
 

       
 

 
 

           
 

 
 

    
 

 
        

       
         

16.3 Rotational Kinetic Energy and Moment of Inertia 

16.3.1 Rotational Kinetic Energy and Moment of Inertia 

We have already defined translational kinetic energy for a point object as K = (1 / 2)mv2 ; 
we now define the rotational kinetic energy for a rigid body about its center of mass. 

Figure 16.8 Volume element undergoing fixed-axis rotation about the z -axis that passes 
through the center of mass. 

Choose the z -axis to lie along the axis of rotation passing through the center of mass. As 
in Section 16.2.2, divide the body into volume elements of mass Δmi (Figure 16.8). Each 
individual mass element Δmi undergoes circular motion about the center of mass with z -
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component of angular velocity ω cm in a circle of radius r . Therefore the velocity of cm, i 

each element is given by v  = r ω θ̂ . The rotational kinetic energy is then cm, i cm, i cm 

1 2 1 2 2K cm, i = 
2 
Δmi v cm, i = 

2 
Δmir cm, iω cm .	 (16.2.1) 

We now add up the kinetic energy for all the mass elements, 

i=N i=N ⎞⎛∑ 
1 Δmi

2 2K = lim K = lim r cm i→∞	 
∑ cm, i i→∞ 

∑⎝⎜ 2 cm, i ⎠⎟ 
ω cm 

i=1 i=1 iΔmi→0 Δmi→0 
(16.2.2)

⎛ ⎞1	 2 2= dmrdm ,⎜ 2 ∫ ⎟ω cm 
⎝ body ⎠

where dm is an infinitesimal mass element undergoing a circular orbit of radius rdm 

about the axis passing through the center of mass. 

The quantity 
2I = dmrdm .	 (16.2.3)cm ∫ 

bo dy 

is called the moment of inertia of the rigid body about a fixed axis passing 
through the center of mass, and is a physical property of the body. The SI units for 
moment of inertia are ⎡kg ⋅ m2 ⎤⎣ ⎦ . 

Thus 
⎛ ⎞1	 12 2 2K cm = ⎜ 2 ∫ dmrdm ⎟ω cm ≡ 

2 
Icm ω cm . (16.2.4)

⎝ bo dy ⎠ 

16.3.2 Moment of Inertia of a Rod of Uniform Mass Density 

Consider a thin uniform rod of length L and mass m . In this problem, we will calculate 
the moment of inertia about an axis perpendicular to the rod that passes through the 
center of mass of the rod. A sketch of the rod, volume element, and axis is shown in 
Figure 16.9. Choose Cartesian coordinates, with the origin at the center of mass of the 
rod, which is midway between the endpoints since the rod is uniform. Choose the x -axis 
to lie along the length of the rod, with the positive x -direction to the right, as in the 
figure. 
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Figure 16.9 Moment of inertia of a uniform rod about center of mass. 

Identify an infinitesimal mass element dm = λ dx , located at a displacement x from the 
center of the rod, where the mass per unit length λ = m / L is a constant, as we have 
assumed the rod to be uniform. When the rod rotates about an axis perpendicular to the 
rod that passes through the center of mass of the rod, the element traces out a circle of 
radius rdm = x . We add together the contributions from each infinitesimal element as we 
go from x = −L 2 to x = L 2 . The integral is then 

L / 2 

2I cm = ∫ rdm dm = λ∫− 

L

L

/ 2 

/ 2 
(x2 ) dx = λ 

x3 

3bo dy − L / 2 (16.2.5) 
m (L / 2)3 m (−L / 2)3 1 

= − = m L2.
L 3 L 3 12 

By using a constant mass per unit length along the rod, we need not consider variations in 
the mass density in any direction other than the x - axis. We also assume that the width is 
the rod is negligible. (Technically we should treat the rod as a cylinder or a rectangle in 
the -x y plane if the axis is along the z - axis. The calculation of the moment of inertia in 
these cases would be more complicated.) 

Example 16.2 Moment of Inertia of a Uniform Disc 

A thin uniform disc of mass M and radius R is mounted on an axle passing through the 
center of the disc, perpendicular to the plane of the disc. Calculate the moment of inertia 
about an axis that passes perpendicular to the disc through the center of mass of the disc 

Solution: As a starting point, consider the contribution to the moment of inertia from the 
mass element dm show in Figure 16.10. Let r denote the distance form the center of 
mass of the disc to the mass element. 

Figure 16.10 Infinitesimal mass element and coordinate system for disc. 
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Choose cylindrical coordinates with the coordinates (r,θ) in the plane and the z -axis 
perpendicular to the plane. The area element 

da = r dr dθ (16.2.6) 

may be thought of as the product of arc length r dθ and the radial width dr . Since the 
disc is uniform, the mass per unit area is a constant, 

dm m Mtotal σ = = = . (16.2.7)
da Area π R2 

Therefore the mass in the infinitesimal area element as given in Equation (16.2.6), a 
distance r from the axis of rotation, is given by 

Mdm = σ r dr dθ = r dr dθ . (16.2.8)
π R2 

When the disc rotates, the mass element traces out a circle of radius rdm = r ; that is, the 
distance from the center is the perpendicular distance from the axis of rotation. The 
moment of inertia integral is now an integral in two dimensions; the angle θ varies from 
θ = 0 to θ = 2π , and the radial coordinate r varies from r = 0 to r = R . Thus the limits 
of the integral are 

2 M r = R θ = 2π
I = ∫ rdm dm = ∫ r dr . (16.2.9)cm π R2 r =0 ∫θ =0

3 dθ 
bo dy 

The integral can now be explicitly calculated by first integrating the θ -coordinate 

M r = R θ = 2π M r = R 2M r = R⎞I cm = ∫ ⎛ ∫ dθ⎠ r
3dr = ∫ 2πr3dr = ∫ r3dr (16.2.10)

π R2 r =0 ⎝ θ =0 π R2 r =0 R2 r =0 

and then integrating the r -coordinate, 

r = R 
2 M r = R 2 M r 4 2 M R4 1I cm = 
R2 ∫r =0 

r3dr = 
R2 4 

= = MR2 . (16.2.11)
R2 4 2 

r =0 

Remark: Instead of taking the area element as a small patch da = r dr dθ , choose a ring 
of radius r and width dr . Then the area of this ring is given by 

daring = π (r + dr)2 − πr 2 = πr 2 + 2πr dr + π (dr)2 − πr 2 = 2πr dr + π (dr)2 . (16.2.12) 
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In the limit that dr → 0 , the term proportional to (dr)2 can be ignored and the area is 
da = 2πrdr . This equivalent to first integrating the dθ variable 

θ = 2π ⎞daring = r dr ⎝
⎛ ∫θ =0 

dθ⎠ = 2πr dr . (16.2.13) 

Then the mass element is 
Mdm = σ da = 2πr dr . (16.2.14)ring ring π R2 

The moment of inertia integral is just an integral in the variable r , 

2π M r = R 1I = )2 dm = r3dr = MR2 . (16.2.15)cm ∫ (r⊥ π R2 ∫r =0 2body 

16.3.3 Parallel Axis Theorem 

Consider a rigid body of mass m undergoing fixed-axis rotation. Consider two parallel 
axes. The first axis passes through the center of mass of the body, and the moment of 
inertia about this first axis is Icm . The second axis passes through some other point S in 
the body. Let dS ,cm denote the perpendicular distance between the two parallel axes 
(Figure 16.11). 

Figure 16.11 Geometry of the parallel axis theorem. 

Then the moment of inertia IS about an axis passing through a point S is related to Icm 

by 
IS = Icm + m d S 

2
,cm . (16.2.16) 
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16.3.4 Parallel Axis Theorem Applied to a Uniform Rod 

Let point S be the left end of the rod of Figure 16.9. Then the distance from the center of 
mass to the end of the rod is dS ,cm = L / 2 . The moment of inertia IS = Iend about an axis 
passing through the endpoint is related to the moment of inertia about an axis passing 
through the center of mass, Icm = (1/12) mL 2 , according to Equation (16.2.16), 

1 2 1 2 1 2IS = mL + mL = mL . (16.2.17)
12 4 3 

In this case it’s easy and useful to check by direct calculation. Use Equation (16.2.5) but 
with the limits changed to x′ = 0 and x′ = L , where x′ = x + L / 2 , 

Iend = ∫ r⊥ 
2 dm = λ∫

L
x′2 dx ′ 

0 
body 

L (16.2.18) 
x′3 ( ) 3 m (0) 3 1 2m L = λ = − = mL . 
3 

0 
L 3 L 3 3 

Example 16.3 Rotational Kinetic Energy of Disk 

A disk with mass M and radius R is spinning with angular speed ω about an axis that 
passes through the rim of the disk perpendicular to its plane. The moment of inertia about 
cm is Icm = (1/ 2) mR 2 . What is the kinetic energy of the disk? 

Solution: The parallel axis theorem states the moment of inertia about an axis passing 
perpendicular to the plane of the disc and passing through a point on the edge of the disc 
is equal to 

I = I + mR2 . (16.2.19)edge cm 

The moment of inertia about an axis passing perpendicular to the plane of the disc and 
passing through the center of mass of the disc is equal to Icm = (1/ 2) mR 2 . Therefore 

Iedge = (3 / 2)mR2 . (16.2.20) 
The kinetic energy is then 

K = (1 / 2)Iedgeω 2 = (3 / 4)mR2ω 2 . (16.2.21) 
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16.4 Conservation of Energy for Fixed Axis Rotation 

Consider a closed system ( ΔE = 0 ) under action of only conservative internal forces. system 

Then the change in the mechanical energy of the system is zero 

ΔE = ΔU + ΔK = (U f ) = 0 . (16.3.1)m + K f ) − (Ui + Ki 

For fixed axis rotation with a component of angular velocity ω about the fixed axis, the 
change in kinetic energy is given by 

1 1 2ΔK ≡ K f − Ki = ISω 2 
f − ISω i , (16.3.2)

2 2 

where S is  a point that lies on the fixed axis. Then conservation of energy implies that 

1 2 1 2U f + ISω f = Ui + ISω i (16.3.3)
2 2 

Example 16.4 Energy and Pulley System 

A wheel in the shape of a uniform disk of radius R and mass mp is mounted on a 
frictionless horizontal axis. The wheel has moment of inertia about the center of mass 
I = (1/ 2) m R 2 . A massless cord is wrapped around the wheel and one end of the cord is cm p 

attached to an object of mass m2 that can slide up or down a frictionless inclined plane. 
The other end of the cord is attached to a second object of mass m1 that hangs over the 
edge of the inclined plane. The plane is inclined from the horizontal by an angle θ 
(Figure 16.12). Once the objects are released from rest, the cord moves without slipping 
around the disk. Calculate the speed of block 2 as a function of distance that it moves 
down the inclined plane using energy techniques. Assume there are no energy losses due 
to friction and that the rope does not slip around the pulley 

Figure 16.12 Pulley and blocks Figure 16.13 Coordinate system for 
pulley and blocks 
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Solution: Define a coordinate system as shown in Figure 16.13. Choose the zero for the 
gravitational potential energy at a height equal to the center of the pulley. In Figure 16.14 
illustrates the energy diagrams for the initial state and a dynamic state at an arbitrary time 
when the blocks are sliding. 

Figure 16.14 Energy diagrams for initial state and dynamic state at arbitrary time 

Then the initial mechanical energy is 

Ei = Ui = −m1gy1, i − m2 gx2,i sinθ . (16.3.4) 

The mechanical energy, when block 2 has moved a distance 

d = x2 − x2, i (16.3.5) 
is given by 

1 1 1
E = U + K = −m1gy1 − m2 gx2 sinθ + m1v1

2 + m2v2
2 + IPω 2 . (16.3.6)

2 2 2 

The rope connects the two blocks, and so the blocks move at the same speed 

v ≡ v1 = v2 . (16.3.7) 

The rope does not slip on the pulley; therefore as the rope moves around the pulley the 
tangential speed of the rope is equal to the speed of the blocks 

vtan = Rω = v . (16.3.8) 

Eq. (16.3.6) can now be simplified 

1 ⎛ IP 
⎞ 2E = U + K = −m gy − m gx sinθ + m + m + . (16.3.9)1 1 2 2 1 22 ⎝⎜ R2 ⎠⎟ 

v

Because we have assumed that there is no loss of mechanical energy, we can set Ei = E 
and find that 
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1 ⎛ IP ⎞ 2−m1gy1, i − m2 gx2, i sinθ = −m1gy1 − m2 gx2 sinθ + m1 + m2 + 
⎠⎟ 

v , (16.3.10)
2 ⎝⎜ R2 

which simplifies to 
1 ⎛ ⎞IP 2−m1g( y1,0 − y1) + m2 g(x2 − x2,0 )sinθ = m1 + m2 + 

⎠⎟ 
v . (16.3.11)

2 ⎝⎜ R2 

We finally note that the movement of block 1 and block 2 are constrained by the 
relationship 

d = x2 = − y1 . (16.3.12)− x2, i y1, i 

Then Eq. (16.3.11) becomes 

1 ⎛ IP 
⎞ 2gd(−m1 + m2 sinθ) = m1 + m2 + 
⎠⎟ 

v . (16.3.13)
2 ⎝⎜ R2 

We can now solve for the speed as a function of distance d = x2 that block 2 has − x2, i 

traveled down the incline plane 

2gd(−m1 + m2 sinθ)
v = . (16.3.14)(m1 + m2 + (IP / R

2 )) 
If we assume that the moment of inertial of the pulley is Icm = (1/ 2) m R 2 p , then the speed 
becomes 

(16.3.15) 

Example 16.5 Physical Pendulum 

A physical pendulum consists of a uniform rod of mass m1 pivoted at one end about the 
point S . The rod has length l1 and moment of inertia I1 about the pivot point. A disc of 
mass and radius with moment of inertia I about its center of mass is rigidly m2 r2 cm 

attached a distance l2 from the pivot point. The pendulum is initially displaced to an 
angle θ i and then released from rest. (a) What is the moment of inertia of the physical 
pendulum about the pivot point S ? (b) How far from the pivot point is the center of mass 
of the system? (c) What is the angular speed of the pendulum when the pendulum is at 
the bottom of its swing? 

v = 
2gd(−m1 + m2 sinθ) 
m1 + m2 + (1 / 2)mP( ) . 
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Figure 16.15 Rod and with fixed disc pivoted about the point S 

Solution: a) The moment of inertia about the pivot point is the sum of the moment of 
inertia of the rod, given as I1 , and the moment of inertia of the disc about the pivot point.  
The moment of inertia of the disc about the pivot point is found from the parallel axis 
theorem, 

I = I + m l2 . (16.3.16)disc cm 2 2 

The moment of inertia of the system consisting of the rod and disc about the pivot point 
S is then 

I = I + I = I + I + m l2 . (16.3.17)S 1 disc 1 cm 2 2 

The center of mass of the system is located a distance from the pivot point 

m1(l1 / 2) + m2 l2l cm = . (16.3.18)
m1 + m2 

b) We can use conservation of mechanical energy, to find the angular speed of the 
pendulum at the bottom of its swing. Take the zero point of gravitational potential energy 
to be the point where the bottom of the rod is at its lowest point, that is, θ = 0 . The 
initial state energy diagram for the rod is shown in Figure 16.16a and the initial state 
energy diagram for the disc is shown in Figure 16.16b. 
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(a) (b) 

Figure 16.16 (a) Initial state energy diagram for rod (b) Initial state energy diagram for 
disc 

The initial mechanical energy is then 

l1Ei = Ui = m1 g (l1 − cosθ i ) + m2 g (l1 − l2 cosθ i ) , (16.3.19)
2 

At the bottom of the swing, θ f = 0 , and the system has angular velocity ω f . The 
mechanical energy at the bottom of the swing is 

l1 1 2E f = U f + K f = m1 g + m2 g(l1 − l2 ) + ISω f , (16.3.20)
2 2 

with IS as found in Equation (16.3.17). There are no non-conservative forces acting, so 
the mechanical energy is constant therefore equating the expressions in (16.3.19) and 
(16.3.20) we get that 

l1 l1 1 m1 g (l1 − cosθ i ) + m2 g (l1 − l2 cosθ i ) = m1 g + m2 g(l1 − l2 ) + ISω 2 
f , (16.3.21)

2 2 2 

This simplifies to 
⎛ ⎞m1 l1 1 2+ m2 l2 ⎠⎟ 

g (1− cosθ i ) = ISω f , (16.3.22)
⎝⎜ 2 2 

We now solve for ω f (taking the positive square root to insure that we are calculating 
angular speed) 
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⎛ m1 l1 ⎞
2 + m2 l2 ⎠⎟ 

g (1− cosθ i )⎝⎜ 2
ω f = , (16.3.23)

IS 

Finally we substitute in Eq.(16.3.17) in to Eq. (16.3.23) and find 

⎛ m1 l1 ⎞
2 + m2 l2 ⎠⎟ 

g (1− cosθ i )⎝⎜ 2 
= . (16.3.24)ω f 2+ I + m2I1 cm l2 

Note that we can rewrite Eq. (16.3.22), using Eq. (16.3.18) for the distance between the 
center of mass and the pivot point, to get 

1 2(m1 + m2 )lcm g (1− cosθ i ) = ISω f , (16.3.25)
2 

We can interpret this equation as follows. Treat the system as a point particle of mass 
+ m2 located at the center of mass l . Take the zero point of gravitational potential m1 cm 

energy to be the point where the center of mass is at its lowest point, that is, θ = 0 . Then 

Ei = (m1 + m2 )l cmg (1− cosθ i ) , (16.3.26) 

E f = 
1 
2 

ISω f 
2 . (16.3.27) 

Thus conservation of energy reproduces Eq. (16.3.25). 
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