–101, 2002.

[2] H.L. Allen et al. Hundreds of variants clustered in genomic loci and biological pathways affect human
height. Nature, 467(7317):832–838, 2010.

[3] Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: A practical and powerful approach
to multiple testing. Journal of the Royal Statistical Society, 57:289–300, 1995.

[4] D. Botstein, R.L. White, M. Skolnick, and R.W. Davis. Construction of a genetic linkage map in man
using restriction fragment length polymorphisms. American Journal of Human Genetics, 32:314–331,
1980.

[5] M.S. Brown and J.L. Goldstein. A receptor-mediated pathway for cholesterol homeostasis. Science,
232(4746):34–47, 1986.

[6] Jonathan C. Cohen, Eric Boerwinkle, Thomas H. Mosley, and Helen H. Hobbs. Sequence variations in
PCSK9, low LDL, and protection against coronary heart disease. 354(12):1264–1272.

[7] B. Devlin and K. Roeder. Genomic control for association studies. Biometrics, 55:997–1004, 1999.

[8] R.C. Elston and J. Stewart. A general model for the genetic analysis of pedigree data. Human Heredity,
21:”523–542”, 1971.

[9] Kyle Kai-How Farh, Alexander Marson, Jiang Zhu, Markus Kleinewietfeld, William J. Housley, Saman-
tha Beik, Noam Shoresh, Holly Whitton, Russell J. H. Ryan, Alexander A. Shishkin, Meital Hatan,
Marlene J. Carrasco-Alfonso, Dita Mayer, C. John Luckey, Nikolaos A. Patsopoulos, Philip L. De Jager,
Vijay K. Kuchroo, Charles B. Epstein, Mark J. Daly, David A. Hafler, and Bradley E. Bernstein. Genetic
and epigenetic fine mapping of causal autoimmune disease variants.

[10] Sir R.A. Fisher. The correlation between relatives on the supposition of Mendelian inheritance. Trans-
actions of the Royal Society of Edinburgh, 52:399–433, 1918.

[11] D.F. Gudbjartsson, K. Jonasson, M.L. Frigge, and A. Kong. Allegro, a new computer program for
multipoint linkage analysis. Nature Genetics, 25(1):12–13, 2000.

[12] D.F Gudbjartsson, T. Thorvaldsson, A. Kong, G. Gunnarsson, and A. Ingolfsdottir. Allegro version 2.
Nature Genetics, 37(10):1015–1016, 2005.

[13] Joel T. Haas, Harland S. Winter, Elaine Lim, Andrew Kirby, Brendan Blumenstiel, Matthew DeFe-
lice, Stacey Gabriel, Chaim Jalas, David Branski, Carrie A. Grueter, Mauro S. Toporovski, Tobias C.
Walther, Mark J. Daly, and Robert V. Farese. DGAT1 mutation is linked to a congenital diarrheal
disorder. 122(12):4680–4684.

492

6.047/6.878 Lecture 24: Medical Genetics – The Past to the Present

[14] X. Hu, H. Kim, E. Stahl, R. Plenge, M. Daly, and S. Raychaudhuri. Integrating autoimmune risk loci
with gene-expression data identifies specific pathogenic immune cell subsets. The American Journal of
Human Genetics, 89(4):496–506, 2011.

[15] R.M. Idury and R.C. Elston. A faster and more general hidden markov model algorithm for multipoint
likelihood calculations. Human Heredity, 47:197–202, 1997.

[16] A. Ingolfsdottir and D. Gudbjartsson. Genetic linkage analysis algorithms and their implementation.
In Corrado Priami, Emanuela Merelli, Pablo Gonzalez, and Andrea Omicini, editors, Transactions on
Computational Systems Biology III, volume 3737 of Lecture Notes in Computer Science, pages 123–144.
Springer Berlin / Heidelberg, 2005.

[17] L. Kruglyak, M.J. Daly, M.P. Reeve-Daly, and E.S. Lander. Parametric and nonparametric linkage
analysis: a unified multipoint approach. American Journal of Human Genetics, 58:1347–1363, 1996.

[18] L. Kruglyak and E.S. Lander. Faster multipoint linkage analysis using fourier transforms. Journal of
Computational Biology, 5:1–7, 1998.

[19] P. Kuballa, A. Huett, J.D. Rioux, M.J. Daly, and R.J. Xavier. Impaired autophagy of an intracellular
pathogen induced by a crohn’s disease associated atg16l1 variant. PLoS One, 3(10):e3391, 2008.

[20] E.S. Lander and P. Green. Construction of multilocus genetic linkage maps in humans. Proceedings of
the National Academy of Sciences, 84(8):2363–2367, 1987.

[21] E.S. Lander, P. Green, J. Abrahamson, A. Barlow, M.J. Daly, S.E. Lincoln, and L. Newburg. Mapmaker:
An interactive computer package for constructing primary genetic linkage maps of experimental and
natural populations. Genomics, 1(2):174–181, 1987.

[22] Q. Li, J.B. Brown, H. Huang, and P.J. Bickel. Measuring reproducibility of high-throughput experi-
ments. Annals of Applied Statistics, 5:1752–1797, 2011.

[23] E.Y. Liu, Q. Zhang, L. McMillan, F.P. de Villena, and W. Wang. Efficient genome ancestry inference
in complex pedigrees with inbreeding. Bioinformatics, 26(12):i199–i207, 2010.

[24] D.G. MacArthur, S. Balasubramanian, A. Frankish, N. Huang, J. Morris, K. Walter, L. Jostins,
L. Habegger, J.K. Pickrell, S.B. Montgomery, et al. A systematic survey of loss-of-function variants in
human protein-coding genes. Science, 335(6070):823–828, 2012.

[25] B.P. McEvoy and P.M. Visscher. Genetics of human height. Economics & Human Biology, 7(3):294 –
306, 2009.

[26] N.E. Morton. Sequential tests for the detection of linkage. The American Journal of Human Genetics,
7(3):277–318, 1955.

[27] N. Patterson, A. Price, and D. Reich. Population structure and eigenanalysis. PLoS Genetics, 2:e190,
2006.

[28] A. Piccolboni and D. Gusfield. On the complexity of fundamental computational problems in pedigree
analysis. Journal of Computational Biology, 10:763–773, October 2003.

[29] A. Price et al. Principal components analysis corrects for stratification in genome-wide association
studies. Nature Genetics, 38:904–909, 2006.

[30] J. Pritchard, M. Stephens, N. Rosenberg, and P. Donnelly. Association mapping in structured popula-
tions. American Journal of Human Genetics, 67:170–181, 2000.

[31] M.A. Rivas, M. Beaudoin, A. Gardet, C. Stevens, Y. Sharma, C.K. Zhang, G. Boucher, S. Ripke,
D. Ellinghaus, N. Burtt, et al. Deep resequencing of gwas loci identifies independent rare variants
associated with inflammatory bowel disease. Nature genetics, 2011.

493

6.047/6.878 Lecture 24: Medical Genetics – The Past to the Present

[32] Kaitlin E Samocha, Elise B Robinson, Stephan J Sanders, Christine Stevens, Aniko Sabo, Lauren M
McGrath, Jack A Kosmicki, Karola Rehnstrm, Swapan Mallick, Andrew Kirby, Dennis P Wall, Daniel G
MacArthur, Stacey B Gabriel, Mark DePristo, Shaun M Purcell, Aarno Palotie, Eric Boerwinkle,
Joseph D Buxbaum, Edwin H Cook, Richard A Gibbs, Gerard D Schellenberg, James S Sutcliffe, Bernie
Devlin, Kathryn Roeder, Benjamin M Neale, and Mark J Daly. A framework for the interpretation of
de novo mutation in human disease. 46(9):944–950.

[33] Evan A. Stein, Scott Mellis, George D. Yancopoulos, Neil Stahl, Douglas Logan, William B. Smith,
Eleanor Lisbon, Maria Gutierrez, Cheryle Webb, Richard Wu, Yunling Du, Therese Kranz, Evelyn
Gasparino, and Gary D. Swergold. Effect of a monoclonal antibody to PCSK9 on LDL cholesterol.
366(12):1108–1118.

[34] T. Strachan and A.P. Read. Human Molecular Genetics. Wiley-Liss, New York, 2 edition, 1999.

[35] S. Yang, Y. Xiao, D. Kang, J. Liu, Y. Li, E. A. B. Undheim, J. K. Klint, M. Rong, R. Lai, and G. F.
King. Discovery of a selective NaV1.7 inhibitor from centipede venom with analgesic efficacy exceeding
morphine in rodent pain models. 110(43):17534–17539.

494

CHAPTER

THIRTYTWO

VARIATION 2: : QUANTITATIVE TRAIT MAPPING, EQTLS,
MOLECULAR TRAIT VARIATION

Tim Wall, Brendan Liu, Lei Ding (2014), Tejas Sundaresan, Giri Anand (2015)

Figures
32.1 Non-coding vs. Coding Variation and Explanation of Traits 502

32.2 A comparison of eQTL and GWAS approaches. 503

32.3 cis-eQTL regulating gene transcription directly. [3] . 503

32.4 trans-eQTL regulating gene transcription indirectly. [3] 503

32.5 eQTL Study Approach . 503

32.6 Effects of the search radius and MAF on the number of eQTLs detected 503

32.7 The effects of technical and population variance on expression level assays 503

32.8 The decision parameters researchers must make when conducting an eQTL study 504

32.9 An example eQTL Study on asthma . 504

32.1 Introduction

Differences in gene coding regions across different organisms do not completely explain the phenotypic vari-
ation we see. For example, although the phenotypic difference is high between humans and chimpanzees and
low between different squirrel species, there is more genetic variation among the squirrel species [1]. These
observations lead us to conclude that there must be more than just gene-coding variation that accounts for
phenotypic variation; specifically, non-coding variation also influences how genes are expressed, and conse-
quently influences the phenotype of an organism. In fact, previous research has shown that most genetic
variation occurs in non-coding regions [2]. Furthermore, most expression patterns have been found to be
heritable traits.

Understanding how variation in non-coding regions affects co-regulating genes would allow us not only to

495

6.047/6.878 Lecture 25B: Quantitative trait mapping, eQTLs, molecular trait variation

understand but also control the expression of these and other related genes. This is especially relevant to the
control of undesirable trait expressions like complex, polygenic diseases (Figure 32.1). In Mendelian disease,
the majority of disease risk is predicted by coding variation, whereas in polygenic diseases the vast majority
of causal variation is found outside of coding regions. This suggests that variation in the regulation of gene
expression may play a greater role than genotypic variation in these polygenic diseases. Thus, the study of
these trait associated variants is a step in the direction of understanding how genetic sequences both code
for and control the expression of such diseases and their associated phenotypes.

eQTLs (expression quantitative trait loci) encapsulate the idea of non-coding regions influencing mRNA
expression introduced above: we can define an eQTL as a region of variants in a genome that are quanti-
tatively correlated with the expression of another gene encoded by the organism. Usually, we will see that
certain SNPs in certain non-coding regions will either enhance or disrupt the expression of a certain gene.
The field of identifying, analyzing, and interpreting eQTLs in the genome has grown immensely over the last
couple of years with hundreds of research papers being published.

There are four main mechanisms for how eQTLs influence the expression of their associated genes:

1. Altered transcription factor binding

2. Histone modifications

3. Alternative splicing of mRNA

4. miRNA silencing

FAQ

Q: What is the difference between an eQTL study and a GWAS?

A: There are two fundamental differences. The first is in the nature of the phenotype being exam-
ined. In an eQTL, the phenotype checked is usually on a lower level of biological abstraction
(normalized gene expression levels) instead of a more higher-level, sometimes visible phenotype
used in GWAS, such as ”black hair”). Secondly, in GWAS, usually because the phenotype be-
ing correlated with various SNPs is a higher-level phenotype, we very rarely see tissue-specific
GWAS. However, in eQTLs, the expression patterns of mRNA could vary greatly between
tissue-types within the same individual, and eQTL studies for a specific tissue-type, such as
neuron and glial cells, can be performed (Figure 32.2)

32.2 eQTL Basics

32.2.1 Cis-eQTLs

The use of whole genome eQTL analysis has separated eQTLs into two distinct types of manifestation. The
first is a cis-eQTL (Figure 32.3) in which the position of the eQTL maps near the physical position of
the gene. Because of proximity, cis-eQTL effects tend to be much stronger, and thus can be more easily
detected by GWAS and eQTL studies. Often, these function as promoters of certain polymorphisms, affect
methylation and chromatin conformation (thus increasing or decreasing access to transcription), and can

496

6.047/6.878 Lecture 25B: Quantitative trait mapping, eQTLs, molecular trait variation

manifest as insertions and deletions to the genome. Cis-eQTLs are generally classified as variants that lie
within 1 million base pairs of the gene of interest. However, this is indeed an arbitrary cutoff and can be
altered by an order of magnitude, for instance.

32.2.2 Trans-eQTLs

The second distinct type of eQTL is a trans-eQTL (Figure 32.4). A trans-eQTL does not map near the
physical position of the gene it regulates. Its functions are generally more indirect in their effect on the gene
expression (not directly boosting or inhibiting transcription but rather, affecting kinetics, signaling path-
ways, etc.). Since such effects are harder to determine explicitly, they are harder to find in eQTL analysis;
in addition, such networks can be extremely complex, further limiting trans-eQTL analysis. However, eQTL
analysis has led to the discovery of trans hotspots which refer to loci that have widespread transcriptional
effects [11].

Perhaps the biggest surprise of eQTL research is that, despite the location of trans hotspots and cis-eQTLs,
no major trans loci for specific genes have been found in humans [12]. This is probably attributed the current
process of whole genome eQTL analysis itself. As useful and widespread whole genome eQTL analysis is,
we find that genome-wide significance occurs at p = 5× 10−8 with multiple testing on about 20, 000 genes.
Thus, studies generally use an inadequate sample size to determine the significance of many trans-eQTL
associations, which start with priors of very low probability to begin with as compared to cis-eQTLs [4].
Further, the bias reduction methods described in earlier sections deflate variance, which is integral to cap-
ture the microtrait associations inherent in trans loci. Finally, non-normal distributions limit the statistical
significance of associations between trans-eQTLs and gene expression[4]. This has been slightly remedied
by the use of cross-phenotype meta-analysis (CPMA)[5] which relies on the summary statistics from GWAS
rather than individual data. This cross-trait analysis is effective because trans-eQTLs affect many genes and
thus have multiple associations originating from a single marker. Sample CPMA code can be found in Tools
and Resources.

However, while trans loci have not been found, trans-acting variants have been found. Since it can be
inferred trans-eQTLs affect many genes, CPMA and ChIP-Seq can be used to detect such cross-trait vari-
ants. Indeed, 24 different significant trans-acting transcription factors were determined from a group of 1311
trans-acting SNP variants by observing allelic effects on populations and target gene interactions/connec-
tions.

32.3 Structure of an eQTL Study

The basic approach behind an eQTL study is to consider each gene’s expression as a quantitative multi-factor
trait and regress on principal components that explain the variance in expression. First, cells of the tissue
of interest are extracted and their RNA extracted. Expression of proteins of interest is measured either by
microarray or by RNA-seq analysis. Expression levels of each gene are regressed on genotypes, controlling
for biological and technical noise, such that

Yi = α+Xiβ + εi

Where Yi is the gene expression of gene i, Xi is a vector containing the allelic composition of each SNP
associated with the gene (and can take on values 0, 1, or 2 given a reference allele), α and β are column
vectors containing the regression coefficients, and εi is the residual error (See Figure 32.5) [9]. In concept,

497

6.047/6.878 Lecture 25B: Quantitative trait mapping, eQTLs, molecular trait variation

such a study is extremely simple. In practice, there are hundreds of potential confounders and statistical
uncertainties which must be accounted for at every step of the process. However, the same regression model
can be used to account for these covariates.

Figure 32.9 contains an example eQTL study conducted on asthma. The key result from the study is
the linear model in the upper right: we can see as the genotype tends more towards the ”A” variant, the
target gene expression decreases.

32.3.1 Considerations for Expression Data

Quantifying expression of genes is fraught with experimental challenges. For a more detailed discussion of
these issues, see Chapter 14. One important consideration for this type of expression analysis is the SNP-
under-probe effect: probe sequences that map to regions with common variants provide inconsistent results
due to the effect of variation within the probe itself on binding dynamics. Thus, experiments repeated with
multiple sets of probes will produce a more reliable result. Expression analysis should also generally exclude
housekeeping genes, which are not differentially regulated across members of a population and/or cell
types, since these would only dilute the statistical power of the study.

32.3.2 Considerations for Genomic Data

There are two main considerations for the analysis of genomic data: the minor allele frequency and the
search radius. The search radius determines the generality of the effect being considered: an infinite
search radius corresponds to a full-genome cis and trans-eQTL scan, while smaller radii restrict the analysis
to cis-eQTLs. The minor allele frequency (MAF) determines the cutoff under which a SNP site is not
considered: it is a major determinant of the statistical power of the study. A higher MAF cutoff generally
leads to higher statistical power, but MAF and search radius interact in nonlinear ways to determine the
number of significant alleles detected (see Figure 32.6).

32.3.3 Covariate Adjustment

There are many possible statistical confounders in an eQTL study, both biological and technical. Many
biological factors can affect the observed expression of any given mRNA in an individual; this is exacer-
bated by the impossibility of controlling the testing circumstances of the large population samples needed to
achieve significance. Population stratification and genomic differences between racial groups are additional
contributing factors. Statistical variability also exists on the technical side. Even samples run on the same
machine at different times show markedly different clustering of expression results. (Figure 32.7).

Researchers have successfully used the technique of Principal Component Analysis (PCA) to sepa-
rate the effects of these confounders. PCA can produce new coordinate axes along which SNP-associated
gene expression data has the highest variance, thereby isolating unwanted sources of consistent variation (see
Chapter 20.4 for a detailed description of Principal Component Analysis). After extracting the principal
components of the gene expression data, we can extend the linear regression model to account for these
confounders and produce a more accurate regression.

498

6.047/6.878 Lecture 25B: Quantitative trait mapping, eQTLs, molecular trait variation

FAQ

Q: Why is PCA an appropriate statistical tool to use in this setting and why do we need it?

A: Unfortunately, our raw data has several biases and external factors that will make it difficult
to infer good eQTLs. However, we can think of these biases as being independent influences
on the datasets that create artificial variance in the expression levels we see, confounding the
factors that give rise to actual variance. Using PCA, we can decompose and identify these
variances into their principal components, and filter them out appropriately. Also, due to the
complex nature of the traits being analyzed, PCA can help reduce the dimensionality of the
data and thereby facilitate computational analysis.

FAQ

Q: How do we decide how many principal components to use?

A: This is a tough problem; one possible solution would be to try a different number of principal
components and examine the eQTLs found afterwards - very this number for future tests by
seeing whether the outputted eQTLs are viable. Note that it would be difficult to ”optimize”
different parameters for the eQTL study because each dataset will have an optimal number of
principal components, a best value for MAF, etc...

32.3.4 Points to Consider

The following are some points to consider when conducting an eQTL study.

• The optimal strategy for eQTL discovery in a specific dataset out of all different ways to conduct
normalization procedures, non-specific gene filtering, search radius selection, and minor allele frequency
cutoffs may not be transferable to another eQTL study. Many scientists overcome this using greedy
tuning of these parameters, running the eQTL study iteratively until a maximum number of significant
eQTLs are found.

• It is important to note that eQTL studies only find correlation between genetic markers and gene
expression patterns, and do not imply causation.

• When conducting an eQTL study, note that most significant eQTLs are found within a few kb of the
regulated gene.

• Historically, it has been found that most eQTL studies are about 30-40% reproducible, and this is
a relic of how the dataset is structured and the different normalization and filtering strategies the
respective researchers use. However, eQTLs that are found in two or more cohorts consistently follows
similar expression influence within each of the cohorts.

• Many eQTLs are tissue-specific; that is, their influence in gene expression could occur in one tissue
but not in another, and a possible explanation of this is the co-regulation of a single gene by multiple
eQTLs that is dependent on one gene having multiple alleles.

499

6.047/6.878 Lecture 25B: Quantitative trait mapping, eQTLs, molecular trait variation

32.4 Current Research Directions

32.4.1 Quantifying Trait Variation

Because the study of eQTLs is a study in the level of expression of a gene, the primary step towards
conducting an informative study is picking traits that have varying levels of expression rather than binary
expression. Examples of such quantitatively viable traits are body mass index (BMI) and height. In the
late 1980’s and early 1990’s, the first studies of gene expression through genome-wide mapping studies were
initiated by Damerval and de Vienne [8] [6]. However, their use of 2-D electrophoresis for protein separation
was inefficient and not thoroughly reliable as it introduced a lot of noise and could not be systematically and
quantitatively summarized. It was only in the early 2000s when the introduction of high-throughput array-
based methods to measure mRNA incidence accelerated the successful use of this method, first highlighted
in a study by Brem [10].

32.4.2 New Applications

There are two directions that eQTL studies are headed. First, there is a rush to use whole genome eQTL
analysis to validate associations among variances in the human population such as differences in gene ex-
pression among ethnic groups, as the statistical power for being able to do so is beginning to reach the
threshold of significance. A second direction of research seeks to dislocate genetic associations with varying
phenotypes and and population differences based on a non-genetic basis. These non-genetic factors include
environment, cell line preparation, and batch effects.

32.5 What Have We Learned?

In summary, most causal variation for complex polygenic diseases that we have discovered so far is noncod-
ing. Moreover, phenotypic differences between species are not well explained by coding variation, while gene
expression is highly heritable between generations. Thus, it is proposed that genetic control of expression
levels are a crucial factor in determining phenotypic variance.

eQTLs are SNP variant loci that are correlated with gene expression levels. They come in one of two
forms. Cis-eQTLs are sites whose loci map to near the affected genes, are relatively easy to detect due to
their proximity, and generally have clear mechanisms of action. Trans-eQTLs map to distance areas of the
genome, are more difficult to detect, and their mechanisms are not as direct.

eQTL studies combine a whole-genome approach similar to GWAS with a expression assay, either microarray
or RNA-seq. Expression levels of each gene are correlated by linear regression with genotypes after using
PCA to extract confounding factors. Determining the optimal parameters for MAF, search radius, and
confounder normalization is an open research question. Applications of eQTLs include the identification
of disease-associated variants as well as variants associated with population subspecies and the genetic and
environmental variance that gives rise to complex traits,

500

6.047/6.878 Lecture 25B: Quantitative trait mapping, eQTLs, molecular trait variation

32.6 Further Reading

The following is a very good introductory literature review on eQTLs, including their history and current
applications:

The role of regulatory variation in complex traits and disease
Frank W. Albert and Leonid Kruglyak

Nature Reviews Genetics 16 2015

There are also some research papers that are trailblazers in what is current in eQTL studies. One such
paper is informative on the occurrence of DNA methylation affecting gene expression in the human brain.
Another is a study on changes in expression during development in the nematode C. elegans, using age as a
covariate during eQTL mapping:

1. Abundant quantitative trait loci exist for DNA methylation and gene expression in human
brain
Gibbs JR, van der Brug MP, Hernandez DG, Traynor BJ, Nalls MA, et al.

PLOS Genet 6 2010

2. The effects of genetic variation on gene expression dynamics during development
Francesconi, M. and Lehner, B.
Nature 505 2013

In addition, eQTL variants have recently been found to be implicated in diseases such as Crohn’s disease
and multiple sclerosis [4].

As mentioned in Section 4.2, there have also been a recent surge in studies applying eQTL studies to
delineating differences among human subpopulations and characterizing the contributions of the environment
toward trait variation:

1. Common genetic variants account for differences in gene expression among ethnic groups
Spielman RS, Bastone LA, Burdick JT, Morley M, Ewens WJ, Cheung VG.

Nature Genetics 2007

2. Gene-expression Variation Within and Among Human populations
Storey JD, Madeoy J, Strout JL, Wurfel M, Ronald J, Akey JM

The American Journal of Human Genetics 2007

3. Population genomics of human gene expression [12]
Stranger BE,Nica AC, Forrest MS, et. al.

The American Journal of Human Genetics 2007

4. Evaluation of genetic Variation Contributing to Differences in Gene expression between
populations
Zhang W, Duan S, Kistner EO, Bleibel WK, Huang RS, Clark TA, Chen TX, Schweitzer AC, Blume JE, Cox NJ, Dolan ME

The American Journal of Human genetics 2008

5. A Genome-Wide Gene Expression Signature of Environmental Geography in Leukocytes
of Moroccan Amazighs
Idaghdour Y, Storey JD, Jadallah SJ, Gibson G

PLoS 2008

6. On the design and analysis of gene expression studies in human populations
Joshua M Akey, Shameek Biswas, Jeffrey T Leek, John D Storey
Nature Genetics 2007

501

6.047/6.878 Lecture 25B: Quantitative trait mapping, eQTLs, molecular trait variation

32.7 Tools and Resources

• The Costapas Lab distributes code to calculate CPMA from GWAS association p-values which can be
found here: http://www.cotsapaslab.info/index.php/software/cpma/

• The Pritchard lab has several resources (found here: http://eqtl.uchicago.edu/Home.html) for eQTL
research and gene regulation including:

– DNase-seq data from 70 YRI lymphoblastoid cell lines

– Downloading positions of transcription factor binding sites inferred in the HapMap lymphoblastoid
cell lines by CENTIPEDE

– Raw and mapped RNA-Seq data from Pickrell et al.

– Assorted scripts for identifying sequencing reads covering genes, polyadenylation sites and exon-
exon junctions

– Data and meQTL results for Illumina27K methylation data in HapMap lymphoblastoid cell lines.

– Files to ignore areas of the genome that are prone to causing false positives in ChIP-seq and other
sequencing based functional assays

– Browser for eQTLs identified in recent studies in multiple tissues

• The Wellcome Trust Sanger Institute has developed packaged database and web services (Genevar)
that are designed to help integrative analysis and visualization of SNP-gene associations in eQTL
studies. This information can be found here: http://www.sanger.ac.uk/resources/software/genevar/

• The Wellcome Trust Sanger Institute has also developed databases that contain information relevant
to eQTL studies such as finding and identifying all functional elements in the human genome sequence
and maintaining automatic annotation on selected eukaryotic genomes. This information can be found
here: http://www.sanger.ac.uk/resources/databases/.

• Finally, the NIH is progressing on the Genotype-Tissue Expansion Projext (GTEx). Currently, the
project stands at 35 tissues from 50 donors; the aim is to acquire and analyze 20,000 tissues from 900
donors, with the hope of gathering even more data for further genetic analyses, especially for eQTL
and trans-eQTL analyses that require larger sample sizes.

Bibliography

[1] King, Mary-Claire and Wilson, A.C. (April 1975) Evolution at Two Levels in Humans and Chimpanzees
Science Vol.188 No. 4184

[2] 1000 Genomes Project Consortium. Nature. 2010; 467:1061-73.

[3] Cheung Vivien G. and Spielman Richard S. (2009) Genetics of Human Gene Expression: Mapping DNA
Variants that Influence Gene Expression Nature Reviews Genetics

[4] C. Cotsapas, Regulatory variation and eQTLs. 2012 Nov 1.

[5] C. Cotsapas, BF Voight, E Rossin, K Lage, BM Neale, et al. (2011) Pervasive Sharing of Genetic Effects
in Autoimmune Disease. PLoS Genet 7(8):e1002254. doi:10.1371/journal.pgen.1002254

[6] Damerval C, Maurice A, Josse JM, de Vienne D (May 1994). Quantitative Trait Loci Underlying Gene
Product Variation: A Novel Perspective for Analyzing Regulation of Genome Expression Genetics 137
(1): 289301.PMC 1205945. PMID 7914503.

[7] Dimas AS , et. al. (Sept. 2009) Common regulatory variation impacts gene expression in a cell type-
dependent manner. Science 325(5945):1246-50. 2 Epub 2009 Jul 30.

502

http://www.sanger.ac.uk/resources/software/genevar/
http://www.sanger.ac.uk/resources/databases/
http://eqtl.uchicago.edu/Home.html

6.047/6.878 Lecture 25B: Quantitative trait mapping, eQTLs, molecular trait variation

[8] D. de Vienne, A. Leonardi, C. Damerval (Nov 1988). Genetic aspects of variation of protein amounts
in maize and pea. Electrophoresis 9 (11): 742750. doi:10.1002/elps.1150091110. PMID 3250877.

[9] Shengjie Yang, Yiyuan Liu, Ning Jiang, Jing Chen, Lindsey Leach, Zewei Luo, Minghui Wang.Genome-
wide eQTLs and heritability for gene expression traits in unrelated individuals. BMC Genomics 15(1):
13. 2014 Jan 9.

[10] Rachel B. Brem and Leonid Kruglyak. The landscape of genetic complexity across 5,700 gene expression
traits in yeast. PNAS 102(5): 15721577. 23 Nov 2004.

[11] Michael Morley, Cliona M. Molony, Teresa M. Weber, James L. Devlin, Kathryn G. Ewens, Richard
S. Spielman, Vivian G. Cheung.Genetic analysis of genome-wide variation in human gene expression.
Nature 430: 743-747. 12 Aug 2004.

[12] Barbara E Stranger, Alexandra C Nica, Matthew S Forrest, Antigone Dimas, Christine P Bird, Claude
Beazley, Catherine E Ingle, Mark Dunning, Paul Flicek, Daphne Koller, Stephen Montgomery, Simon
Tavar, Panos Deloukas, Emmanouil T Dermitzakis. Population genomics of human gene expression.
Nature Genetics 39: 1217 - 1224. 16 Sep 2007.

503

6.047/6.878 Lecture 25B: Quantitative trait mapping, eQTLs, molecular trait variation

coding_variation_disease.png

Figure 32.1: Non-coding vs. Coding Variation and Explanation of Traits

504

6.047/6.878 Lecture 25B: Quantitative trait mapping, eQTLs, molecular trait variation

eQTL_network.png

Figure 32.2: A comparison of eQTL and GWAS approaches.

Figure 32.3: cis-eQTL regulating gene transcription directly. [3]

Figure 32.4: trans-eQTL regulating gene transcription indirectly. [3]

Figure 32.5: eQTL Study Approach

Figure 32.6: Effects of the search radius and MAF on the number of eQTLs detected

Figure 32.7: The effects of technical and population variance on expression level assays

505

6.047/6.878 Lecture 25B: Quantitative trait mapping, eQTLs, molecular trait variation

Figure 32.8: The decision parameters researchers must make when conducting an eQTL study

Figure 32.9: An example eQTL Study on asthma

506

CHAPTER

THIRTYTHREE

MISSING HERETIBILITY

33.1 Introduction

33.2 Current Research Directions

33.3 Further Reading

33.4 Tools and Techniques

33.5 What Have We Learned?

507

6.047/6.878 Lecture 25: Missing Heretibility

508

CHAPTER

THIRTYFOUR

PERSONAL GENOMES, SYNTHETIC GENOMES, COMPUTNG IN C
VS. SI

Guest Lecture by George Church
Scribed by Lawson Wong (2011)

34.1 Introduction

George Church discussed a variety of topics that have motivated his past and present research. He first
discussed about reading and writing genomes, including his own involvement in the development of sequenc-
ing and the Human Genome Project. In that latter half, he discussed about his more recent endeavor, the
Personal Genome Project, which he initiated in 2005.

34.2 Reading and Writing Genomes

As a motivation, consider the following question: Is there any technology that is not biologically motivated or
inspired? Biology and our observations of it influence our lives pervasively. For example, within the energy
sector, biomass and bioenergy has always existed and is increasingly becoming the focus of attention. Even
in telecommunications, the potential of quantum-level molecular computing is promising, and is expected to
be a major player in the future.

Church has been involved in molecular computing in his own research, and claims that once harnessed, it
has great advantages over their current silicon counterparts. For example, molecular computing can provide
at least 10% greater efficiency per Joule in computation. More profound perhaps is its potential effect on
data storage. Current data storage media (magnetic disk, solid-state drives, etc.) is much less (billions times)
dense than DNA. The limitation of DNA as data storage is that it has a high error rate. Church is currently
involved in a project exploring reliable storage through the use of error correction and other techniques.

509

6.047/6.878 Lecture 26: Personal Genomes, Synthetic Genomes, Computing in C vs. Si

In a 2009 Nature Biotechnology review article [1], Church explores the potential for efficient methods
to read and write to DNA. He observes that in the past decade there has been a 10× exponential curve in
both sequencing and oligo synthesis, with double-stranded synthesis lagging behind but steadily increasing.
Compared to the 1.5× exponential curve for VLSI (Moore’s Law), the increase on the biological side is more
dramatic, and there is no theoretical argument yet for why the trend should taper off. In summary, there is
great potential for genome synthesis and engineering.

Did You Know?
George Church was an early pioneer of genome sequencing. In 1978, Church was able to sequence
plasmids at $10 per base. By 1984, together with Walter Gilbert, he developed the first direct
genomic sequencing method [3]. With this breakthrough, he helped initiate the Human Genome
Project in 1984. This proposal aimed to sequence an entire human haploid genome at $1 per base,
requiring a total budget of $3 billion. This quickly played out into the well-known race between
Celera and UCSC-Broad-Sanger. Although the latter barely won in the end, their sequence had
many errors and gaps, whereas Celera’s version was much higher quality. Celera initially planned on
releasing the genome in 50 kb fragments, which researchers could perform alignments on, much like
BLAST. Church once approached Celera’s founder, Craig Venter, and received a promise to obtain
the entire genome on DVD after release. However, questioning the promise, Church decided instead
to download the genome directly from Celera by taking advantage of the short fragment releases.
Using automated crawl and download scripts, Church managed to download the entire genome in
50 kb fragments within three days!

34.3 Personal Genomes

In 2005, George Church initiated the Personal Genome Project [2]. Now that sequencing costs have rapidly
decreased to the point that we can currently get the entire diploid human genome for $4000 (compare to
$3 billion for a haploid human genome in the Human Genome Project), personal genome and sequence
information is becoming increasingly affordable.

One important application for this information is in personalized medicine. Although many diseases are
still complicated to predict, diagnose, and study, we currently already have a small list of diseases that are
highly predictable from genome data. Examples include phenylketonuria (PKU), BRCA-mutation-related
breast cancer, and hypertrophic cardiomyopathy (HCM). Many of these and similar diseases are uncertain
(sudden onset without warning symptoms) and not normally checked for (due to their relative rareness).
As such, they are particularly suitable as targets for personalized medicine by personal genomes, because
genomic data provide accurate information that otherwise cannot be obtained. Already, there are over 2500
diseases (due to ∼ 6000 genes) that are highly predictable and medically actionable, and companies such as
23andMe are exploring these opportunities.

As a final remark on the subject, Church remarked on some of his personal philosophy regarding person-
alized medicine. He finds many people reluctant to obtain their genomic information, and attributes this to a
negative view among the general public toward GWAS and personalized medicine. He thinks that the media
focuses too much on the failure of GWAS. The long-running argument against personalized medicine is that
we should focus first on common diseases and variants before studying rare events. Church counterargues
that in fact there is no such thing as a common disease. Phenomena such as high blood pressure or high
cholesterol only count as symptoms; many ‘common diseases’ such as heart disease and cancer have many
subtypes and finer categories. All along, lumping these diseases into one large category only has the benefit
of teaching medical students and to sell pharmaceuticals (e.g., statins, which have fared well commercially
but only benfit very few). Church argues that lumping implies a loss of statistical power, and is only useful
if it is actually meaningful. Ultimately, everyone dies due to their own constellation of genes and diseases,

510

6.047/6.878 Lecture 26: Personal Genomes, Synthetic Genomes, Computing in C vs. Si

so Church sees that splitting (personalized genomics) is the way to proceed.

Personal genomics provide information for planning and research. As a business model, it is analogous
to an insurance policy, which provides risk management. As an additional benefit however, the information
received allows for early detection, and consequences may even be avoidable. Access to genomic information
allows one to make more informed decisions.

34.4 Current Research Directions

34.5 Further Reading

Personal Genome Project: http://www.personalgenomes.org/

34.6 Tools and Techniques

34.7 What Have We Learned?

Bibliography

[1] Peter A. Carr and George M. Church. Genome engineering. Nature biotechnology, 27(12):1151–1162,
December 2009.

[2] G. M. Church. The Personal Genome Project. Molecular Systems Biology, 1(1):msb4100040–E1–
msb4100040–E3, December 2005.

[3] G. M. Church and W. Gilbert. Genomic sequencing. Proceedings of the National Academy of Sciences
of the United States of America, 81(7):1991–1995, April 1984.

511

http://www.personalgenomes.org/

6.047/6.878 Lecture 26: Personal Genomes, Synthetic Genomes, Computing in C vs. Si

512

CHAPTER

THIRTYFIVE

PERSONAL GENOMICS

Deniz Aksel, Molly Schmidt, Jonathan Uesato

Figures

35.1 Factors that contribute to the probability of getting a disease. Each relationship shown
represents correlation except for the link between genome and disease. Correlation does
not mean causality, but we can use the genome to resolve causality. 512

35.2 SNPs associated with Mendelian diseases often lie in coding regions whereas those asso-
ciated with polygenic diseases are usually found in non-coding regions. This is because
large effect variants, protein coding variants, associated with Mendelian diseases are at low
frequencies due to selection. Common variants associated with polygenic diseases, tend to
have a lower effect, so selection does not play as big of a role. 513

35.3 The multiple factors and datasets in determining the role of methylation on disease states,
and methods for linking these datasets. 515

35.4 Modeling Human Disease . 517

35.5 Polygenic Risk Prediction . 518

35.1 Introduction

Personalized genomics focuses on the analysis of individuals'genomes and their predispositions for diseases
rather than looking at the population level. Personalized medicine is only possible with information about
genetics along with information about many other factors such as age, nutrition, lifestyle, or epigenetic
markers (such as methylation). To make personalized medicine more of a reality, we need to learn more
about the causes and patterns of diseases in populations and individuals.

513

6.047/6.878 Lecture 29: Personal Genomics

35.2 Epidemiology: An Overview

Figure 35.1: Factors that contribute to the probability of getting a disease. Each relationship shown repre-
sents correlation except for the link between genome and disease. Correlation does not mean causality, but
we can use the genome to resolve causality.

Epidemiology is the study of patterns, causes, and effects of health and disease conditions in defined
populations. In order to talk about epidemiology, we need to first understand some basic definitions and
terms: Morbidity level is how sick an individual is whereas mortality is whether an individual is dead or
not. The incidence is a rate which describes the number of new cases/people with a disease that appears
during a period of time. The prevalence is the total steady state number of cases in the population.
The attributable risk is the difference in rate of a disease between those exposed to the disease and
those not exposed to the disease. Population burden refers to the years of potential life lost (YPLL),
quality-adjusted or disability-adjusted life year (QALY/DALY). Syndrome refers to co-occurring signs or
symptoms of a disease that are observed. The prevention challenge is to determine a disease and its cause
and understand whether, when, and how to intervene.

In order to determine disease causes, studies must be designed according to certain principles of exper-
imental design. These principles include control, randomization, replication, grouping, orthogonality, and
combinatorics. Control groups are needed so that comparison to a baseline can be done.The placebo effect
is real, so having a control group is necessary. The people who get the putative treatment being tested must
also be random so that there is no bias. The study needs to be replicated as well in order to control for
variability in the initial sample. (This is similar to the winners curse. Someone may win a race because they
did outstanding in that particular round and surpassed their personal average, but in the next round they
probably will regress back to performing close to their average.) Understanding variation between different
subgroups may also play a large role in the outcomes of experiments. These may include subgroups based on
age, gender, or demographics. One subgroup of the population may be contributing in a more profound way
then they rest, so looking at each subgroup specifically is important. Orthogonality, or the combination of all
factors and treatments, and combinatorics, factorial design, must also be taken into account when designing
an experiment. With disease studies in particular, ethics when dealing with human subjects must be taken
into account. There are legal and ethical constraints which are overseen by review boards. Clinical trials
must be performed either blind (patient does not know if they are getting treatment or not) or double-blind
(doctor also doesnt know). A patient who knows if they have gotten a treatment may change their habits
causing bias, or a doctor who knows a patient got the treatment may treat them differently or analyze their
results differently. Both considerations need to be taken into account to lower the bias that may cause
different results of a clinical trial.

Example An example of the need for a randomized control trial is the treatment of ebola. A treatment
must be distributed randomly to individuals being treated in different hospitals and it must be blind. If

514

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 29: Personal Genomics

someone believes they are getting the vaccine, they may alter their habits to protect themselves which may
affect the outcome. If only patients of one hospital get the vaccine, there is a possibility that the effects seen
are just from that hospital being more careful.

FAQ

Q: In poorly designed experiments, is there one aspect that is most commonly overlooked?

A: The most commonly missed is subgroup structure. It is sometimes not obvious what the different
subgroups could be. To help with this, researchers can look at general properties of a predictor
by trying to cluster cases and controls independently and visualize the clustering. If there is
substructure other than case/control in the clustering, researchers can look for variables within
each cluster to see what is driving substructure.

35.3 Genetic Epidemiology

Genetic epidemiology focuses on the genetic factors contributing to disease. Genome-Wide association
studies (GWAS), previously described in depth, identify genetic variants that are associated with a particular
disease while ignoring everything else that may be a factor. With the decrease of whole genome sequencing,
these types of studies are becoming much more frequent.

Figure 35.2: SNPs associated with Mendelian diseases often lie in coding regions whereas those associated
with polygenic diseases are usually found in non-coding regions. This is because large effect variants, protein
coding variants, associated with Mendelian diseases are at low frequencies due to selection. Common variants
associated with polygenic diseases, tend to have a lower effect, so selection does not play as big of a role.

In genetic epidemiology there are many genetic factors that you can test to identify diseases in a particular
individual. You can look at family risk alleles which are inherited with a common trait in specific genes or
variants. You can study monogenic, actionable protein-coding mutations which are the most understood,
would have the highest impact, and would be the easiest to interpret. There is the possibility of testing all
coding SNPs (single nucleotide polymorphisms) with a known disease association. There are debates over
whether a patient needs to or would want to know this information sometimes especially if the disease is not

515

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 29: Personal Genomics

treatable. A person’s quality of life may decrease just from knowing they may have the untreatable disease
even if no symptoms are exhibited. You can also test all coding and non-coding associations from GWAS,
all common SNPs regardless of association to any disease, or the whole genome.

Did You Know?
23andMe is a personal genomics company that offers saliva-based direct-to-consumer genome tests.
23andMe gives consumers raw genetic data, ancestry-related results, and estimates of predisposition
for more than 90 traits and conditions. In 2010, the FDA notified several genetic testing companies,
including 23andMe, that their genetic tests are considered medical devices and federal approval
is required to market them. In 2013, the FDA ordered 23andMe to stop marketing its Saliva
Collection Kit and Personal Genome Service (PGS) as 23andMe had not demonstrated that they
have “analytically or clinically validated the PGS for its intended uses” and the “FDA is concerned
about the public health consequences of inaccurate results from the PGS device” [?]. The FDA
expressed concerns over both false negative and false positive genetic risk results, saying that a false
positive may cause consumers to undergo surgery, intensive screening, or chemoprevention in the
case of BRCA-related risk, for example, while a false negative may prevent consumers from getting
the care they need. In class, we discussed whether people should be informed about potential risk
alleles they may carry. Often, people may misunderstand the probabilities provided to them and
either underestimate or overestimate how concerned they should be. The argument was also raised
that people should not be told they are at risk if there is nothing current medicine and technology
can do to mitigate the risk. If people are going to be informed about a risk, the risk should be
actionable; i.e. they should be able to do something about it, instead of just live in worry, as that
added stress may cause other health problems for them.

Not only is there the choice of what to test, there is the question of when to test someone for a particular
condition. Diagnostic testing occurs after symptoms are displayed in order to confirm a hypothesis or
distinguish between different possibilities of having a condition. You can also test predictive risk which
occurs before symptoms are even shown by a patient. You may test newborns in order to intervene early
or even do pre-natal testing via an ultrasound, maternal serum, probes or chorionic villus sampling. In
order to test which disorders you may pass on to your child, you can do pre-conception testing. You can
also do carrier testing to determine if you are a carrier of a particular mutant allele that may run in your
family history. Testing genetics and biomarkers can be tricky because it can be unknown if the genetics or
biomarker seen is causing the disease or is a consequence of having the disease.

To interpret disease associations, we need to use epigenomics and functional genomics. The genetic
associations are still only probabilistic: if you have a genetic variant, there is still a possibility that you will
not get the disease. Based on Bayesian statistics however, the posterior probability increases if the prior
increases. As we find more and more associations and variants, the predictive value will increase.

35.4 Molecular Epidemiology

Molecular Epidemiology involves looking at the molecular biomarkers of a disease state. This includes
looking at gene expression profiles, DNA methylation patterns i.e. epigenomics, and chromatin structure
and organization in specific cell types. In earlier chapters, we discussed the link between gene expression (as
RNA or proteins) and SNPs in the context of eQTL studies. As a reminder, eQTLs (expression quantitative
trait loci) seek linear correlations between gene expression levels and different variants of a genetic locus.

516

6.047/6.878 Lecture 29: Personal Genomics

This section will focus on understanding the the role of epigenomic markers as molecular indicators of
a disease. It is important to understand that multiple factors, and thus multiple datasets come into play
in understanding the epigenomic basis of disease: methylaytion patterns of sample patients (M), genomic
information (G) for the same individuals, enviornmental data (E, covering covariates like age, gender, smoking
habits etc.), and phenotype quantifications (P, can capture multiple phenotypic markers, for example in
Alzheimer’s Disease, the number of neuronal plaques per patient). Furthermore, we need to understand the
various interconnections and dependencies between these data sets to make meaningful conclusions about
the influence of methylation for a certain disease.

To remove experimental, technical or environmental covariants, we rely on either known, or ICA (Inde-
pendent component analysis)-inferred corrections. To link genetic data to methylation patterns, we look for
meQTLs (methylation quantitative trati loci), which is equivalent to eQTLs. Molecular phenotypes such as
expression level or methylation level are also quantitative traits. Finally, to link methylation patterns with
diseases, we implement EWAS (Epigenome-wide association studies).

Figure 35.3: The multiple factors and datasets in determining the role of methylation on disease states, and
methods for linking these datasets.

35.4.1 meQTLs

The discovery of meQTLs follows a process that is highly similar to the methodology used for discovering
eQTLs. To discover cis-meQTLs (i.e. meQTLs where the effect on methylation is proximal to the tested
locus) we select a genomic window, and use a linear model to test whether or not we see a correlation between
methylation and SNP variants in that region. We test to see if the correlation is significant via an F-test,
where our null hypothesis is that the additional model complexity introduced via the genomic information
does not explain a significant portion of variation in methylation patterns. Other methods of discovering
meQTLs include permutation and Linear Mixed Models (LMM).

Example An example of using meQTLs in discovering the connection between methylation, genotype, and
disease is the Memory and Aging Project. 750 elderly people enrolled in the project many years ago and

517

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 29: Personal Genomics

today, they have mostly died and given their brain to science. The genotype and methylation of the dorsal
lateral prefrontal cortex were determined in order to study the connection between methylation and the
phenotype of Alzheimer’s and how the genotype may affect the methylation profile. SNP data, methylation,
environmental factors (such as age, gender, sample batch, smoking status, etc..), and phenotype were taken
into account. First covariants needed to be discovered and excluded to make sure the results obtained are
not due to confounding factors. This is done by decomposing the matrix of methylation data by doing ICA.
This enables the discovery of variables that are driving the most variability in the trait. The batch sample
and cell mixture can have the biggest effect in the variation between individuals. After this is corrected for,
linear models, permutation tests, and linear mixed models are used to determine cis-meQTLs–how much the
genotype explains the methylation level.

35.4.2 EWAS

Epigenome-Wide Genome Studies (EWAS) aim to find connections between the methylation pattern of a
patient and their phenotype. Much like GWAS, EWAS relies on linear models and p-value testing for finding
linkages between epigenomic profiles and disease states. Together with meQTLs, EWAS can also potentially
shine light on whether a given methylation pattern is the cause or result of a disease. Ideally, the idea is to
be able to generate models that allow us to predict disease states (phenotypes) based on methylation.

There are some drawbacks to EWAS. First, the variance in methylation patterns due to phenotype is
typically very small, making it difficult to link epigenomic states to disease states, similar to seeking a
needle in a haystack. To improve this situation, we need to control for other sources of variance in our
methylation data, such as gender, age etc. Gender, for example, incorporates a large variance for the case of
Alzheimer’s Disease. We additionally need to account for variance due to genotype (in the form of meQTLs).
Additionally, variability across samples is a major issue in collecting methylation data for EWAS[?]. As
different cell types in the same individual will have different epigenomic signatures, it is important that
relevant tissue samples are collected, and the data is corrected for the different cell/tissue types involved in
a study.

35.5 Causality Modeling and Testing

A central question for personal genomics is the question of which markers are causal of disease. For
example, one might ask whether methylation at a certain loci, or a certain histone modification, increases a
person’s risk for a certain disease. This question is difficult because we need to separate spurious correlations
from causal effects - for example, it is possible that a mutation elsewhere in the genome causes the disease,
and also increases the chance of observing a particular marker, but that the marker has no causal effect on
the disease. In this case, we would find a correlation between the disease phenotype and the presence of the
marker despite the lack of any causal effect.

The key insight that allows us to determine causal effects, as opposed to mere correlations, is the obser-
vation that while the genotype may influence a person’s risk for a particular disease, the disease will not
modify a person’s genotype. This allows us to use genotype as an instrumental variable for methylation.
This limits the number of possible models so that we can statistically test which model is most consistent
with the observed data.

518

6.047/6.878 Lecture 29: Personal Genomics

There are three possibilities for modeling complex human diseases: the independent associations model,
the interaction model, and the causal pathway model, depicted in Figure 35.4. We will use the example of
studying the causal relationship between methylation at a certain loci and disease to demonstrate how to
test for a causal effect.

Figure 35.4: Modeling Human Disease

Under the independent associations model, the data should contain no correlation between the genotype
and the disease, which distinguishes this model from the interaction and causal pathway models. How-
ever, there will be correlations between each of the factors and the disease separately. Thus, this model is
straightforward to test for. An example of this would be two independent risk genes.

Under the interaction model, factor Bs effect on a disease may vary depending on the value for A. For
example, a drugs effect on someone can be different based on their genotype. To test for this, we determine the
statistical significance of the effect of the interaction term, β2, in the regression D = β0A+β1B+β2A∗B+c.
If there is a significant interaction effect, we can isolate the separate effects by stratifyng across different
levels of A.

The causal pathway model is a little more complex. If we notice a correlation between a risk factor and a
disease, we may wonder whether there is a direct link between risk factor A and a disease, or does the risk
factor A affect risk factor B which then affects the disease. In the case that risk factor A only has an effect
on the disease through B, we will observe that after conditioning upon B, the correlation between A and
D disappears, that is, B “mediates” this interaction. In reality, the effect of A on a disease is usually only
partially mediated through B, so we can instead look for if the effect size of A on the disease is decreased
when B is observed.

35.5.1 Polygenic Risk Prediction

One of the most central questions of personal genomics is prediction of genetic predispositions to various
genetic traits, using multiple genes to inform our predictions. The basic approach is explained in Figure 35.5.
First, the data set is divided into a training and test set, and in the training cohort, we select which SNPs
are most important and their appropriate weightings. Then we use the test set to evaluate the accuracy of
our predictions. Finally, we use this model to predict genetic predispositions for the target cohort by using
the confidences we determined from the test set.

519

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

6.047/6.878 Lecture 29: Personal Genomics

Figure 35.5: Polygenic Risk Prediction

35.6 Current Research Directions

35.7 Further Reading

35.8 Tools and Techniques

35.9 What Have We Learned?

In this section we have learned about the basics of epidemiology, both genetic and molecular. We have
learned techniques of designing an epidemiological experiment and how and when to use genetic screens for
identifying diseases. Lastly, we focused on resolving causality vs. correlation between epigenetic markers
and diseases using genetics as an instrument variable.

Bibliography

520

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

CHAPTER

THIRTYSIX

CANCER GENOMICS

Pasha Muravyev (2014)

36.1 Introduction

What is cancer? Cancer represents a group of diseases or tumors that trigger abnormal cell growth and
have the potential to spread to many parts of the body. A cancer usually starts with mutations in one or
more ”driver genes” which are genes that can drive tumorigenesis. These mutations are called driver events,
meaning that they provide a selective fitness advantage for the individual; other mutations that don’t provide
a fitness advantages are called passenger mutations.

The main objective of cancer genomics is to generate a comprehensive catalog of cancer genes and path-
ways. Many cancer genome projects have been started within the last ten years (mainly due to the drop
in genome sequencing costs); for example, the Cancer Genome Atlas was started in 2006 with the aim of
analyzing 20-25 tumor types with 500 tumor / normal pairs each via a large number of experiments (SNP
arrays, whole-exome sequencing, RNA seq, and others). The ICGC (international cancer genome consor-
tium) is a bigger, umbrella organization that organizes similar projects around the world with the end goal
of studying 50 tumor types with 500 tumor/normal types each.

36.2 Characterization

For each tumor, our aim is to obtain a complete, base-level characterization of that tumor, its evolutionary
history and the mechanisms that shaped it. We can use massivelyparallelsequencing to get the base level
genome characterization, but this approach brings with it some associated challenges.

521

6.047/6.878 Lecture 24: Cancer Genomics

1. Massive amounts of data The main challenge with increased amounts of data is an increase in the com-
putational power required to analyze this data, as well as storage costs associated with keeping track
of all of the sequenced genomes. There also needs to be an analysis pipeline (automated, standardized,
reproducible) to have consistent findings across the different characterization efforts. Finally, we need
to come up with new ways of visualizing and reporting on large scale data.

2. Sensitivity / Specificity Cancer characterization starts with the proper identification of SNP mutations
present in cancer cells, and maximal removal of false positive reads. When selecting tumor samples,
the extracted DNA is a mix of normal genomes and complex tumor genomes. The mutational allelic
fraction (the fraction of DNA molecules from a locus that carry a mutation), is used to study signif-
icance of a mutation and its prevalence in the cancer subtype. This fraction depends on the purity,
local copy number, multiplicity of the tumor sample, and the cancer cell fraction (CCF, amount of
cancer cells that carry the mutation). Clonal mutations are carried by all cancer cells, and sub-clonal
mutations are carried by a subset of the tumor cells.

As well as detecting the presence of clonal and subclonal mutations, proper analysis requires removal
of false positive mutagenic events. Two types of false positives include sequencing errors and germline
mutations. Sequencing errors can come from misread bases, sequencing artifacts, and misaligned reads,
while germline mutations usually occur in predicable places in the genome (1000/MB known, 10-20/MB
novel). By having multiple reads of the same sequence the likelihood of repeated errors in sequencing
drops rapidly, and by knowing where in the genome a germline mutation is likely, a filter can correct for
the additional false positive probability. The overall sensitivity of detecting single nucleotide variations
depends on the frequency of background mutations and the number of alternative reads.

A third type of false positive can come from cross patient contamination if the tumor sample contains
DNA from another person. ContEst is a method to accurately detect contamination by comparison to
a SNP array.

A mutation caller is a classifier asking at every genomic locus, Is there a mutation here?. These classi-
fiers are evaluated using many Receiver Operators Characteristic (ROC) curves, which depend on the
allele fraction, coverage of tumor and normal sample, and sequencing and alignment noise. MuTect
is a highly sensitive Somatic Mutation Caller. The MuTect pipeline is as follows: Tumor and normal
samples are passed into a variant detection statistic (which compares the variant model to the null
hypothesis), which is passed through site-based filters (proximal gap, strand bias, poor mapping, tri-
allelic site, clustered position, observed in control), then compared to a panel of normal samples, and
finally classified as candidate variants. MuTect can detect low allele fraction mutations and is thus
suited for studying impure and heterogenous tumors.

3. Discovering mutational processes

Instead of detecting the presence of mutations in cancer genes, a different approach could be to dis-
cover if there were specific patterns among mutations in the cancer samples. A ”Lego plot” is a way
to visualize patterns of mutations, in which the heights of each of the colors represents frequencies of
the 6 types of base pair substitutions, and the frequency of each is plotted relative to the 16 different
contexts this mutation could occur in (neighboring nucleotides). The specific types of mutagenic events
in each type of cancer can be plotted and analyzed. As an example, a novel mutation pattern (AA
¿ AC) is found in esophageal cancer. Cancers can be grouped by these specific mutational spectra.
Dimensionality reductions using non-negative Matrix Factorization (NMF) of lego plot data can be
used to identify fundamental spectral signatures.

4. Estimating purity, ploidy and cancer cell functions

522

6.047/6.878 Lecture 24: Cancer Genomics

As well as detecting mutations in cancer cells, removing false positives, and detecting patterns of muta-
tions, a proper characterization of each tumor sample is required. Because of heterogeneity and sample
impurities, estimating the purity, absolute copy number and cancer cell fraction (CCF) of the tumor
sample being sequenced is needed to get correct total number and prevalence of the mutated alleles.

5. Tumor heterogeneity and evolution

Samples can have large distributions of point mutations and copy number alterations, but a Bayesian
clustering algorithm can help identify the mutations and copy number alterations in distinct subpop-
ulations.

36.3 Interpretation

The fundamental challenge in interpreting the sequencing results lies in differentiating driver mutations from
passenger mutations. In order to accomplish this, we need to model the background mutational processes of
the analyzed sequences and identify pathways/regions with more mutations than would have been predicted
solely by the background model. Those regions then become our candidate cancer genes.

However, we run into the potential issue of selecting an incorrect background model or we can encounter
systematic artifacts in mutation calling. In this case, we have to go back to the drawing board and attempt
to come up with a better background model before we can proceed with candidate gene idetification.

Many tools have been developed in an effort to accurately detect candidate cancer genes and pathways
(sub-networks) including NetSig, GISTIC, and MutSig. NetSig is used to identify clusters of mutated genes
in protein-protein interaction networks. GISTIC can be used to score regions according to frequency and am-
plitude of copy-number events. MutSig: is used to score genes according to number and types of mutations.
The main analysis steps in finding candidate cancer genes are 1) estimation of the background mutation rate
(which varies across samples, 2) calculate p-values based on statistical models, and 3) correct for multiple
testing hypothesis (N genes).

As sample size and or mutation rate increases, the significant gene list for cancer genes increases and
contains many fishy genes. One major breakthrough to reduce fishy genes has been the proper modeling
of background mutations. Standard tools use consistent background rate (rates for CpG, C/G, A/T, indel)
while ignoring heterogeneity across samples, additional sequence contexts, and the genome. But it was dis-
covered that the mutation rate across cancer varies ¿1000 fold, mutation rate is lower in highly expressed
genes, and the frequency of somatic mutations correlates with DNA replication time. There are more mu-
tations in areas of the genome that replicate later than those which divide early. MutSigCV is a tool which
corrects for this variation in background mutation rates.

36.4 Current Research Directions

There are a few holes in the current library of cancer genes including those which appear in intergenic regions.
Classification of pan-cancer mutations is thought to be required in order to find more non-coding mutations.

523

6.047/6.878 Lecture 24: Cancer Genomics

36.5 Further Reading

1. http://www.broadinstitute.org/cancer/cga/mutect

2. http://www.broadinstitute.org/cancer/cga/ABSOLUTE

36.6 Tools and Techniques

36.7 What Have We Learned?

The drop in sequencing costs over the last ten years has led to a need for automized analysis pipelines and
more computational / storage power to handle the vast flood of data being generated by a multitude of par-
allel sequencing efforts. Two major tasks of cancer genome projects going forward can be roughly grouped
into two areas: characterization and interpretation.

For characterization, there seems to still a need for a systematic benchmark of analysis methods (one
example is ROC curves - curves that illustrate the performance of a classifier with a varying discrimination
threshhold). We saw that cancer mutation rates tend to vary more than 1,000-fold across different tumor
types. We also learned that clonal and subclonal mutations could be used for studying tumor evolution and
heterogeneity.

Running a significance analysis on the sequencing results identified a long-tailed distribution of signifi-
cantly mutated genes. Since we’re dealing with a long tail distribution, we can increase the predictive power
of our models and detect more cancer genes by integrating multiple sources of evidence. However we have to
take into account that mutation rates differ according to the original sample, gene, and category from each
study.

Bibliography

524

http://www.broadinstitute.org/cancer/cga/mutect
http://www.broadinstitute.org/cancer/cga/ABSOLUTE

CHAPTER

THIRTYSEVEN

GENOME EDITING

37.1 Introduction

37.1.1 What is CRISPR/Cas?

The CRISPR/Cas system is the prokaryotic immune system. When a virus or other foreign attacker attempts
to infect a prokaryotic cell and inject its own DNA into a prokaryote’s genome, the prokaryote’s CRISPR/Cas
system is responsible from removing the foreign DNA. How does it do this? The CRISPR/Cas system has
two parts, CRISPR and Cas. The CRISPR part (a CRISPR array), is responsible for ”remembering” the
foreign DNA, while the Cas part (Cas proteins), is responsible for cutting out the recogined foreign DNA.
A CRIPSR array is made up of segments of short spacer DNA, which are the results of previous exposure
to foreign DNA. These spacer DNA are transcribed to RNAs, which can be used to match the foregin DNA
that the spacer DNA was built from. These RNA are then picked up by Cas proteins. When a Cas protein
picks up a particular RNA, it becomes sensitive to the matching DNA sequences. The next time the same
foreign DNA is inserted into the prokaryote, the Cas proteins sensitive to it will match the foreign DNA and
cut it out of the genome, causing it to become inactive.

37.1.2 Why is CRISPR/Cas important to us?

Because nature is giving us an effective way of editing a genome! In order to accurately edit a genome, it
is important to be able to cut a sequence at precisely the targeted location. Once a cut is made, repair
mechanism can go in and make a modification at the target site. The CRISPR/Cas system is a naturally
occurring time tested method of doing making alterations to DNA sequences.
Currently, the ability of researchers to perturb and interrogate the genome is lagging behind the current level

525

6.047/6.878 Lecture 9: Genome Editing

of techniques for reading. CRISPR provides an effective way to write to the genome that we are capable of
reading, allowing us to determine what variations in the genetic code give rise to diseases of interest.

37.1.3 Cas-9

The CRISPR/Cas-9 system is a system that has been of particular interest. Cas-9 is a endonuclease that
can trigger gene repair by making cuts at specific target sites, guided by a 20-nucleotide sgRNA. When a
target site that is complementary to the guide sgRNA is found and is followed by a NGG PAM region, the
Cas-9 protein will cut the DNA at that target site. By programming Cas-9 with specific sgRNA, it can
be programmed to create double stranded breaks at specific targets, while the PAM region plays a role in
prevent targeting of its own genome. Cas-9 has been shown to be much more efficient at targeting than more
established methods. Unfortunately, one drawback of Cas-9 is that it might make cuts at off-target sites
that aren’t fully complementary to the RNA guide, which makes it a challenge for accurate genome editing.

37.2 Current Research Directions

37.2.1 Improvement of Cas-9

Recent research has produced a variant of Cas-9 that greatly improves the specificity of Cas-9, reducing the
likeliness of offsite errors.

37.2.2 Current research being done with CRISPR/Cas-9

The recent improvement of Cas-9 has opened new pathways of research. For example, it can be used to
analyze the functions of specific genes by using CRISPR/Cas-9 to remove just that gene and observing the
effect of the removal. One example of an application of this is in the study of melanoma cancer cells.

Vemurafenib is a FDA approved drug for treating melanoma, and has been shown to be effective on melanoma
cells that have a V600E BRAF mutation by interrupting the BRAF pathway and inducing programmed cell
death.

Unfortunately, in many cases the cancer will become resistant to the drug by creating alternative sur-
vival pathways. CRISPR/Cas-9 can be used to determine the genes that allow the cancer cells to develop
alternative pathways. By programming Cas-9 proteins to target every gene individually and tagging the
proteins so it is possible to determine which protein affected which cell, it is possible to determine the genes
that are required for survival.

526

6.047/6.878 Lecture 9: Genome Editing

37.3 Further Reading

37.4 Tools and Techniques

37.5 What Have We Learned?

CRISPR/Cas-9 produces double stranded breaks in DNA, and has two main components:

20bp DNA

PAM

Bibliography

527

6.047/6.878 Lecture 9: Genome Editing

528

MIT OpenCourseWare
http://ocw.mit.edu

6.047 Computational Biology
Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Introduction to the Course
	Introduction and Goals
	A course on computational biology
	Duality of Goals: Foundations and Frontiers
	Duality of disciplines: Computation and Biology
	Why Computational Biology?
	Finding Functional Elements: A Computational Biology Question

	Final Project - Introduction to Research In Computational Biology
	Final project goals
	Final project milestones
	Project deliverables
	Project grading

	Additional materials
	Online Materials for Fall 2015
	Textbooks

	Crash Course in Molecular Biology
	The Central Dogma of Molecular Biology
	DNA
	Transcription
	RNA
	Translation
	Protein
	Regulation: from Molecules to Life
	Metabolism
	Systems Biology
	Synthetic Biology
	Model organisms and human biology

	Introduction to algorithms and probabilistic inference
	Probability distributions
	Graphical probabilistic models
	Bayes rules: priors, likelihood, posterior
	Markov Chains and Sequential Models
	Probabilistic inference and learning
	Max Likelihood and Max A Posteriori Estimates

	I Comparing Genomes
	Sequence Alignment and Dynamic Programming
	Introduction
	Aligning Sequences
	Example Alignment
	Solving Sequence Alignment

	Problem Formulations
	Formulation 1: Longest Common Substring
	Formulation 2: Longest Common Subsequence (LCS)
	Formulation 3: Sequence Alignment as Edit Distance
	Formulation 4: Varying Gap Cost Models
	Enumeration

	Dynamic Programming
	Theory of Dynamic Programming
	Fibonacci Numbers
	Sequence Alignment using Dynamic Programming

	The Needleman-Wunsch Algorithm
	Dynamic programming vs. memoization
	Problem Statement
	Index space of subproblems
	Local optimality
	Optimal Solution
	Solution Analysis
	Needleman-Wunsch in practice
	Optimizations

	Multiple alignment
	Aligning three sequences
	Heuristic multiple alignment

	Current Research Directions
	Further Reading
	Tools and Techniques
	What Have We Learned?
	Appendix
	Homology
	Natural Selection
	Dynamic Programming v. Greedy Algorithms
	Pseudocode for the Needleman-Wunsch Algorithm

	Rapid Sequence Alignment and Database Search
	Introduction
	Global alignment vs. Local alignment vs. Semi-global alignment
	Using Dynamic Programming for local alignments
	Algorithmic Variations
	Generalized gap penalties

	Linear-time exact string matching
	Karp-Rabin Algorithm

	The BLAST algorithm (Basic Local Alignment Search Tool)
	The BLAST algorithm
	Extensions to BLAST

	Pre-processing for linear-time string matching
	Suffix Trees
	Suffix Arrays
	The Burrows-Wheeler Transform
	Fundamental pre-processing
	Educated String Matching

	Probabilistic Foundations of Sequence Alignment
	Current Research Directions
	Further Reading
	Tools and Techniques
	What Have We Learned?

	Comparative Genomics I: Genome Annotation
	Introduction
	Motivation and Challenge
	Importance of many closely–related genomes
	Comparative genomics and evolutionary signatures

	Conservation of genomic sequences
	Functional elements in Drosophila
	Rates and patterns of selection

	Excess Constraint
	Causes of Excess Constraint
	Modeling Excess Constraint
	Excess Constraint in the Human Genome
	Examples of Excess Constraint
	Measuring constraint at individual nucleotides

	Diversity of evolutionary signatures: An Overview of Selection Patterns
	Selective Pressures On Different Functional Elements

	Protein–Coding Signatures
	Reading–Frame Conservation (RFC)
	Codon–Substitution Frequencies (CSFs)
	Classification of Drosophila Genome Sequences
	Leaky Stop Codons

	microRNA (miRNA) Gene Signatures
	Computational Challenge
	Unusual miRNA Genes
	Example: Re-examining 'dubious' protein-coding genes

	Regulatory Motifs
	Computationally Detecting Regulatory Motifs
	Individual Instances of Regulatory Motifs

	Current Research Directions
	Further Reading
	Tools and Techniques
	Bibliography

	Genome Assembly and Whole-Genome Alignment
	Introduction
	Genome Assembly I: Overlap-Layout-Consensus Approach
	Setting up the experiment
	Finding overlapping reads
	Merging reads into contigs
	Laying out contig graph into scaffolds
	Deriving consensus sequence

	Genome Assembly II: String graph methods
	String graph definition and construction
	Flows and graph consistency
	Feasible flow
	Dealing with sequencing errors
	Resources

	Whole-Genome Alignment
	Global, local, and 'glocal' alignment
	Lagan: Chaining local alignments

	Gene-based region alignment
	Mechanisms of Genome Evolution
	Chromosomal Rearrangements

	Whole Genome Duplication
	Additional figures

	 Bacterial Genomics– Molecular Evolution at the Level of Ecosystems
	Introduction
	Evolution of microbiome research
	Data generation for microbiome research

	Study 1: Evolution of life on earth
	Study 2: Pediatric IBD study with Athos Boudvaros
	Study 3: Human Gut Ecology (HuGE) project
	Study 4: Microbiome as the connection between diet and phenotype
	Study 5: Horizontal Gene Transfer (HGT) between bacterial groups and its effect on antibiotic resistance
	Study 6: Identifying virulence factors in Meningitis
	Q/A
	Current research directions
	Further Reading
	Tools and techniques
	What have we learned?

	II Coding and Non-Coding Genes
	Hidden Markov Models I
	Introduction
	Motivation:
	We have a new sequence of DNA, now what?
	Why probabilistic sequence modeling?

	Markov Chains and HMMS: From Example To Formalizing
	Motivating Example: Weather Prediction
	Formalizing of Markov Chain and HMMS

	Apply HMM to Real World: From Casino to Biology
	The Dishonest Casino
	Back to Biology

	Algorithmic Settings for HMMs
	Scoring
	Decoding
	Evaluation

	An Interesting Question: Can We Incorporate Memory in Our Model?
	Further Reading
	Length Distributions of States and Generalized Hidden Markov Models
	Conditional random fields

	Current Research Directions
	Tools and Techniques
	What Have We Learned?

	Hidden Markov Models II - Posterior Decoding and Learning
	Review of previous lecture
	Introduction to Hidden Markov Models
	Genomic Applications of HMMs
	Viterbi decoding
	Forward Algorithm
	This lecture

	Posterior Decoding
	Motivation
	Backward Algorithm
	The Big Picture

	Encoding Memory in a HMM: Detection of CpG islands
	Learning
	Supervised Learning
	Unsupervised Learning

	Using HMMs to align sequences with affine gap penalties
	Current Research Directions
	Further Reading
	Tools and Techniques
	What Have We Learned?

	Gene Identification: Gene Structure, Semi-Markov, CRFs
	Introduction
	Overview of Chapter Contents
	Eukaryotic Genes: An Introduction
	Assumptions for Computational Gene Identification
	Hidden Markov Models
	Conditional Random Fields
	Other Methods
	Conclusion
	HMM
	CRF

	Current Research Directions
	Further Reading
	Tools and Techniques
	What Have We Learned?

	RNA Folding
	Motivation and Purpose
	Chemistry of RNA
	Origin and Functions of RNA
	Riboswitches
	microRNAs
	Other types of RNA

	RNA Structure
	RNA Folding Problem and Approaches
	Nussinov's algorithm
	Zuker Algorithm

	Evolution of RNA
	Probabilistic Approach to the RNA Folding Problem
	Application of SCFGs

	Advanced topics
	Other problems
	Relevance
	Current research

	Summary and key points
	Further reading

	RNA Modifications
	Introduction
	Post-Transcriptional Regulation
	Basics of Protein Translation
	Measuring Translation
	Codon Evolution
	Translational Regulation

	Current Research Directions
	Further Reading
	Tools and Techniques
	What Have We Learned?

	Large Intergenic non-Coding RNAs
	Introduction
	Noncoding RNAs from Plants to Mammals
	Long non-coding RNAs

	Practical topic: RNAseq
	How it works
	Aligning RNA-Seq reads to genomes and transcriptomes
	Calculating expression of genes and transcripts
	Differential analysis with RNA-Seq

	Long non-coding RNAs in Epigenetic Regulation
	Integergenic Non-coding RNAs: missing lincs in Stem/Cancer cells?
	An example: XIST

	Technologies: in the wet lab, how can we find these?
	Example: p53

	Current Research Directions
	Further Reading
	Tools and Techniques
	What Have We Learned?

	Small RNA
	Introduction
	ncRNA classifications
	Small ncRNA
	Long ncRNA

	RNA Interference
	History of discovery
	Biogenesis pathways
	Functions and silencing mechanism

	III Gene and Genome Regulation
	mRNA sequencing for Expression Analysis and Transcript discovery
	Introduction
	Expression Microarrays
	The Biology of mRNA Sequencing
	Read Mapping - Spaced Seed Alignment
	Reconstruction
	Quantification

	Gene Regulation 1 –Gene Expression Clustering
	Introduction
	Clustering vs Classification
	Applications

	Methods for Measuring Gene Expression
	Microarrays
	RNA-seq
	Gene Expression Matrices

	Clustering Algorithms
	K-Means Clustering
	Fuzzy K-Means Clustering
	K-Means as a Generative Model
	Expectation Maximization
	The limitations of the K-Means algorithm
	Hierarchical Clustering
	Evaluating Cluster Performance

	Current Research Directions
	Further Reading
	Resources
	What Have We Learned?

	Gene Regulation 2 –Classification
	Introduction
	Classification - Bayesian Techniques
	Single Features and Bayesâ•Ž Rule
	Collecting Data
	Estimating Priors
	Multiple features and Naive Bayes
	Testing a classifier
	MAESTRO â•ﬁ Mitochondrial Protein Classification

	Classification â•ﬁ Support Vector Machines
	Kernels

	 Tumor Classification with SVMs
	Semi-Supervised Learning
	Open Problems

	Current Research Directions
	Further Reading
	Resources

	Regulatory Motifs, Gibbs Sampling, and EM
	Introduction to regulatory motifs and gene regulation
	The regulatory code: Transcription Factors and Motifs
	Challenges of motif discovery
	Motifs summarize TF sequence specificity

	Expectation maximization
	The key idea behind EM
	The E step: Estimating Zij from the PWM
	M step: Finding the maximum likelihood motif from starting positions Zij

	Gibbs Sampling: Sample from joint (M,Zij) distribution
	Sampling motif positions based on the Z vector
	More likely to find global maximum, easy to implement

	De novo motif discovery
	Motif discovery using genome-wide conservation
	Validation of discovered motifs with functional datasets

	Evolutionary signatures for instance identification
	Phylogenies, Branch length score Ã¨ Confidence score
	Foreground vs. background. Real vs. control motifs.

	Possibly deprecated stuff below:
	Greedy

	Comparing different Methods
	OOPS,ZOOPS,TCM
	Extension of the EM Approach
	ZOOPS Model
	Finding Multiple Motifs

	Motif Representation and Information Content

	Regulatory Genomics
	Introduction
	History of the Field
	Open Problems

	De Novo Motif Discovery
	TF Motif Discovery
	Validating Discovered Motifs
	Summary

	Predicting Regular Targets
	Motif Instance Identification
	Validating Targets

	MicroRNA Genes and Targets
	MiRNA Gene Discovery
	Validating Discovered MiRNAs
	MiRNA's 5' End Identification
	Functional Motifs in Coding Regions

	Current Research Directions
	Further Reading
	Tools and Techniques
	What Have We Learned?

	Epigenomics/Chromatin States
	Introduction
	Epigenetic Information in Nucleosomes
	Epigenetic Inheritance

	Epigenomic Assays
	ChIP: a method for determining where proteins bind to DNA or where histones are modified
	Bisulfite Sequencing: a method for determining where DNA is methylated

	Primary data processing of ChIP data
	Read mapping
	Quality control metrics
	Peak Calling and Selection

	Annotating the Genome Using Chromatin Signatures
	Data
	HMMs for Chromatin State Annotation
	Choosing the Number of states to model
	Results
	Multiple Cell Types

	Current Research Directions
	Further Reading
	Tools and Techniques
	What Have We Learned?

	Networks I: Inference, structure, spectral methods
	Introduction
	Introducing Biological Networks
	Interactions Between Biological Networks
	Network Representation

	Network Centrality Measures
	Degree Centrality
	Betweenness Centrality
	Closeness Centrality
	Eigenvector Centrality

	Linear Algebra Review
	Eigenvectors
	Vector decomposition
	Diagonal Decomposition
	Singular Value Decomposition

	Sparse Principal Component Analysis
	Limitations of Principal Component Analysis
	Sparse PCA

	Network Communities and Modules
	Node-Centric Communities
	Group-Centric Communities
	Network-Centric Communities

	Network Diffusion Kernels
	Neural Networks
	Feed-forward nets
	Back-propagation
	Deep Learning

	Open Issues and Challenges
	Current Research Directions
	Further Reading
	Tools and Techniques
	What Have We Learned?

	Regulatory Networks: Inference, Analysis, Application
	Introduction
	Introducing Biological Networks
	Interactions Between Biological Networks
	Studying Regulatory Networks

	Structure Inference
	Key Questions in Structure Inteference
	Abstract Mathematical Representations for Networks

	Overview of the PGM Learning Task
	Parameter Learning for Bayesian Networks
	Learning Regulatory Programs for Modules
	Conclusions in Network Inference

	Applications of Networks
	Overview of Functional Models
	Functional Prediction for Unannotated Nodes

	Structural Properties of Networks
	Degree distribution
	Network motifs

	Network clustering
	An algebraic view to networks
	The spectral clustering algorithm

	Chromatin Interactions
	Introduction
	What's already known
	What we don't know
	Why do we study it?

	Relevant terminology
	Nuclear lamina
	Lamina Associated Domains(LADs)
	Histones
	Chromatin
	Chromosome territories (CT)
	Gross folding principles

	Molecular Methods for Studying Nuclear Genome Organization
	Methods for measuring DNA-Nuclear Lamina interactions
	Measuring DNA-DNA contacts

	Mapping Genome-Nuclear Lamina Interactions (LADs)
	Interpreting DamID Data
	Interpreting Hi-C Data

	Computational Methods for Studying Nuclear Genome Organization
	Sources of Bias
	Bias Correction
	3D-modeling of 3C-based data

	Architecture of Genome Organization
	Multiple cell types influence on determining architecture
	Inter-species comparison of lamina associations
	A-T Content Rule

	Mechanistic Understanding of Genome Architecture
	Understanding Mitosis and LADs
	Modeling

	Current Research Directions:
	LADs
	TADs and Other Compartments:
	Other/Miscellaneous:

	Further Reading
	Available Tools and Techniques
	What Have We Learned?

	 Introduction to Steady State Metabolic Modeling
	Introduction
	What is Metabolism?
	Why Model Metabolism?

	Model Building
	Chemical Reactions
	Steady-State Assumption
	Reconstructing Metabolic Pathways

	Metabolic Flux Analysis
	Mathematical Representation
	Null Space of S
	Constraining the Flux Space
	Linear Programming

	Applications
	In Silico Detection Analysis
	Quantitative Flux In Silico Model Predictions
	Quasi Steady State Modeling (QSSM)
	Regulation via Boolean Logic
	Coupling Gene Expression with Metabolism
	Predicting Nutrient Source

	Current Research Directions
	Further Reading
	Tools and Techniques
	What Have We Learned?

	The ENCODE project: Systematic experimentation and integrative genomics
	Introduction
	Experimental Techniques
	Computational Techniques
	Current Research Directions
	Further Reading
	Tools and Techniques
	What Have We Learned?

	Pharmacogenomics
	Introduction
	Current Research Directions
	Further Reading
	Tools and Techniques
	What Have We Learned?

	Synthetic Biology
	Introduction
	Current Research Directions
	Further Reading
	Tools and Techniques
	What Have We Learned?

	IV Phylogenomics and Population Genomics
	Molecular Evolution and Phylogenetics
	Introduction
	Basics of Phylogeny
	Trees
	Traits
	Methods for Tree Reconstruction

	Distance Based Methods
	From alignment to distances
	Distances to Trees

	Character-Based Methods
	Scoring
	Search

	Possible Theoretical and Practical Issues with Discussed Approach
	Towards final project
	Project Ideas
	Project Datasets

	What Have We Learned?

	Phylogenomics II
	Introduction
	Inferring Orthologs/Paralogs, Gene Duplication and Loss
	Species Tree
	Gene Tree
	Gene Family Evolution
	Reconciliation
	Interpreting Reconciliation Examples

	Reconstruction
	Species Tree Reconstruction
	Improving Gene Tree Reconstruction and Learning Across Gene Trees

	Modeling Population and Allele Frequencies
	The Wright-Fisher Model
	The Coalescent Model
	The Multispecies Coalescent Model

	SPIDIR
	Background
	Method and Model

	Ancestral Recombination Graphs
	The Sequentially Markov Coalescent

	Conclusion
	Current Research Directions
	Further Reading
	Tools and Techniques
	What Have We Learned?

	Population History
	Introduction
	Quick Survey of Human Genetic Variation
	African and European Gene Flow
	Gene Flow on the Indian Subcontinent
	Almost All Mainland Indian Groups are Mixed
	Population structure in India is different from Europe
	Discussion

	Gene Flow Between Archaic Human Populations
	Background
	Evidence of Gene Flow between Humans and Neanderthals
	Gene Flow between Humans and Denisovans
	Analysis of High Coverage Archaic Genomes
	Discussion

	European Ancestry and Migrations
	Tracing the Origins of European Genetics
	Migration from the Steppe
	Screening for Natural Selection

	Tools and Techniques
	Techniques for Studying Population Relationships
	Extracting DNA from Neanderthal Bones
	Reassembling Ancient DNA

	Research Directions
	Further Reading

	Population Genetic Variation
	Introduction
	Population Selection Basics
	Polymorphisms
	Allele and Genotype Frequencies
	Ancestral State of Polymorphisms
	Measuring Derived Allele Frequencies

	Genetic Linkage
	Correlation Coefficient r2

	Natural Selection
	Genomics Signals of Natural Selection

	Human Evolution
	A History of the Study of Population Dynamics
	Understanding Disease
	Understanding Recent Population Admixture

	Current Research
	HapMap project
	1000 genomes project

	Further Reading

	V Medical Genomics
	Medical Genetics – The Past to the Present
	Introduction
	Goals of investigating the genetic basis of disease
	Personalized genomic medicine
	Informing therapeutic development

	Mendelian Traits
	Mendel
	Linkage Analysis

	Complex Traits
	Genome-wide Association Studies
	Events Enabling Genome-wide Association Studies
	Quality Controls
	Testing for Association
	Interpretation: How can GWAS inform the biology of disease?
	Bottom-up
	Top-down
	Comparison with Linkage Analysis
	Challenges of Non-coding Variants
	Conclusions

	Current Research Directions
	Further Reading
	Tools and Techniques
	What Have We Learned?

	Variation 2: : Quantitative trait mapping, eQTLs, molecular trait variation
	Introduction
	eQTL Basics
	Cis-eQTLs
	Trans-eQTLs

	Structure of an eQTL Study
	Considerations for Expression Data
	Considerations for Genomic Data
	Covariate Adjustment
	Points to Consider

	Current Research Directions
	Quantifying Trait Variation
	New Applications

	What Have We Learned?
	Further Reading
	Tools and Resources

	Missing Heretibility
	Introduction
	Current Research Directions
	Further Reading
	Tools and Techniques
	What Have We Learned?

	Personal Genomes, Synthetic Genomes, Computng in C vs. Si
	Introduction
	Reading and Writing Genomes
	Personal Genomes
	Current Research Directions
	Further Reading
	Tools and Techniques
	What Have We Learned?

	Personal Genomics
	Introduction
	Epidemiology: An Overview
	Genetic Epidemiology
	Molecular Epidemiology
	meQTLs
	EWAS

	Causality Modeling and Testing
	Polygenic Risk Prediction

	Current Research Directions
	Further Reading
	Tools and Techniques
	What Have We Learned?

	Cancer Genomics
	Introduction
	Characterization
	Interpretation
	Current Research Directions
	Further Reading
	Tools and Techniques
	What Have We Learned?

	Genome Editing
	Introduction
	What is CRISPR/Cas?
	Why is CRISPR/Cas important to us?
	Cas-9

	Current Research Directions
	Improvement of Cas-9
	Current research being done with CRISPR/Cas-9

	Further Reading
	Tools and Techniques
	What Have We Learned?

