
  

   
 

              
             

       
   

 

 
  

  

 
  

 

 
  

  

 

14.6 Spring Force Energy Diagram 
 

The spring force on an object is a restoring force Fs = Fx
s î = −k x ̂i where we choose a 

coordinate system with the equilibrium position at xi = 0 and x is the amount the spring 
has been stretched (x > 0) or compressed (x < 0) from its equilibrium position. We 
calculate the potential energy difference Eq. (14.4.9) and found that 

U s (x) − U s (xi ) = −∫
x 

Fx
s dx = 

1 
k(x2 − xi 

2 ) . (14.5.1)
xi 2 

The first fundamental theorem of calculus states that 

x ′= x dU
U (x) − U (xi ) = dx′ . (14.5.2)∫x ′= xi dx′ 
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Comparing Equation (14.5.1) with Equation (14.5.2) shows that the force is the negative 
derivative (with respect to position) of the potential energy, 

dU s (x)
F s = − . (14.5.3)x dx 

Choose the zero reference point for the potential energy to be at the equilibrium position, 
U s (0) ≡ 0 . Then the potential energy function becomes 

U s (x) = 
1 

k x2 . (14.5.4)
2 

From this, we obtain the spring force law as 

s dU s (x) d ⎛ 1 ⎞
F = − = − k x2 

⎠⎟ 
= −k x . (14.5.5)x dx dx ⎝⎜ 2 

In Figure 14.9 we plot the potential energy function Us (x) for the spring force as 
function of x with U s (0) ≡ 0 (the units are arbitrary). 

Figure 14.9 Graph of potential energy function as function of x for the spring. 

The minimum of the potential energy function occurs at the point where the first 
derivative vanishes 

dU s (x) 
dx 

= 0 . (14.5.6) 

From Equation (14.5.4), the minimum occurs at x = 0 , 

0 = 
dU s (x) 

dx 
= k x . (14.5.7) 
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Because the force is the negative derivative of the potential energy, and this derivative 
vanishes at the minimum, we have that the spring force is zero at the minimum x = 0 
agreeing with our force law, Fx

s = 0 .= −k x 
x =0x =0 

The potential energy function has positive curvature in the neighborhood of a 
minimum equilibrium point. If the object is extended a small distance x > 0 away from 
equilibrium, the slope of the potential energy function is positive, dU ( ) x dx > 0 , hence 
the component of the force is negative because Fx = − dU ( ) x dx < 0 . Thus the object 
experiences a restoring force towards the minimum point of the potential. If the object is 
compresses with x < 0 then dU ( ) x dx < 0 , hence the component of the force is positive, 
Fx = − dU ( ) x dx > 0 , and the object again experiences a restoring force back towards the 
minimum of the potential energy as in Figure 14.10. 

Figure 14.10 Stability diagram for the spring force. 

The mechanical energy at any time is the sum of the kinetic energy ( ) and the K x 
potential energy U s (x) 

Em = K(x) + U s (x) . (14.5.8) 

Suppose our spring-object system has no loss of mechanical energy due to dissipative 
forces such as friction or air resistance. Both the kinetic energy and the potential energy 
are functions of the position of the object with respect to equilibrium. The energy is a 
constant of the motion and with our choice of U s (0) ≡ 0 , the energy can be either a 
positive value or zero. When the energy is zero, the object is at rest at the equilibrium 
position. 

In Figure 14.10, we draw a straight horizontal line corresponding to a non-zero 
positive value for the energy Em on the graph of potential energy as a function of x . The 
energy intersects the potential energy function at two points {−x , x } with x > 0 .max max max 

These points correspond to the maximum compression and maximum extension of the 
spring, which are called the turning points. The kinetic energy is the difference between 
the energy and the potential energy, 

14-3 



     
 

           
        

      
      

   
 

  
 

           
 

 

  

  

 
               

          
           

           
        

        
 

              
     

 
 

  
 

 
 

K(x) = Em − U s (x) . (14.5.9) 

At the turning points, where Em = U s (x) , the kinetic energy is zero. Regions where the 
kinetic energy is negative, x < −x or x > x are called the classically forbidden max max 

regions, which the object can never reach if subject to the laws of classical mechanics. In 
quantum mechanics, with similar energy diagrams for quantum systems, there is a very 
small probability that the quantum object can be found in a classically forbidden region. 

Example 14.1 Energy Diagram 

The potential energy function for a particle of mass m , moving in the x -direction is 
given by 

⎛ 3 2 ⎞⎛ x ⎞ ⎛ x ⎞ 
U (x) = −U1 ⎜ − ⎟ , (14.5.10)

⎜ ⎝⎜ x1 ⎠
⎟ ⎝⎜ x1 ⎠

⎟ ⎟⎝ ⎠ 

where U1 and x1 U ( ) /U1 as a function are positive constants and U (0) = 0 . (a) Sketch x 
of x / x1 . (b) Find the points where the force on the particle is zero. Classify them as 
stable or unstable. Calculate the value of U (x) / U1 at these equilibrium points. (c) For 
energies E that lies in 0 < E < (4 / 27)U1 find an equation whose solution yields the 
turning points along the x-axis about which the particle will undergo periodic motion. (d) 
Suppose E = (4 / 27)U1 and that the particle starts at x = 0 with speed v0 . Find v0 . 

Solution: a) Figure 14.11 shows a graph of U (x) vs. x , with the choice of values x1 = 1.5 m , 
U1 = 27 / 4 J , and E = 0.2 J . 

Figure 14.11 Energy diagram for Example 14.1 

b) The force on the particle is zero at the minimum of the potential which occurs at 
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⎛ ⎞ ⎛ ⎞ ⎛ ⎞  
(x) = − 

dU 
dx 

(x) = U1 

3  2  
x2 −F  = 0 (14.5.11) ⎜

⎝  
⎟
⎠  

x⎜
⎝ 

⎟
⎠ 

⎜
⎝ 

⎟
⎠ 3 2x x1 x1 

which becomes 
x2 = (2x1 / 3)x . (14.5.12) 

We can solve Eq. (14.5.12) for the extrema. This has two solutions 

x = (2x1 / 3) and x = 0 . (14.5.13) 

The second derivative is given by 

⎛ ⎞ ⎛ ⎛ ⎞ ⎞ d 2U 
dx2 (x) = −U1 

6  2  
⎟
⎠  

x − ⎜
⎝  

. (14.5.14) ⎜
⎝  

⎟
⎠ 

⎜
⎝ 

⎟
⎠ 3 2x1 x1 

Evaluating the second derivative at x = (2x1 / 3) yields a negative quantity 

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ d 2U 
dx2 (x = (2x1 / 3)) = −U1 

2U 2x16  2  1− = −  < 0 , (14.5.15) ⎜
⎝  

⎟
⎠ 

⎜
⎝ 

⎟
⎠ 

⎜
⎝ 

⎟
⎠ 3 2 23 x1 x1 x1 

indicating the solution x = (2x1 / 3) represents a local maximum and hence is an unstable point. 
At x = (2x1 / 3) , the potential energy is given by the value U ((2x1 / 3)) = (4 / 27)U1 . Evaluating 
the second derivative at x = 0 yields a positive quantity 

⎛ ⎞ ⎛ ⎛ ⎞ ⎞ d 2U 
dx2 (x = 0) = −U1 

2U 6  2  1
⎟
⎠  

0 − ⎜
⎝  

> 0 , (14.5.16) ⎜
⎝  

⎟
⎠  
= ⎜

⎝ 
⎟
⎠ 3 2 2x1 x1 x1 

indicating the solution x = 0 represents a local minimum and is a stable point. At the local 
minimum x = 0 , the potential energy U (0) = 0 . 

c) Consider a fixed value of the energy of the particle within the range 

4U1U (0) = 0 < E < U (2x1 / 3) = . (14.5.17)
27 

If the particle at any time is found in the region xa < x < xb < 2x1 / 3, where xa and xb are the 
turning points and are solutions to the equation 
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⎛ ⎛ x ⎞ 
3 

⎛ x ⎞ 
2 ⎞ 

E = U (x) = −U1 ⎜ − ⎟ . (14.5.18)
⎜ ⎝⎜ x1 ⎠

⎟ ⎝⎜ x1 ⎠
⎟ ⎟⎝ ⎠ 

then the particle will undergo periodic motion between the values xa < x < xb . Within 
this region xa < x < xb , the kinetic energy is always positive because K(x) = E −U (x) . 
There is another solution x to Eq. (14.5.18) somewhere in the region x / 3 . If the c c > 2x1 

particle at any time is in the region x > xc then it at any later time it is restricted to the 
region xc < x < +∞ . 

For E > U (2x1 / 3) = (4 / 27)U1 , Eq. (14.5.18) has only one solution xd . For all values of 
x > xd , the kinetic energy is positive, which means that the particle can “escape” to 
infinity but can never enter the region x < xd . 

For E < U (0) = 0 , the kinetic energy is negative for the range −∞ < x < xe where xe 

satisfies Eq. (14.5.18) and therefore this region of space is forbidden. 

(d) If the particle has speed v0 at x = 0 where the potential energy is zero, U (0) = 0 , the 
energy of the particle is constant and equal to kinetic energy 

1 2E = K(0) = mv0 . (14.5.19)
2 

Therefore 
1 2(4 / 27)U1 = mv0 , (14.5.20)
2 

which we can solve for the speed 
8U1 / 27m .v0 = (14.5.21) 
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